### 17-708 SOFTWARE PRODUCT LINES: CONCEPTS AND IMPLEMENTATION

#### **ANALYSIS OF FEATURE MODELS**

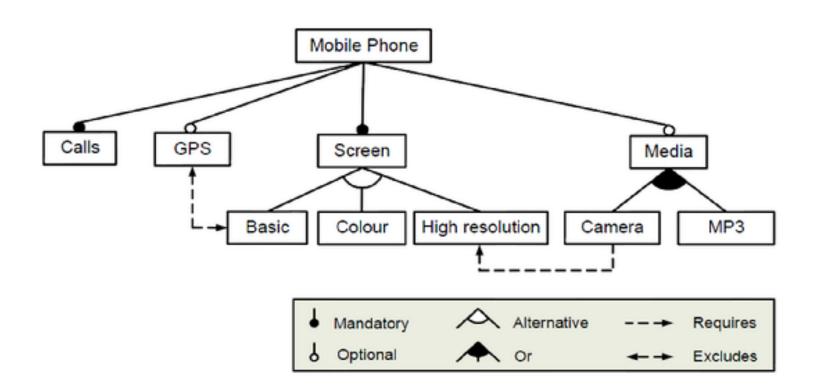
CHRISTIAN KAESTNER
CARNEGIE MELLON UNIVERSITY
INSTITUTE OF SOFTWARE RESEARCH

#### **LEARNING GOALS**

Translation from feature models to logic formulas

Reasoning about various properties using SAT queries and achievable benefits

**Understanding limitations and challenges** 


Solvers in practical tools (or lack thereof)

### FODA

# ANALYSIS OF FEATURE MODELS

#### **IN-CLASS EXERCISE**

Translate the following feature model to a propositional formula



#### **ANALYSIS QUESTIONS**

Configuration x valid?

At least one valid configuration? (consistency)

Valid partial configuration?

**Constraint propagation?** 

**Dead feature? False optional feature?** 

Comparing two feature models?

**Optimization?** 

**Atomic sets?** 

List/count all valid configurations? Weight of features?

**Metrics?** 

#### **EQUIVALENT MODELS**

Create two feature models that describe the same configuration space.

Should there be a normal form for feature models?

### ANALYSIS IN FEATUREIDE

**Demo** 

#### **SCALABILITY**

np-hard

Tree-shaped problems are easier

Translation to CNF

$$(X_1 \wedge Y_1) \vee (X_2 \wedge Y_2) \vee \ldots \vee (X_n \wedge Y_n).$$

$$(X_1 \vee X_2 \vee \cdots \vee X_n) \wedge (Y_1 \vee X_2 \vee \cdots \vee X_n) \wedge (X_1 \vee Y_2 \vee \cdots \vee X_n) \wedge (Y_1 \vee Y_2 \vee \cdots \vee X_n) \wedge \cdots \wedge (Y_1 \vee Y_2 \vee \cdots \vee Y_n).$$

#### **Equi-satisfiable transformations**

$$(Z_1 \vee \cdots \vee Z_n) \wedge (\neg Z_1 \vee X_1) \wedge (\neg Z_1 \vee Y_1) \wedge \cdots \wedge (\neg Z_n \vee X_n) \wedge (\neg Z_n \vee Y_n).$$

In practice analysis of feature models with 20000 options usually still tractable

## ANALYSIS IN LINUX (OR LACK THEREOF)

3-value logic

Demo

#### **FURTHER READING**

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature models 20 years later: A literature review. *Information Systems*, *35*(6), 615-636.

Batory, D. (2005). Feature models, grammars, and propositional formulas (pp. 7-20). Springer Berlin Heidelberg.

Mendonca, M., Wąsowski, A., & Czarnecki, K. (2009, August). SAT-based analysis of feature models is easy. In *Proceedings* of the 13th International Software Product Line Conference (pp. 231-240). Carnegie Mellon University.

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). *Feature-Oriented Software Product Lines*. Berlin: Springer. Chapter 10.1