
Foundations of
Software Engineering

Lecture 16: Process: Linear to Iterative

Michael Hilton

1

Learning goals

• Understand the need for process
considerations

• Select a process suitable for a given
project

• Address project and engineering risks
through iteration

• Ensure process quality.

2

(Circular dependency between QA
planning and process…)

3

A simple process

1. Discuss the software that needs to be
written

2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

4

5

Percent
of
Effort

Time Project
beginning

Project
end

100%

0%

Productive Coding

 Trashing / Rework

 Process

6

Percent
of
Effort

Time Project
beginning

Project
end

100%

0%

Productive Coding

Process

Trashing / Rework

The Waterfall Model

7

8

Requirements
Engineering

Architectural
design

Detailed
design

Coding

Unit testing

Integration
testing

Operation and
Maintenance

Win Royce and Barry Boehm, 1970

Why was this an important step?
What are limitations?

9

10

History lesson: 1968 NATO
Conference on Software Engineering

• Envy of engineers: Within time, predictable,
reliable.

• Provocative Title, Call for Action

11 1968

Envy of Engineers

• Producing a car/bridge
– Estimable costs and risks

– Expected results

– High quality

• Separation between plan
and production

• Simulation before construction

• Quality assurance through measurement

• Potential for automation
12

Software Engineering?

13

„The Establishment and use of sound
engineering principles in order to obtain
economically software that is reliable
and works efficiently on real machines.”

[Bauer 1975, S. 524]

14

Key challenge: Change

• Software seems changeable ("soft")

• Developers prone to changes and "extra
features"

• Customers often do not understand what
is easy to change and what is hard

• "Good enough" vs. "optimal"

15

The "V" Model (80s, 90s)

16

When is waterfall appropriate?

1. The requirements are known in advance.
2. The requirements have no unresolved, high-risk risks such

as due to cost, schedule, performance, safety, security,
user interfaces, organizational impacts, etc.

3. The nature of the requirements will not change very
much.

4. The requirements are compatible with all the key system
stakeholders’ expectations.

5. The architecture for implementing the requirements is
well understood.

6. There is enough time to proceed sequentially.

17

Early improvement: sequencing

• Enforce earlier software considerations
• Waterfall instituted at TRW in 70s, with several

additional recommendations for iterations (like
prototypes).

• Modeled after traditional engineering
– blueprints before construction
– decide what to build, build it, test it, deploy
– Reduce change

• Successful model for routine development
• Problematic at large scale

– Requirements -> Delays -> Surprise!

18

A natural engineering process?

• Decide what to build

• Build it

• Test it

• Deploy it

• Don't know what to
build in advance

• Don't know all
details how to build

• Struggling with
testing and
evaluation

• Deploy, evolve,
redeploy

19

Iteration!

20

Software Engineering Risks

• Project risks
–Projects late, buggy, cost overruns

• System risks
– Security and safety issues

–e.g. Toyota case

• Engineering risks
–Unsuitable technology choices, validation

issues, usability issues, scalability issues …

21

Cone of Uncertainty

22

Mitigation of risk through process
interventions (examples)
• Risk-driven process

– Prioritization and prototyping

• Architecture and design
– Isolate/encapsulate risks
– Follow industry standards

• Design for assurance
– Preventive engineering
– Codevelopment of system and evidence

• Functionality and usability
– Prototypes , early usability labs

23

The Role of Architecture

24

Source: Boehm, Valerdi,
Honour, The ROI of Systems
Engineering. 2008

Key: Iterative Processes

• Interleaving and repeating
– Requirements engineering, Risk assessment
– Architecture and design
– Implementation
– Quality assurance
– Deployment

• But when, in which sequence, and how
often?

• What measurements can ground decisions?

25

Iteration in Project Management

26

Identify constraints

Estimate project
parameters

Define milestones

Create schedule

activities begin

Check progress

Reestimate project
parameter

Refine schedule

renegotiate
constraints

Technical review

Problem?

no

yes

Done?
yes

no

Abort?

Budget,
Personal,
Deadlines

new
feature

requests

OODA Loop

27

cc (3.0) Moran

28

Drive from engineering risks:
Requirements
Design
Implementation

The Spiral Model (Barry Boehm)

Iteration decision

• Too slow?
– Late reaction, reduce predictability

• Too fast?
– Overhead, reduce innovation

• "Death spiral"
– deferred commitment, prototypes without

conclusions, missing feedback loops

• -> Drive via risks and measurement data; per
project decision

• Contracts?

29

Iteration decision

• Too slow?
– Late reaction, reduce predictability

• Too fast?
– Overhead, reduce innovation

• "Death spiral"
– deferred commitment, prototypes without

conclusions, missing feedback loops

• -> Drive by risks and measurement data; per
project decision

• Contracts?

30

Rational Unified Process (UP)

31

from Rational Software

(more on Agile, XP, Scrum, Kanban
in a later lecture...)

32

Iterative vs. Incremental?

33

Change Control

34

Change Control Board

35 www.chambers.com.au

http://www.chambers.com.au/

36

Change Request Form

Project: SICSA/AppProcessing Number: 23/02

Change requester: I. Sommerville Date: 20/01/09

Requested change: The status of applicants (rejected, accepted, etc.) should be

shown visually in the displayed list of applicants.

Change analyzer: R. Looek Analysis date: 25/01/09

Components affected: ApplicantListDisplay, StatusUpdater

Associated components: StudentDatabase

Change assessment: Relatively simple to implement by changing the display color

according to status. A table must be added to relate status to colors. No changes to

associated components are required.

