Foundations of
Software Engineering

Lecture 16: Process: Linear to Iterative
Michael Hilton

°

institute for

1 I S SOFTWARE
RESEARCH

Learning goals

Understand the need for process
considerations

Select a process suitable for a given

project

Address project and engineering risks

through iteration
Ensure process quality.

institute for
SOFTWARE
RESEARCH

(Circular dependency between QA
planning and process...)

)
institute for
3 I S SOFTWARE
RESEARCH

A simple process

1.

o

S A T i e

Discuss the software that needs to be
written

Write some code

Test the code to identify the defects
Debug to find causes of defects

~ix the defects

f not done, return to step 1

. . .
institute For

I S SOFTWARE
RESEARCH

100%

Trashing / Rework

Percent
of
Effort
Productive Coding
0%
Project Time Project
beginning <end

institute for
5 I S SOFTWARE
RESEARCH

100% Trashing / Rework

Percent
of
Effort
Productive Coding
0%
Project Time Project
beginning end

institute for
° I S SOFTWARE
RESEARCH

The Waterfall Model

. . .
institute for
7 I S SOFTWARE
RESEARCH

] Win Royce and Barry Boehm, 1970
Requirements q
Engineering
b Architectural
q
Detailed
b q
b q
b q
|-> Integration
testing ‘ﬁl
Why was this an important step? — x
L eration an
What are limitations? L
. VY EQIGRERE

A
Cost to

Correct

Phase Thata
Defect Is Created

Requirements

Architecture

Detailed design \

commaion |\ \ N

Requirements Architecture Detailed Construction Maintenance
design

Phase That a Defect Is Corrected

Copymght 1998 Steven C. WeConnell. Reprinted wath perussion
frora Software Project Survival Guide (Ivhicrosoft Press, 1998).

institute for
SOFTWARE
RESEARCH

10

institute for
SOFTWARE
RESEARCH

History lesson: 1968 NATO
Conference on Software Engineering

* Envy of engineers: Within time, predictable,
reliable.

* Provocative Title, Call for Action

SOFTWARE ENGINEERING
TECHNIQUES

Envy of Engineers

* Producing a car/bridge
— Estimable costs and risks
— Expected results
— High quality
e Separation between plan
and production R
e Simulation before construction
e Quality assurance through measurement

e Potential for automation

institute for
12 I S SOFTWARE
RESEARCH

Software Engineering?

,The Establishment and use of sound
engineering principles in order to obtain
economically software that is reliable
and works efficiently on real machines.”
[Bauer 1975, S. 524]

°
institute for
13 I S SOFTWARE
RESEARCH

&

= [EI waterfallconf, com @ . @

'.-'fl* nako saftware enginesring Pl ‘ﬁ‘ n*

L

—t

$=7, Waterfall Conference 2015
0

8+

.‘ Coming in Late Winter of 2015. Dedicated to all aspects of the Waterfall Model of software development.

¥~ Registration S5essions = S Speakers BE Gallery -« & sbout

At a glance

3 days, 150+ speakers, hundreds of Waterfall enthusiasts. Join the world's process pioneers, builders,
and innowvators for three intense days. Learn about the Waterfall Model, challenge your assumptions,
and fire up your brain.

- A A conference dedicated to all aspects of the Waterfall Model of software
development. Many companies are dropping Agile, Kanban and Lean
to mowve back to the safe and sequential development process. As you
T—:;-ME know it is much easier ta fix a requirements bug in the requirements phase
Vet | than to fix that same bug in the implementation phase, as to fic a

- | reguirements bug in the implementation phase requires scrapping at least
some implementation and design work which has already been completed.
As you know the waterfall model provides a structured approach; the model itself progresses linearly
through discrete, easily understandahble and explainakle phases and thus is easy to understand; it also
provides easily identifiable milestones in the development process. It is for this reason that the Watertall
Conference is so popular in many software engineering companies.

Keynotes by industry leaders, sessions by real live developers and process enthusiasts. Sponsorship
opportunities available.

