
Foundations of
Software Engineering

Quality-Assurance Process

Christian Kästner

15-313 Software Engineering 1

Foundations of
Software Engineering

How to get developers to
[write tests|use static analysis|appreciate testers]

Christian Kästner

15-313 Software Engineering 2

15-313 Software Engineering 3

Agenda

ÅQA in the context of process

ÅCase study: QA at Microsoft from 1980 to
today

ÅCase study: Adopting a static analysis
tool at Ebay

ÅEmbedding QA in a process

ÅSocial aspects of QA

15-313 Software Engineering 4

Learning Goals

ÅUnderstand process aspects of QA
ÅDescribe the tradeoffs of QA techniques
ÅSelect an appropriate QA technique for a given project and

quality attribute
ÅDecide the when and how much of QA
ÅOverview of concepts how to enforce QA techniques in a

process
ÅSelect when and how to integrate tools and policies into the

process: daily builds, continuous integration, test automation,
ǎǘŀǘƛŎ ŀƴŀƭȅǎƛǎΣ ƛǎǎǳŜ ǘǊŀŎƪƛƴƎΣ Χ

ÅUnderstand human and social challenges of adopting QA
techniques

ÅUnderstand how process and tool improvement can solve the
dilemma between features and quality

15-313 Software Engineering 5

QA Process

15-313 Software Engineering 6

QA Process Considerations

ÅWe covered several QA techniques:
ïFormal verification (15-112)
ïUnit testing, Test driven development (15-214)
ïVarious forms of advanced testing for quality attributes
όD¦L ǘŜǎǘƛƴƎΣ ŦǳȊȊ ǘŜǎǘƛƴƎΣ Χύ
ïStatic analysis
ïDynamic analysis
ïFormal inspections and other forms of code reviews

ÅBut: When to use? Which techniques? How much?
How to introduce? How to establish a quality
culture? How to ensure compliance? Social issues?
What about external components?

15-313 Software Engineering 7

15-313 Software Engineering 8

15-313 Software Engineering 9

15-313 Software Engineering 10

15-313 Software Engineering 11

Qualities and Risks

ÅWhat qualities are required?
(requirements engineering)

ÅWhat risks are expected?

ÅAlign QA strategy based on qualities and
risks

15-313 Software Engineering 12

Example: Test plans linking
development and testing

15-313 Software Engineering 13

Sommerville. Software Engineering. Ed. 8, Ch 22

Example: SQL Injection Attacks

15-313 Software Engineering 14

http://xkcd.com/327/

Which QA strategy is suitable?

Example: Scalability

15-313 Software Engineering 15

Which QA strategy is suitable?

Example: Usability

15-313 Software Engineering 16

Which QA strategy is suitable?

15-313 Software Engineering 17

Quality / Security C
a

p
a

b
ili

tie
s

/
F

e
a
tu

re
s

/
P

e
rf

o
rm

a
n

c
e

2004

Market

M
a

rk
e
t

2014?

2014?

QA Tradeoffs

ÅUnderstand limitations of QA approaches

ïe.g. testing vs static analysis,
formal verification vs ƛƴǎǇŜŎǘƛƻƴΣ Χ

ÅMix and match techniques

ÅDifferent techniques for different
qualities

15-313 Software Engineering 18

Case Study: QA at Microsoft

15-313 Software Engineering 20

15-313 Software Engineering 21

15-313 Software Engineering 23

Throughout the case studies,
look for nontechnical challenges
and how they were addressed
όǎƻŎƛŀƭ ƛǎǎǳŜǎΣ ǇǊƻŎŜǎǎ ƛǎǎǳŜǎΣ Χύ

Microsoft's Culture

ÅHiring the best developers
ïάaƛŎǊƻǎƻŦǘ Ŏŀƴ ŀŎƘƛŜǾŜ ǿƛǘƘ ŀ ŦŜǿ ƘǳƴŘǊŜŘ ǘƻǇ-notch
ŘŜǾŜƭƻǇŜǊǎ ŦƻǊ ǿƘŀǘ L.a ǿƻǳƭŘ ƴŜŜŘ ǘƘƻǳǎŀƴŘǎέ