Change priority: Medium

Change implementation:

Estimated effort: 2 hours

Date to SGA app. team: 28/01/09 CCB decision date: 30/01/09

Decision: Accept change. Change to be implemented in Release 1.2

Change implementor: Date of change:

Date submitted to QA: QA decision:

Date submitted to CM:

Comments:

Change Impact Analysis

• Estimate effort of a change

• Analyze requirements, architecture, and
code dependencies

• Tractability very valuable if available

• Various tools exist, e.g., IDE call graphs

37

Feature Freeze

• Pre-release phase

• Do not allow any changes except bug
fixes

• Avoid destabilization

38

Release Planning with Branches

39

Case Study: Microsoft

• Microsoft plans software in features

• 3-4 milestones per release

• After each milestone reconsider which
features should still be implemented

• Stabilization and freeze at end of
milestone

40

Cusumano and Selby. Microsoft Secrets.

How much iteration? How much
change control? (3 cases)

41

42

43

44

Discussion: what is the purpose of
tracking process?

Process metrics

45

Burn Down Charts

47

Milestone Trend Analysis

48

Actual time

Estimated
completion
time

•Quickly rising?
•estimations too optimistic

•Changing trends?
•unreliable early estimations

•Ziz-zag pattern?
•unreliable estimations

•Falling?
•overly large buffers

Milestone Trend Analysis

49

Actual time

Estimated
completion
time

•Quickly rising?
•estimations too optimistic

•Changing trends?
•unreliable early estimations

•Ziz-zag pattern?
•unreliable estimations

•Falling?
•overly large buffers

Process metrics: Quality

• Bugs reported?

• Bugs fixed?

• Evidence of completed QA activities

– "Test coverage", inspection completed,
usability study, …

• Performance analysis?

50

Goodhart's law

"When a measure becomes a
target, it ceases to be a good

measure."

51

Discussion: what makes a good
process?

Process quality.

52

Process evaluation

• How predictable are our projects?

• 33% of organizations collect productivity
and efficiency data

• 8% collect quality data

• 60% do not monitor their processes

53

Process improvement loop

54

documenting

training and
enforcement

monitoring
analyzing
difference

acting

High-level approaches:
• Opportunistic, based on double-loop learning.

• Analytic, based on measurement + principles

• Best practices frameworks

Defect Prevention Process, IBM 1985

• When a mishap occurs:
1. Take corrective action
2. Conduct root cause analysis (Root cause(s):

Management, people, process, equipment, material,
environment):
• Why did the mishap occur? Why was it not detected earlier?
• Is there a trend indicating a broader problem? Can we

address it?
• What went right during this last stage? What went wrong?

3. Implement preventive actions within the team context

• Successful changes are percolate up to corporate
level.

55

“Six Sigma seeks to improve the quality of process outputs, reducing the
defects to 3.4 per million, by identifying and removing their causes and
minimizing variability. It is applicable to manufacturing and services. It uses
statistical methods, and creates a special infrastructure of people within
the organization ("Champions", "Black Belts", "Green Belts”) who are
experts in them.”

Six Sigma, Motorola 1985

DMAIC, Existing products and services

• Define

• Measure

• Analyze

• Improve

• Control

DMADV & DFSS, New or redesigned
products and services

• Define

• Measure

• Analyze

• Design

• Verify

 56

C. Ebert and R. Dumke, Software Measurement,: Establish – Extract –
Evaluate – Execute, 2007

Process standards…

57

ISO 9000:2005
ISO 9001:2008
ISO 9004:2000

SEI’s Capability Maturity Model
Integration

• Not a process, but a meta-process

–Primarily used by the US government to
control estimates from software vendors

–Would prefer to accept a higher, more
stable estimate.

• CMMI measures how well a company
measures their own process

58

The CMMI Framework

Process unpredictable
and poorly controlled

Projects can repeat
previously mastered
tasks

Process
characterized, fairly
well understood

Process
measured
and controlled

Focus on
process
improvement

1

2

3

4

5
Optimizing

Quantitatively

Managed

Defined

Initial

Managed/

Repeatable

59

Process Tradeoffs

• (Note: Success stories in many industrial
settings, eg. automobile industry.)

• Process vs product quality. Process
Quality influences Product Quality, but
does not guarantee it

• Following "best practices" as legal
defense strategy
– “Check box compliance”?

60

Increased output vs. increased
process

61

N. Repening & J. Sterman, Nobody Ever Gets Credit For Fixing
Problems That Never Happened: Creating And Sustaining Process
Improvement, 2001

Scenario 1

• You work at an internet company on a
large, existing code base.

• A bug manifests in a client-facing
product, affecting profits.

• What do you do?

62

Scenario 2

• You run a small software firm with a
handful of really smart engineers.

• Your employees keep having great ideas
and building awesome products!

• …but they’re consistently beat to market
by your competitors.

• What do you do?

63

Scenario 3

• You’re a large consulting firm that works
on fixed cost engagements.

• A major client is threatening to cancel
such a contract and cease contracting
work to you in the future because you
are late on several key milestones on two
of your engagements with them.

• What do you do?

64

Summary

• Sequential process models emphasized
"think before coding"

• Often too rigid, with changing
requirements and environments

• Iteration to address risks

• Change management to control change

• Measure process, continuously improve
process

65

