
Foundations of Software
Engineering

Lecture 24: Open Source

Claire Le Goues

1

Learning goals

• Understand the terminology “free software”
and explain open source culture and
principles.

• Express an educated opinion on the
philosophical/political debate between open
source and proprietary principles.

• Reason about the tradeoffs of the open
source model on issues like quality and risk,
both in general and in a proprietary context.

2

Motivation to understand open
source.
• Companies work on open source

projects.

• Companies use open source projects.

• Companies are based around open
source projects.

• Principles percolate throughout industry.

• Political/philosophical debate, and being
informed is healthy.

3

Quick and easy definitions

• Proprietary software – software which
doesn’t meet the requirements of free
software or open source software

• Free software – software with a strong
emphasis on user rights

• Open source software – software where the
source code is shared with the community

• Does Free Software = Open Source?

4

“Free as in free speech.”

5

6

Stallman vs. Gates

7

Free Software vs Open Source

• Free software origins (70-80s ~Stallman)
– Political goal
– Software part of free speech

• free exchange, free modification
• proprietary software is unethical
• security, trust

– GNU project, Linux, GPL license

• Open source (1998 ~ O'Reilly)
– Rebranding without political legacy
– Emphasis on internet and large dev./user involvement
– Openness toward proprietary software/coexist
– (Think: Netscape becoming Mozilla)

8

The Cathedral and the Bazaar

9

The Cathedral and the Bazaar

• Cathedral (closed source)

– Top-down design with focus on planning

• Bazaar (open source)

–Organic bottom-up movement

–Code always public over internet

– Linux/Fetchmail stories

10
Eric Raymond. Essay 1997

The Cathedral and the Bazaar –
Lessons (selection)
• Every good work of software starts by scratching a

developer's personal itch
• To solve an interesting problem, start by finding a

problem that is interesting to you
• Release early, release often
• Given a large enough beta-tester and co-developer

base, almost every problem will be characterized
quickly and the fix obvious to someone

• The next best thing to having good ideas is
recognizing good ideas from your users. Sometimes
the latter is better.

11
Eric Raymond. Essay 1997

Open Source Teams

• Potentially open for everybody

• Process to vet contributions

• Typically many contributors but small
core teams

12

13
Apache Study – Herbsleb, CMU

Social Coding

• Github, Bitbucket, etc.

• Add social networking
features to coding

– Follow users

– Watch repositories

• Allows team structure
to emerge as opposed
to previous planning

14

How do open source programs
make money?

•Red Hat – revenues of about $2
Billion last year and is worth
approximately $15 Billion.

•Mozilla – has revenues of $300
Million annually

•Apache Software Foundation –
recent revenue of $1 Million

15

Open Source Business Models

• Open source as hobby; resume building

• Selling support/expertise instead of
software
–RedHat

• Selling complementary services
–Wordpress

• Developers hired as consultants, for
extensions

16

Other Open Source Business
Models
• Companies dedicate resources to

projects which help them and the
community
– Apache receives donations

• Selling merchandise – Canonical
(Ubuntu)

• Selling advertising or customer traffic –
Mozilla

17

Quality?!

“There are no technical requirements for
the plugins aside from them being able to
be installed on a fresh Eclipse
platform. We leave it to the community to
find and report bugs related to technical
features and conflicts.”

-Eclipse Marketplace, Dec 2014

18

Open Source Famous Phrases

Linus’s Law - Many eyes make all bugs
shallow

Collaboration over Competition

…is open source code of higher quality?

–How would we be able to tell?

19

A Case Study of Open Source
Software Development: The
Apache Server
Measure Apache Proprietary

System A
Proprietary
System C

Proprietary
System D

Post-release
defects/KLOCA

2.64 0.11 0.1 0.7

Post-release
defects/KDelta

40.8 4.3 14 2.8

Post-feature test
Defects/KLOCA

2.64 * 5.7 6.0

Post-feature test
Defects/KLOCA

40.8 * 164 196

20

Coverity Report of Open Source

[Coverity, 2012, http://www.coverity.com/press-releases/annual-coverity-
scan-report-finds-open-source-and-proprietary-software-quality-better-
than-industry-average-for-second-consecutive-year/]

Only tested programs which use Coverity
Defect density: defects per 1,000 lines
Average defect density of 0.69 for open source and 0.68 for
proprietary software, surpassing the industry standard of 1
or less

Proprietary Open Source

500,000-1,000,000
(LOC)

0.98 0.44

1,000,000+ (LOC) 0.66 0.75

Defect Density Based on Size

21

Two years later…

• In 2014, open source defect density went
down to 0.61 from 0.69 in 2012

• Proprietary defect density went up to
0.76 from 0.68 in 2012

• …verdict?