R T T T T P . A

Registration Includes

«" Access to all keynotes

and hreakout sessions

" World-Class learning
BXpErience

w Breakfast, lunch and
receiptions

" Special events, including

famous Waterfall Bash

Social

fEN

Stay up to date

. Con

Key challenge: Change

e Software seems changeable ("soft")

e Developers prone to changes and "extra
features”

e Customers often do not understand what
IS easy to change and what is hard

* "Good enough" vs. "optimal”

°

institute for

15 I S SOFTWARE
RESEARCH

The "V" Model (80s, 90s)

Concept of Operagio‘n

. . “gme . an

Operations Ve"”;‘,‘;ﬁ“” Maintenance

_ Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, _
Detailed Test, and Project
Design Verification Test and
Integration

Implameantation

Time ?

institute for
16 I S SOFTWARE
RESEARCH

When is waterfall appropriate?

17

The requirements are known in advance.

The requirements have no unresolved, high-risk risks such
as due to cost, schedule, performance, safety, security,
user interfaces, organizational impacts, etc.

The nature of the requirements will not change very
much.

The requirements are compatible with all the key system
stakeholders’ expectations.

The architecture for implementing the requirements is
well understood.

There is enough time to proceed sequentially.

institute for
I S SOFTWARE
RESEARCH

Early improvement: sequencing

e Enforce earlier software considerations

e \Waterfall instituted at TRW in 70s, with several
additional recommendations for iterations (like
prototypes).

 Modeled after traditional engineering
— blueprints before construction
— decide what to build, build it, test it, deploy
— Reduce change

e Successful model for routine development

* Problematic at large scale
— Requirements -> Delays -> Surprise!

institute for
18 I S SOFTWARE
RESEARCH

A natural engineering process?

e Decide what to build ¢ Don't know what to
ouild in advance

e Build it * Don't know all
details how to build

e Struggling with

* Test it :
testing and
evaluation

* Deploy it * Deploy, evolve,

redeplc
_> Early and frequent feedback

19 _> support for constant adaptation

AN RESEARCH

Ilteration!

-> Early an

_> Support for constant adapta
_> Address risks first

20

d frequent feedback

tion

institute for
SOFTWARE
RESEARCH

Software Engineering Risks

* Project risks

— Projects late, buggy, cost overruns
e System risks

—Security and safety issues

—e.g. Toyota case
* Engineering risks

— Unsuitable technology choices, validation
issues, usability issues, scalability issues ...

°
institute for
21 I S SOFTWARE
RESEARCH

Cone of Uncertainty

100%
75%
50%
S.ize 2504
Estimate
Growth
(i lines of i%
soutce
code) B
-50%
-75%
-100%
A A A A A A
Irdtial Approved Requirements Architecture Detailed Product
product product design complete

definition definition
’

E
Copyright 1928 Steven C. McConnell. Re printed with pe mussion from Sgftware Project Swvival Guide (Microsoft Press, 1998). |

Mitigation of risk through process

interventions (examples)

* Risk-driven process
— Prioritization and prototyping
e Architecture and design
— Isolate/encapsulate risks
— Follow industry standards
e Design for assurance
— Preventive engineering
— Codevelopment of system and evidence
* Functionality and usability
— Prototypes, early usability labs

°

institute for

23 I S SOFTWARE
RESEARCH

% time added to overall schedule

The Role of Architecture

100

80

60

40 |

20

== == = % of project schedule devoted to initial architecture and risk resolution
Added schedule devoted to rework (COCOMO Il RESL factor)
R, ‘evsaenseeseass Total % added schedule
10,000 ® Sweet Spot

.
.
.
*
.
e
.........

.

''''''
o

.
LIPR
.
L
E™ o
...........

-
.
..........
.

| I | |

10 20 30 40

% time added for architecture and risk resolution

50

Source: Boehm, Valerdi,
Honour, The ROI of Systems
Engineering. 2008

institute for
I S SOFTWARE
RESEARCH

Key: Iterative Processes

* |Interleaving and repeating
— Requirements engineering, Risk assessment
— Architecture and design
— Implementation
— Quality assurance
— Deployment

* But when, in which sequence, and how
often?

 What measurements can ground decisions?

°

institute for

25 I S SOFTWARE
RESEARCH

Iteration in

Project Management

Budget,

LA NIl | Personal,
Deadlines

Check progress

Estimate project
parameters

Define milestones

Create schedule

26

ves ->

Reestimate project new

parameter feature
activities begin requests

Refine schedule

Problem?

