
Foundations of
Software Engineering

Part 24: Teams

Christian Kästner

15-313 Software Engineering1

15-313 Software Engineering2

Case Studies

15-313 Software Engineering3

Disclaimer: All pictures represent abstract developer groups or products to give a
sense of scale; they are not necessarily the developers of those products or
developers at all.

How to structure teams?

ÅMicroblogging platform; 3 friends

15-313 Software Engineering4

How to structure teams?

ÅBanking app; 15 developers

15-313 Software Engineering5

How to structure teams?

ÅMobile game;
50ish developers;

Ådistributed teams?

15-313 Software Engineering6

How to structure teams?

ÅMobile game;
200ish developers

15-313 Software Engineering7

How to structure teams?

ÅRide sharing app and self-driving cars;
1200 developers; 4 sites

15-313 Software Engineering8

Teams

15-313 Software Engineering9

Necessity of Groups

ÅDivision of labor

ÅDivision of expertise (e.g., security
expert, database expert)

15-313 Software Engineering10

Team Issues

ÅProcess costs

ÅGroupthink

ÅSocial loafing

ÅMultiple/conflicting goals

15-313 Software Engineering11

Team issues: Process costs

15-313 Software Engineering12

Mythical Man Month

ÅBrooks'slaw:Adding
manpower to a late
software project
makes it later

15-313 Software Engineering13

1975, describing experience at
IBM developing OS/360

Process Costs

15-313 Software Engineering14

n(n− 1) / 2
communication links

Process Costs

15-313 Software Engineering15

Brook's Surgical Teams

ÅChief programmer –most programming and initial
documentation

ÅSupport staff
ïCopilot: supports chief programmer in development tasks,

represents team at meetings
ïAdministrator: manages people, hardware and other resources
ïEditor: editing documentation
ïTwo secretaries: one each for the administrator and editor
ïProgram clerk: keeps records of source code and documentation
ïToolsmith: builds specialized programming tools
ïTester: develops and runs tests
ïLanguage lawyer: expert in programming languages, provides

advice on producing optimal code.

15-313 Software Engineering16

IBM 1971

Microsoft's Small Team Practices

ÅVision statement and milestones (2-4
month), no formal spec

ÅFeature selection, prioritized by market,
assigned to milestones

ÅModular architecture

ïAllows small federated teams (Conway's law)

ÅSmall teams of overlapping functional
specialists

15-313 Software Engineering17

Windows 95: 200 developers and testers, one of 250 products

Microsoft's Small Team Practices

ÅFeature Team
ï3-8 developers (design, develop)

ï3-8 testers (validation, verification, usability,
market analysis)

ï1 program manager (vision, schedule
communication; leader, facilitator) –
working on several features

ï1 product manager (marketing research,
plan, betas)

15-313 Software Engineering18

Microsoft's Small Team Practices

Å"Synchronize and stabilize"

ÅFor each milestone
ï6-10 weeks feature development and

continuous testing
Åfrequent merges, daily builds

ï2-5 weeks integration and testing (“zero-
bug release”, external betas)

ï2-5 weeks buffer

15-313 Software Engineering19

Agile Practices (e.g., Scrum)

Å7+/-2 team members, collocated

Åself managing

ÅScrum master (potentially shared among
2-3 teams)

ÅProduct owner / customer representative

15-313 Software Engineering20

Mantle and Lichty

ÅIdeal team size: 2-3 colocateddevelopers
if possible

15-313 Software Engineering21

15-313 Software Engineering22

Large teams (29 people) create around six
times as many defects as small teams (3
people) and obviously burn through a lot
more money. Yet, the large team appears to
produce about the same mount of output in
only an average of 12 days’ less time. This is
a truly astonishing finding, through it fits
with my personal experience on projects
over 35 years.

- Phillip Amour, 2006, CACM 49:9

Establish communication patterns

ÅAvoid overhead

ÅEnsure reliability

ÅConstraint latency

Åe.g. Issue tracker vsemail; online vsface
to face

15-313 Software Engineering23

Awareness

ÅNotifications

ÅBrook's documentation book

ÅEmail to all

ÅCode reviews

15-313 Software Engineering24

Conway’s Law

15-313 Software Engineering25

“Any organization that designs a system (defined
broadly) will produce a design whose structure is
a copy of the organization's communication
structure.”