ÅGiving them freedom
ÅTeams for products largely independent
ÅRelatively short development cycles
ïVersion updates (eg. Excel 3->4) 1-2 month
ïNew products 1-4 years
ïDriven by release date

ÅLittle upfront specification, flexible for change and
cutting features

Early Days (1984): Separate testing
from development
Å after complaints over bugs from hardware manufacturers (eg. wrong

computations in BASIC)
Å customers complained about products
Å IBM insisted that Microsoft improves process for development and quality

control
Å Serious data-destroying bug forced Microsoft to ship update of Multiplan

to 20000 users at 10$ cost each
Å Resistance from developers and some management (incl. Balmer):
άŘŜǾŜƭƻǇŜǊǎ ŎƻǳƭŘ ǘŜǎǘ ǘƘŜƛǊ ƻǿƴ ǇǊƻŘǳŎǘǎΣ ŀǎǎƛǎǘŜŘ ƻƴ ƻŎŎŀǎƛƻƴ ōȅ ƘƛƎƘ
ǎŎƘƻƻƭ ǎǘǳŘŜƴǘǎΣ ǎŜŎǊŜǘŀǊƛŜǎΣ ŀƴŘ ǎƻƳŜ ƻǳǘǎƛŘŜ ŎƻƴǘǊŀŎǘƻǊǎέ

Å Hired outside testers
Å Avoided bureaucracy of formal inspections, signoff between stages, or

time logging
Å Separate testing group; automated tests; code reviews for new people and

critical components

Early Days (1986): Testing groups

Åά5ŜǾŜƭƻǇŜǊǎ Ǝƻǘ ƭŀȊȅέΣ ǊŜƭƛŜŘ ƻƴ ǘŜǎǘ ǘŜŀƳ ŦƻǊ
QA
ÅάLƴŦƛƴƛǘŜ ŘŜŦŜŎǘǎέ - Testers find defects faster

than developers can fix them
Å[ŀǘŜ ŀƴŘ ƭŀǊƎŜ ƛƴǘŜƎǊŀǘƛƻƴǎ όάōƛƎ ōŀƴƎέύ -

long testing periods, delayed releases
ÅMac Word 3 desaster: 8 month late,

hundreds of bugs, including crashing and
data destroying bugs; 1M$ for free upgrades
ÅPressure on delivering quality grew

мфуф wŜǘǊŜŀǘ ŀƴŘ ά½ŜǊƻ ŘŜŦŜŎǘǎέ

Åsee memo

Zero-Defect Rules for Excel 4

ÅAll changes must compile and link

ÅAll changes must pass the automated
quick tests on Mac and Windows

ÅAny developer who has more than 10
open bugs assigned must fix them before
moving to new features

Testing Buddies

ÅDevelopment and test teams separate,
roughly similar size

ÅDevelopers test their own code, run
automated tests daily

ÅIndividual testers often assigned to one
developer
ïTesting their private releases (branch), giving

direct, rapid feedback by email before code is
merged

Testers

ÅEncouraged to communicate with
support team and customers, review
media evaluations

ÅDevelop testing strategy for high-risk
areas

ÅMany forms of testing (internally called):
unstructured testing, ad hoc testing,
gorilla testing, free-form Fridays

Early-mid 90s

ÅZero defect goal (1989 memo)
ÅMilestones (first with Publisher 1.0 in 1988)
ÅVersion control, branches, frequent integration
ÅDaily builds
Å!ǳǘƻƳŀǘŜŘ ǘŜǎǘǎ όάǉǳƛŎƪ ŀǳǘƻǘŜǎǘέύ - must succeed before

checkin
ÅUsability labs
ÅBeta testing (400000 beta testers for Win 95) with

instrumentation
ÅBrief formal design reviews; selected code reviews
ÅDefect tracking and metrics
ÅDevelopers stay in product group for more than one release

cycle

Metrics

ÅNumber of open bugs by severity
ïNumber of open bugs expected to decrease before milestone
ïAll know severe bugs need to be fixed before release
ïSeverity 1 (product crash), Severity 2 (feature crash), Severity 3

(bug with workaround), Severity 4 (cosmetic/minor)
ïMetrics tracked across releases and projects