€S

renegotiate

. Technical review
constraints

institute for
I S SOFTWARE
RESEARCH

OODA Loop

Observe Orient Decide Act
i Implicit
Implicit .
Guidance &%%%?foel
Unfolding & Control
CircumstanceS\ *
.' Ofg;rva:t‘lgn} Feed Decision S Action
\ / > (Hypothesis) (Test)
/\.__-_./Fowvard Forward
Outside A
Information
Unfolding
Unfolding Interaction
Interaction reedback With
With Feedback Enwrolnment
Environment Feedback
John Boyd's OODA Loop

cc (3.0) Moran
[

institute for
27 I S SOFTWARE
RESEARCH

The Spiral Model (Barry Boehm)

CUMULATIVE
cosT PROGRESS
DETERMINE ;#EF‘?;GH EVALUATE
OBJECTIVES, ALTERNATIVES
ALTERNATIVES, IDENTIFY,
CONSTRAINTS RESOLVE RISKS

Drive from engineering risks:
Requirements
Design
Implementation

COMMITMENT,

OPERATIONAL
- PROTOTYPE

PARTITION PROTOTYPE;
% PROTOTYPE,
Review —= EMULATIONS
RQTS PLAN —" MODELS
LIFE CYCLE — — BENCHMARKS
PLAN — _—
RQTS I
DETAILED
- DESIGN
DV Pl REQUIREMENTS PRt
VALIDATION -~ -
INTﬁ%Aﬁ'E%T- DESIGN VALIDATION DEVELOPMENT
PLAN AND VERIFICATION
PLAN NEXT ~
PHASES INTEGRA-%
N TIONAND N

\ AccEPT-\ TEST

IMPLEMEN-% ANCE TEST
TATION

DEVELOP, VERIFY
NEXT LEVEL PRODUCT

Iteration decision

e Too slow?

e Too fast?

e -> Drive via risks and measurement data; per
project decision

e Contracts?

°

institute for

29 I S SOFTWARE
RESEARCH

Iteration decision

* Too slow?
— Late reaction, reduce predictability

 Too fast?
— Overhead, reduce innovation

* "Death spiral”

— deferred commitment, prototypes without
conclusions, missing feedback loops

* -> Drive by risks and measurement data; per
project decision

e Contracts?

°

institute for

30 I S SOFTWARE
RESEARCH

Rational Unified Process (UP)

Workflows

Business Modeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

31

Phases

§

Elaboration ComwctloI Transition

”

Iterations

from Rational Software

institute for
SOFTWARE
RESEARCH

(more on Agile, XP, Scrum, Kanban
in a later lecture...)

.

institute for
SOFTWARE
RESEARCH

Iterative vs. Incremental?

33

institute for
SOFTWARE
RESEARCH

Change Control

34

institute for
SOFTWARE
RESEARCH

Change Control Board

Archive

changed L
Require- :E‘:“h"“hmi: 7

of change

Feedback

New
Tech-
nology CCB - Configuration Control Board

35

institute for
www.chambers.com.au SOFTWARE
RESEARCH

http://www.chambers.com.au/

36

Change Request Form

Project: SICSA/AppProcessing Number: 23/02

Change requester: I. Sommerville Date: 20/01/09

Requested change: The status of applicants (rejected, accepted, etc.) should be
shown visually in the displayed list of applicants.

Change analyzer: R. Looek Analysis date: 25/01/09
Components affected: ApplicantListDisplay, StatusUpdater

Associated components: StudentDatabase

Change assessment: Relatively simple to implement by changing the display color
according to status. A table must be added to relate status to colors. No changes to
associated components are required.

Change priority: Medium
Change implementation:
Estimated effort: 2 hours

Date to SGA app. team: 28/01/09 CCB decision date: 30/01/09
Decision: Accept change. Change to be implemented in Release 1.2
Change implementor: Date of change:

Date submitted to QA: QA decision:

Date submitted to CM:

Comments: s

institute For
I S SOFTWARE
RESEARCH

Change Impact Analysis

e Estimate effort of a change

* Analyze requirements, architecture, and
code dependencies

* Tractability very valuable if available
* Various tools exist, e.g., IDE call graphs