τMel Conway, 1967

“If you have four groups working on a compiler,
you'll get a 4-pass compiler.”

Module C

Module A

Module B

Congruence

15-313 Software Engineering26

Socio-Technical Congruence

ÅStructural congruence

ÅGeographical congruence

ÅTask congruence

ÅIRC communication congruence

15-313 Software Engineering27

Teamwork Guidelines

ÅRespect Conway's Law

ïCode structure and team structure should
align

ÅSeek well-defined, stable interfaces

15-313 Software Engineering28

Team issues: Groupthink

15-313 Software Engineering29

15-313 Software Engineering30

Groupthink

ÅGroup minimizing conflict

ÅAvoid exploring alternatives

ÅSuppressing dissenting views

ÅIsolating from outside influences

Å-> Irrational/dysfunctional decision
making

15-313 Software Engineering31

Time and Cost Estimation

15-313 Software Engineering32

Causes of Groupthink

ÅHigh group cohesiveness, homogeneity

ÅStructural faults (insulation, biased
leadership, lack of methodological
exploration)

ÅSituational context (stressful external
threats, recent failures, moral dilemmas)

15-313 Software Engineering33

Symptoms

ÅOverestimation of ability
ïinvulnerability, unquestioned believe in

morality

ÅClosed-mindedness
ïignore warnings, stereotyping

ïinnovation averse

ÅPressure toward uniformity
ïself-censorship, illusion of unanimity, …

15-313 Software Engineering34

15-313 Software Engineering35

Diversity

15-313 Software Engineering36

http://www.gallup.com/businessjournal/166220/business-benefits-gender-diversity.aspx

Stahl, Günter K., et al. "Unraveling the effects of cultural diversity in teams: A meta-analysis of research on multicultural work
groups." Journal of international business studies41.4 (2010): 690-709.

“Men and women have different viewpoints, ideas, and
market insights, which enables better problem solving.
A gender-diverse workforce provides easier access to
resources, such as various sources of credit, multiple
sources of information, and wider industry knowledge.
A gender-diverse workforce allows the company to
serve an increasingly diverse customer base. Gender
diversity helps companies attract and retain talented
women.”
“Cultural diversity leads to process losses through task
conflict and decreased social integration, but to process
gains through increased creativity and satisfaction.”

Unconscious bias

ÅPervasive, cultural

ÅRaise awareness

ÅExplicit goals

ÅMeasurement

15-313 Software Engineering37

15-313 Software Engineering38

Mitigation Strategies

ÅSeveral agile techniques
ïPlanning poker
ïTests, continuous integration
ïOn-site customers

ÅDiverse teams
ÅManagement style
ÅAvoid HR evaluation by metrics
ÅSeparate QA from development
ÅOutside experts
ÅProcess reflection
Å…

15-313 Software Engineering39

Team issues: Social loafing

15-313 Software Engineering40

15-313 Software Engineering41

15-313 Software Engineering42

Latane, Bibb, Kipling Williams, and Stephen Harkins. "Many hands make light the
work: The causes and consequences of social loafing." Journal of personality and
social psychology37.6 (1979): 822.

Social loafing

ÅPeople exerting less effort within a group
ÅReasons
ïDiffusion of responsibility
ïMotivation
ïDispensability of effort / missing recognition
ïAvoid pulling everybody / "sucker effect"
ïSubmaximal goal setting

Å“Evaluation potential, expectations of co-worker
performance, task meaningfulness, and culture
had especially strong influence”

15-313 Software Engineering43

Karau, Steven J., and Kipling D. Williams. "Social loafing: A meta-analytic review and
theoretical integration." Journal of personality and social psychology65.4 (1993): 681.

Mitigation Strategies

ÅInvolve all team members, colocation
ÅAssign specific tasks with individual

responsibility
ïIncrease identifiability
ïTeam contracts, measurement

ÅProvide choices in selecting tasks
ÅPromote involvement, challenge developers
ÅReviews and feedback
ÅTeam cohesion, team forming exercises
ÅSmall teams

15-313 Software Engineering44

Agile Practices as Mitigation?