ÅPerformance metrics
Å.ǳƎ Řŀǘŀ ǳǎŜŘ ŦƻǊ ŘŜŎƛŘƛƴƎ ǿƘŜƴ άǊŜŀŘȅ ǘƻ ǎƘƛǇέ
ïRelative and pragmatic, not absolute view
ïά¢ƘŜ ƳŀǊƪŜǘ ǿƛƭƭ ŦƻǊƎƛǾŜ ǳǎ ŦƻǊ ōŜƛƴƎ ƭŀǘŜΣ ōǳǘ ǘƘŜȅ ǿƻƴϥǘ ŦƻǊƎƛǾŜ
ǳǎ ŦƻǊ ōŜƛƴƎ ōǳƎƎȅέ

Challenges of Microsoft's Culture

ÅLittle communication among product teams

Å5ŜǾŜƭƻǇŜǊǎ ŀƴŘ ǘŜǎǘŜǊǎ ƻŦǘŜƴ άƴƻǘ ǎƻ ǿŜƭƭ
read in with software-engineering literature,
ǊŜƛƴǾŜƴǘƛƴƎ ǘƘŜ ǿƘŜŜƭέ

ïLong underestimated architecture, design,
ǎƘŀǊƛƴƎ ƻŦ ŎƻƳǇƻƴŜƴǘǎΣ ǉǳŀƭƛǘȅ ƳŜǘǊƛŎǎΣ Χ

ÅDevelopers resistant to change and
άōǳǊŜŀǳŎǊŀŎȅέ

Project Postmortem

ÅIdentify systematic problems and good practices (10-150
page report)
ïdocument recurring problems and practices that work well
ïe.g.,
Åbreadth-ŦƛǊǎǘ Ҧ ŘŜǇǘƘ-first & tested milestones
Åinsufficient specification
Ånot reviewing commits
Åusing asserts to communicate assumptions
ÅƭŀŎƪ ƻŦ ŀŘŜǉǳŀǘŜ ǘƻƻƭǎ Ҧ ŀǳǘƻƳŀǘŜŘ ǘŜǎǘǎ
Åinstrumented versions for testers and beta releases
Åzero defect rule not a priority for developers

ÅCirculate insights as memos, encourage cross-team learning

Process Audits

ÅInformal 1-week audits in problematic
problems

ÅAnalyzing metrics, interviewing team
members

ÅRecommendations to pick up best
practices from other teams
ïdaily builds, automated tests, milestones,

reviews

The 2002
Trustworthy Computing Memo

http://news.microsoft.com/2012/01/11/memo-from-bill-gates/

Code Reviews

ÅOwn code review tools (passaround
style)

ÅInternal studies on how effective reviews
are

ÅInternal tools to improve code reviews

38

Sta ti c Analysis 18Analysis of Softw are Arti facts

É 2009 Jonath an Aldr ich

Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of software model checking
with SLAM." Communications of the ACM 54.7 (2011): 68-76.

SLAM/SDV (since 2000)

ÅGoal: Reducing blue screens, often caused by drivers
ÅDriver verification tool for C
ÅModel checking technology
ÅFinds narrow class of protocol violations
ïUse characteristics of drivers (not general C code)
ïFound several bugs in Microsoft's well tested sample

drivers

ÅFully automated in Microsoft compiler suite
ÅAvailable for free
ÅEnforcement through driver certification program

SLAM

ÅCompelling business case: eliminated
most blue screens

ÅBased on basic science of model
checking: originated in university labs
with public funding

15-313 Software Engineering 40

Annotation

Å How to motivate developers, especially with millions of lines of
unannotated code?

Å Microsoft approach:
ï Require annotations at checkin (e.g., Reject code that has a char* with no

__ecount())
ï Make annotations natural, like what you would put in a comment anyway

ÅBut now machine checkable
ÅAvoid formality with poor match to engineering practices

ï Incrementality
Å/ƘŜŎƪ ŎƻŘŜ ҭ ŘŜǎƛƎƴ ŎƻƴǎƛǎǘŜƴŎȅ ƻƴ ŜǾŜǊȅ ŎƻƳǇƛƭŜ
ÅRewards programmers for each increment of effort

ï Provide benefit for annotating partial code
ï Can focus on most important parts of the code first
ï !ǾƻƛŘ ŜȄŎǳǎŜΥ LΩll do it after the deadline

ï Build tools to infer annotations
Å Inference is approximate and so annotations may need to be changed, but saves work

overall.
ÅUnfortunately not yet available outside Microsoft

41

Bounimova, Ella, Patrice Godefroid, and David Molnar. "Billions and billions of constraints:
Whitebox fuzz testing in production." In Proceedings of the 2013
International Conference on Software Engineering, pp. 122-131. IEEE Press, 2013.