°
institute for
37 I S SOFTWARE
RESEARCH

Feature Freeze

* Pre-release phase

* Do not allow any changes except bug
fixes

e Avoid destabilization

°

institute for

38 I S SOFTWARE
RESEARCH

Release Planning with Branches

Release 2 ‘ ‘

QA passes - goes alpha Public release

Release 1 ‘ ‘ x

QA passes - goes|alpha| Public release

Development

A

A
End of Release 1| development ilind of Release 2 development

New fesnme Y (Tor Relesse 2)

‘ Project milestone

MNew festime 7 (Tor égm 2) x End of branch

T Create branh/imerge changes

X

New Ffestime 5 (Tor Relezse 3)

Case Study: Microsoft

* Microsoft plans software in features
e 3-4 milestones per release

e After each milestone reconsider which
features should still be implemented

e Stabilization and freeze at end of
milestone

Cusumano and Selby. Microsoft Secrets.

institute for

&
2 SOFTWARE

RESEARCH

How much iteration? How much
change control? (3 cases)

41

institute for
SOFTWARE
RESEARCH

AX ND Mosipader, V1
: ugusle
Rlamark MN Caraoed
. B o NY sion, NA
Voence
D s otd, C1
1A = rordon, NJ
NE) Oover, DE
_lhcoln amapols, MD
I o heond, VA
fepelo C
OK AR
AL
A
@ X WA ’
¢ 100
heaokns “02
on oY FL

42

Process metrics

Discussion: what is the purpose of
tracking process?

°

institute for

45 I S SOFTWARE
RESEARCH

Burn Down Charts

Sample Burndown Chart

250 25
200 20
A
7 g
= -
-] w
£ 150 15 =
j=
E E m Completed tasks
= 5]
S:'L = —#—Remaining effort
m
:E 100 10 g ——Idealburndown
=
E E —— Remaining tasks
o w
o=
50 5

D T T T T l . I

Day Day
o 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 1% 20 21

institute for
47 I S SOFTWARE
RESEARCH

Milestone Trend Analysis

0 0 5 20 25 30

5 1 1
N A I

T N I A R A B A O A B I
L
Estimated i
completion _
time N _ -
*Quickly rising?
s *Changing trends?
= *Ziz-zag pattern?
o] *Falling?
48 o

- Actual time

institute for
SOFTWARE
RESEARCH

Milestone Trend Analysis

s 20 . w - Actual time
N N N

=]

5 10
Lol

Zeit —

30

25

T

Estimated
completion
time

20

*Quickly rising?

*estimations too optimistic
*Changing trends?

eunreliable early estimations
*Ziz-zag pattern?

eunreliable estimations
*Falling?

eoverly large buffers .

institute for
49 I S SOFTWARE
RESEARCH

10 15

5

]

Process metrics: Quality

* Bugs reported?
* Bugs fixed?
* Evidence of completed QA activities

—"Test coverage", inspection completed,
usability study, ...

* Performance analysis?

°

institute for

50 I S SOFTWARE
RESEARCH

Goodhart's law

"When a measure becomes a
target, it ceases to be a good
measure."

°
institute for
51 I S SOFTWARE
RESEARCH

Process quality.

Discussion: what makes a good
process?

52

institute for
SOFTWARE
RESEARCH

Process evaluation

* How predictable are our projects?

* 33% of organizations collect productivity
and efficiency data

* 8% collect quality data
* 60% do not monitor their processes

°

institute for

53 I S SOFTWARE
RESEARCH

Process improvement loop

High-level approaches:
» Opportunistic, based on double-loop learning.
* Analytic, based on measurement + principles

» Best practices frameworks \

training and
enforcement

analyzing
difference

monitoring

institute for
SOFTWARE
RESEARCH

54

Defect Prevention Process, IBM 1985

* When a mishap occurs:
1. Take corrective action

2. Conduct root cause analysis (Root cause(s):
Management, people, process, equipment, material,
environment):

* Why did the mishap occur? Why was it not detected earlier?

* |Is there a trend indicating a broader problem? Can we
address it?

* What went right during this last stage? What went wrong?
3. Implement preventive actions within the team context

e Successful changes are percolate up to corporate
level.

institute for
55 I S SOFTWARE
RESEARCH

Six Sigma, Motorola 1985

“Six Sigma seeks to improve the quality of process outputs, reducing the
defects to 3.4 per million, by identifying and removing their causes and
minimizing variability. It is applicable to manufacturing and services. It uses
statistical methods, and creates a special infrastructure of people within
the organization ("Champions", "Black Belts", "Green Belts”) who are

experts in them.”