15-313 Software Engineering45

Responsibilities & Buy-In

ÅInvolve team members in decision
making

ÅAssign responsibilities (ideally goals not
tasks)

ÅRecord decisions and commitments;
make record available

15-313 Software Engineering46

15-313 Software Engineering47

Autonomy
Mastery
Purpose

Team issues: Multiple/conflicting
goals

15-313 Software Engineering48

15-313 Software Engineering49

Incentives?

ÅTeam incentives

Åvs individual incentives?

15-313 Software Engineering50

Agile Practices as Mitigation?

15-313 Software Engineering51

Matrix Organization

15-313 Software Engineering52

System
programmers

Application
programmers

QA Security Marketing

Project 1

Project 2

Project 3

mgmt

Temporary assignment to projects; flexible staffing

Project Organization

15-313 Software Engineering53

System
programmers

Application
programmers

QA Security Marketing

Project 1

Project 2

Project 3

mgmt

Case Study: Brøderbund

ÅAs the functional departments grew, staffing the heavily
matrixedprojects became more and more of a nightmare. To
address this, the company reorganized itself into “Studios”, each
with dedicated resources for each of the major functional areas
reporting up to a Studio manager. Given direct responsibility for
performance and compensation, Studio managers could allocate
resources freely.

ÅThe Studios were able to exert more direct control on the
projects and team members, but not without a cost. The major
problem that emerged from Brøderbund’sStudio reorganization
was that members of the various functional disciplines began to
lose touch with their functional counterparts. Experience wasn’t
shared as easily. Over time, duplicate effort began to appear.

15-313 Software Engineering54

Commitment & Accountability

ÅConflict is useful, expose all views

ÅCome to decision, commit to it

ÅAssign responsibilities

ÅRecord decisions and commitments;
make record available

15-313 Software Engineering55

Bell & Hart – 8 Causes of Conflict

ÅConflicting resources.

ÅConflicting styles.

ÅConflicting perceptions.

ÅConflicting goals.

ÅConflicting pressures.

ÅConflicting roles.

ÅDifferent personal values.

ÅUnpredictable policies.

15-313 Software Engineering56
https://www.mindtools.com/pages/article/eight-causes-conflict.htm

Bell, Art. (2002). Six ways to resolve workplace conflicts.
McLaren School of Business, University of San Francisco.

Virtual Teams

15-313 Software Engineering57

Virtual Teams?

15-313 Software Engineering58

Computer Supported Collaborative
Work (CSCW): Technology-assisted
collaboration

ÅMany failures

ÅIsolated, but very significant, success

ïJazz, Github, …

15-313 Software Engineering59

General Guidelines

15-313 Software Engineering60

Hints for team functioning

ÅTrust them; strategic not tactical direction
ÅReduce bureaucracy, protect team
ÅPhysical colocation, time for interaction
ÅAvoid in-team competition (bonuses etc)
ÅTime for quality assurance, cult of quality
ÅRealistic deadlines
ÅPeer coaching
ÅSense of elitism
ÅAllow and encourage heterogenity

15-313 Software Engineering61 DeMarcoand Lister. Peopleware. Chapter 23

Team Fusion

ÅForming, Storming, Norming, Performing

ÅPreserve existing teams, resist project
mobility

15-313 Software Engineering62

Elitism Case Study: The Black Team

ÅLegendary team at IBM in the 1960s
ÅGroup of talented ("slightly better") testers
ïGoal: Final testing of critical software before delivery

ÅImprovement over first year
ÅFormed team personality and energy
ï"adversary philosophy of testing"
ïCultivated image of destroyers
ïStarted to dress in black, crackled laughs, grew

mustaches

ÅTeam survived loss of original members

15-313 Software Engineering63 DeMarcoand Lister. Peopleware. Chapter 22

Troubleshooting Teams

ÅCynicism as warning sign

ÅTraining to improve practices

ÅGetting to know each other; celebrate
success; bonding over meals

Å“A meeting without notes is a meeting
that never happened”

15-313 Software Engineering64

Further Reading

ÅMantle and Lichty. Managing the
Unmanageable. Addison-Wesley, 2013
ïVery accessible and practical tips at recruiting

and management

ÅDeMarcoand Lister. Peopleware. 3rd Edition.
Addison Wesley, 2013
ïAnecdotes, stories, and tips on facilitating

teams, projects, and environments

ÅSommerville. Software Engineering. 8th

Edition. Chapter 25

15-313 Software Engineering65