SAGE

ÅWhite-box fuzz testing (symbolic-execution-based
test generation)
ÅEspecially for security issues in file and protocol

parsing routines
ïάŦƻǳƴŘ Ƴŀƴȅ ǇǊŜǾƛƻǳǎƭȅ-unknown security

vulnerabilities in hundreds of Microsoft applications,
including image processors, media players, file decoders
ŀƴŘ ŘƻŎǳƳŜƴǘ ǇŀǊǎŜǊǎέ

ÅIn-house SMT constraint solver (Z3)
ÅFrom research project to large-scale deployment
ïRunning at scale on 200 machines

Bug prediction

ÅMetrics

ÅMining software repositories

ÅExample results:

ïDistributed development not critical, but
organizational distance is

ÅNow prioritizing testing effort

Boogie, Dafny, ...

ÅIntermediate Verification Language

Åά¦ǎŀōƭŜ ŦƻǊƳŀƭ ǾŜǊƛŦƛŎŀǘƛƻƴέ

ïDafny language...

ÅActive research today...

Case Study 2:
Introducing Static Analysis at Ebay

15-313 Software Engineering 45

Jaspan, Ciera, I. Chen, and Anoop Sharma. "Understanding the value of program analysis tools." Companion
to the 22nd ACM SIGPLAN conference on Object-oriented programming systems and applications companion.
ACM, 2007.

Findbugs in 214

ÅWe forced everybody to use Findbugs

ÅHas it found bugs?

ÅWho is still using Findbugs?

ÅWhy not?

15-313 Software Engineering 46

Ebay: Prior Evaluations

ÅIndividual teams tried tools
ïOn snapshots
ïNo tool customization
ïOverall negative results
ïDevelopers were not impressed: many minor

issues (2 checkers reported half the issues, all
irrelevant for Ebay)

ÅWould this change when integrated into
process? i.e. incremental checking
ÅWhich bugs to look at?

15-313 Software Engineering 47

Ebay: Goals

ÅFind defects earlier in the lifecycle
ïAllow quality engineers to focus on different issues

ÅFind defects that are difficult to find through other
QA techniques
ïsecurity, performance, concurrency

ÅAs early as feasible: Run on developer machines and
in nightly builds
ÅNo resources to build own tool
ïBut few people for dedicated team (customization,

policies, creating project-specific analyses etc) possible

ÅContinuous evaluation

15-313 Software Engineering 48

Ebay: Customization

ÅCustomization dropped false positives from
50% to 10%

ÅSeparate checkers evaluated separately
ïBy number of issues

ïBy severity as judged by developers; iteratively
with several groups

ÅSome low-priority checkers (e.g., dead store
to local) was assigned high priority ς
performance impact important for Ebay

15-313 Software Engineering 49

Ebay: Enforcement policy

ÅHigh priority: All these issues must be fixed (e.g.
null pointer exceptions)
ïPotentially very costly given the huge existing code

base

ÅMedium priority: May not be added to the code
base. Old issues won't be fixed unless
refactored anyway (e.g., high cyclomatic
complexity)
ÅLow priority: At most X issues may be added

between releases (usually stylistic)
ÅTossed: Turned off entirely

15-313 Software Engineering 50

Ebay: Cost estimation

ÅFree tool

Å2 developers full time for customization
and extension

ÅA typical tester at ebay finds 10
bugs/week, 10% high priority

ÅSample bugs found with Findbugs for a
comparison

15-313 Software Engineering 51

Aside: Cost/benefit analysis

ÅCost/Benefit tradeoff
ïBenefit: How valuable is the bug?
ÅHow much does it cost if not found?
ÅHow expensive to find using testing/inspection?