DMAIC, Existing products and services

Define
Measure
Analyze
Improve
Control

56

DMADV & DFSS, New or redesigned
products and services

Define
Measure
Analyze
Design
Verify

institute for
I S SOFTWARE
RESEARCH

Process standards...

ISO 9000:2005

Requirements to . " SO 9001:2008
process ISO 15504 > »_ |ISO 00 120 90042000
assessments
Process as- SW-CMM SCAMPI| D SPICE A-SPICE TL 9000
sessment and ISO/TS 16949
improvement EIA 731 CMMI Six Sigma COBIT AS 9100
Product and l
development DoD 2167 MIL 498 ISO 12207 IEC 61508
life-cycles ISO WD26262
ISO 15288

Process PMBOK Unified OPEN
implementation : ISO 16085 ITIL Process
and governance SWEBOK)+ SOX VM-XT
and estimation ISO 20926

ISO 14143 IS0 20968

C. Ebert and R. Dumke, Software Measurement,: Establish — Extract —
Evaluaie — Execute, 2007

institute for
I S SOFTWARE
RESEARCH

SEl’'s Capability Maturity Model
Integration

* Not a process, but a meta-process

— Primarily used by the US government to
control estimates from software vendors

—Would prefer to accept a higher, more
stable estimate.

e CMMI measures how well a company
measures their own process

°

institute for

58 I S SOFTWARE
RESEARCH

The CMMI Framework

Focus on
process
improvement

Process
measured
and controlled

Optimizing

Quantitatively
Managed

Defined

Process
characterized, fairly
well understood

Managed/

2

Projects can repeat
previously mastered
tasks

59

Process unpredictable
and poorly controlled

Repeatable

Initial

institute ror
I S SOFTWARE
RESEARCH

Process Tradeoffs

* (Note: Success stories in many industrial
settings, eg. automobile industry.)

* Process vs product quality. Process
Quality influences Product Quality, but
does not guarantee it

* Following "best practices" as legal
defense strategy

— “Check box compliance”?

°

institute for

60 I S SOFTWARE
RESEARCH

Increased output vs. increased

process

B3

R Z {—| Capability X
Investment in Capability
Erosion

Capability Q

Reinvestment

/‘\ .
=~ Time Spent s
Working Actual
Performance

DELAY

N. Repening & J. Sterman, Nobody Ever Gets Credit For Fixing
Problems That Never Happened: Creating And Sustaining Process @

Time Spent on *
Improvement @ ‘\BD
+ Shortcuts Work Harder -
p Performance
ressure to Ga
DoWork + P P
Work Smarter Desired
Performance
Pressure to ,*
Improve
Capability
61 Improvement, 2001

WORKING HARDER

Actual Performance

WORKING SMARTER

Actual Performance

N
= Tima — Tima
Effort Effort
Time Jpent Impraving
_/ Time Spnt Impraving
Tima Spent Working __

Teme Spent Working
= Tima — Tima

x x

Capability Capability

= Tima — Tima

institute for
I S SOFTWARE
RESEARCH

Scenario 1

* You work at an internet company on a
large, existing code base.

* A bug manifests in a client-facing
product, affecting profits.

* What do you do?

°
institute for
62 I S SOFTWARE
RESEARCH

Scenario 2

* You run a small software firm with a
handful of really smart engineers.

* Your employees keep having great ideas
and building awesome products!

 ...but they’re consistently beat to market
by your competitors.

* What do you do?

°
institute for
63 I S SOFTWARE
RESEARCH

Scenario 3

* You're a large consulting firm that works
on fixed cost engagements.

* A major client is threatening to cancel
such a contract and cease contracting
work to you in the future because you
are late on several key milestones on two
of your engagements with them.

* What do you do?

°
institute for
64 I S SOFTWARE
RESEARCH

Summary

e Sequential process models emphasized
"think before coding"

e Often too rigid, with changing
requirements and environments

* |teration to address risks
* Change management to control change

 Measure process, continuously improve
process

°
institute for
65 I S SOFTWARE
RESEARCH