22

OPEN SOURCE IN A PROPRIETARY
CONTEXT (BENEFITS VS. RISK)

23

https://www.tesla.com/blog/all-our-patent-are-belong-you

24

Hilarious irony

25

https://mailman.cs.umd.edu/pipermail/findbugs-discuss/2016-
November/004321.html

26

27

Open SSL/Heartbleed.

• In 2013, OpenSSL made
$2,000 in donations (and
some from other sources)

• One full time programmer
• Heartbleed (2014):

Vulnerability was found
that effected about 17.5%
of web servers (half a
million)

• Used by Yahoo, Twitter,
Google

• Who is responsible?

28

Case Study: OpenSSL

• When HeartBleed occurred, Google reported
the bug and later submitted a patch

• After the HeartBleed bug, more than 17
companies agreed to each contribute
$100,000 annually for 3 year to the Core
Infrastructure Initiative.

• Core Infrastructure Initiative distributes
funds to needy but important projects

29

Bug Bounties

• Facebook, Google, Yahoo, Microsoft, and
other companies have rewards for finding
bugs and reporting them

• Usually $100 or more for simple bugs and
higher rewards for more serious bugs

• Bounties can save the company from
malicious exploits, which can cost the
company much more.
– Ponemon Institute reports average cost of

$3.79 million per company data breech (2014)

30

Risks of not open sourcing
something?

31

Proprietary methods to gain
community benefits
• Release early, release often; Continuous or

small updates instead of big version changes
• “Many eyes make all bugs shallow”
• Recognize good ideas from your users.
• Collaboration over competition
• Promote users to report bugs and monitor new

releases (easier if using software as a service)
• Allow users to write mods for the product

(usually in a controlled way) or promote feature
requests

32

ONE MORE RISK IN PROPRIETARY
CONTEXT: LICENSES

33

Why learn about licenses?

• Companies will avoid certain licenses –
commonly the copyleft licenses

• Specific licenses may provide competitive
advantages

• You may eventually want to release open
source software or become more
involved in an open source project

34

Open Source Licenses
Software Percentage

MIT License 24%

GNU General Public License (GPL) 2.0 23%

Apache License 2.0 16%

GNU General Public License (GPL) 3.0 9%

BSD License 2.0 (3-clause, New or
Revised) License

6%

GNU Lessor General Public License (LGPL)
2.1

5%

Artistic License (Perl) 4%

GNU Lesser General Public License (LGPL)
3.0

2%

Microsoft Public License 2%

Eclipse Public License 2%

List from: https://www.blackducksoftware.com/resources/data/top-20-open-source-
licenses

35

GNU General Public License: The
Copyleft License
• Nobody should be restricted by the software they

use. There are four freedoms that every user should
have:
– the freedom to use the software for any purpose,
– the freedom to change the software to suit your needs,
– the freedom to share the software with your friends and

neighbors, and
– the freedom to share the changes you make.

• Code must be made available
• Any modifications must be relicensed under the

same license (copyleft)

36

GPL 2.0 and 3.0 – Addresses free
software problems
• 2.0 - Court ruling cannot nullify the license

and if a court decision and this license
contradict in distribution requirements, then
the software cannot be distributed

• 3.0 – patent grant and prevent Tivoization

• Not compatible with each other; Can’t
copyleft both at the same time – phrase:
“GLP Version 3 or any later version”

37

Why would projects choose one
license over another?

[From http://choosealicense.com/licenses/]
38

Dual License Business Model

•Released as GPL which requires a company
using the open source product to open source
it’s application

•Or companies can pay $2,000 to $10,000
annually to receive a copy of MySQL with a
more business friendly license 39

Risk: Incompatible Licenses

• Sun open sourced OpenOffice, but when Sun was
acquired by Oracle, Oracle temporarily stopped the
project.

• Many of the community contributors banded
together and created LibreOffice

• Oracle eventually released OpenOffice to Apache
• LibreOffice changed the project license so LibreOffice

can copy changes from OpenOffice but OpenOffice
cannot do the same due to license conflicts

40

MIT License

• Must retain copyright credit

• Software is provided as is

• Authors are not liable for software

• No other restrictions

41

LGPL

• Software must be a library

• Similar to GPL but no copyleft
requirement

42

BSD License

• No liability and provided as is.

• Copyright statement must be included in
source and binary

• The copyright holder does not endorse
any extensions without explicit written
consent

43

Apache License

• Apache
– Similar to GPL with a few differences

–Not copyleft

–Not required to distribute source code

–Does not grant permission to use project’s
trademark

–Does not require modifications to use the
same license

44

Perception:

• Anarchy

• Demagoguery

• Ideology

• Altruism

• Many eyes

45

Open Source Reality

• Aggressive collaborative tool use
– version control, CI, issue tracker, reviews, …

• Careful management of people
• Process rigor
• Often aimed at expert users

• Intellectual property
• Often industry supported
• Often addressing common assets

46