ïCost: How much did the analysis cost?
ÅEffort spent running analysis, interpreting results ς includes false

positives
ÅEffort spent finding remaining bugs (for unsound analysis)

ÅRule of thumb
ïCƻǊ ŎǊƛǘƛŎŀƭ ōǳƎǎ ǘƘŀǘ ǘŜǎǘƛƴƎκƛƴǎǇŜŎǘƛƻƴ ŎŀƴΩt find, a sound

analysis is worth it, as long as false positive rate is acceptable.
ïFor other bugs, maximize engineer productivity

52

Ebay: Combining tools

ÅProgram analysis coverage
ïPerformance ς High importance
ïSecurity ς High
ïGlobal quality ς High
ïLocal quality ς medium
ïAPI/framework compliance ς medium
ïConcurrency ς low
ïStyle and readability ς low

ÅSelect appropriate tools and detectors

15-313 Software Engineering 53

Ebay: Enforcement

ÅEnforcement at dev/QA handoff:

ÅDevelopers run FindBugs on desktop

ÅQA runs FindBugs on receipt of code,
posts results, require high-priority fixes.

15-313 Software Engineering 54

Ebay: Continuous evaluation

ÅGather data on detected bugs and false
positives

ÅPresent to developers, make case for tool

15-313 Software Engineering 55

Incremental introduction

ÅBegin with early adopters in small team

ÅUse these as champions in organization

ÅSupport team: answer questions, help
with tool.

15-313 Software Engineering 56

/ŀǎŜ {ǘǳŘȅ оΥ DƻƻƎƭŜΩǎ Tricorder

15-313 Software Engineering 57

Integrate Static Analysis in Review
Process

ÅStatic analysis as bots in code review tool

ïAutomatically applied on each commit

ïResults visible to author and reviewers

ÅLightweight checkers, easy to add and
modify

ÅFeedback buttons to indicate ineffective
checkers

15-313 Software Engineering 58

Sadowski, Caitlin, et al. "Tricorder: Building a program analysis ecosystem."
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 1. IEEE, 2015.

15-313 Software Engineering 59

15-313 Software Engineering 60

QA within the Process

15-313 Software Engineering 61

QA as part of the process

ÅHave QA deliverables at milestones
(management policy)
ïInspection / test report before milestone

ÅChange development practices (req.
developer buy-in)
ïe.g., continuous integration, pair

programming, reviewed checkins, zero-bug
static analysis before checking

ÅStatic analysis part of code review (Google)
ÅTrack bugs and other quality metrics

15-313 Software Engineering 62

Defect tracking

ÅIssues: Bug, feature request, query
ÅBasis for measurement
ïreported in which phase
ïduration to repair, difficulty
ïcategorization

-> root cause analysis

ÅFacilitates communication
ïquestions back to reporter
ïensures reports are not

forgotten

ÅAccountability

 15-313 Software Engineering 63

Enforcement

ÅMicrosoft: check in gates
ïCannot check in code unless analysis suite has been run and produced

no errors (test coverage, dependency violation, insufficient/bad design intent, integer

overflow, allocation arithmetic, buffer overruns, memory errors, security issues)

ÅeBay: dev/QA handoff
ïDevelopers run FindBugs on desktop

ïQA runs FindBugs on receipt of code, posts results, require high-
priority fixes.

ÅGoogle: static analysis on commits, shown in review

ÅRequirements for success
ïLow false positives

ïA way to override false positive warnings (typically through
inspection).

ïDevelopers must buy into static analysis first 64

Reminder: Continuous Integration

15-313 Software Engineering 65

Automating Test Execution

Continuous Integration with
Travis-CI

Social Aspects

15-313 Software Engineering 68

Social issues

ÅDeveloper attitude toward defects

ÅDeveloper education about security

ÅUsing peer pressure to enforce QA
practices

ïBreaking the build ς various rules

15-313 Software Engineering 69

Social issues

ÅDeveloper vs tester culture

ÅTesters tend to deliver bad news

ÅDefects in performance evaluations?

ÅIssues vs defects

ÅGood test suits raise confidence,
encourage shared code ownership

15-313 Software Engineering 70

Reporting Defects

ÅReproducible defects

ÅSimple and general

ÅOne defect per report

ÅNon-antagonistic

ï(testers usually bring bad news)

ïState the problem

ïDon't blame

15-313 Software Engineering 71

15-313 Software Engineering 72

