
Founda'ons	of	So,ware	
Engineering	

Sta$c	analysis	(1/2)	
Claire	Le	Goues	

1	



Two	fundamental	concepts	

•  Abstrac'on.	
– Elide	details	of	a	specific	implementa$on.	
– Capture	seman$cally	relevant	details;	
ignore	the	rest.	

•  Programs	as	data.	
– Programs	are	just	trees/graphs!	
– …and	we	know	lots	of	ways	to	analyze	
trees/graphs,	right?	

2	



Learning	goals	
•  Give	a	one	sentence	defini$on	of	sta$c	analysis.	
Explain	what	types	of	bugs	sta$c	analysis	targets.	

•  Give	an	example	of	syntac$c	or	structural	sta$c	
analysis.	

•  Construct	basic	control	flow	graphs	for	small	
examples	by	hand.	

•  Dis$nguish	between	control-	and	data-flow	analyses;	
define	and	then	step	through	on	code	examples	
simple	control	and	data-flow	analyses.	

3	



goto fail;

4	



1.  static OSStatus
2.  SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 
3.                                   SSLBuffer signedParams,
4.                                   uint8_t *signature, 
5.                                   UInt16 signatureLen) {
6.  OSStatus err;
7.   .…
8.  if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9.  goto fail;

10.  if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
11.  goto fail;
12.  goto fail;
13.  if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
14.  goto fail;
15.  …

16. fail:
17.  SSLFreeBuffer(&signedHashes);
18.  SSLFreeBuffer(&hashCtx);
19.  return err;
20. }

5	



Is	there	a	bug	in	this	code?	

6	



1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh, 
4.                 int b_size) {
5.   struct buffer_head *bh;
6.   unsigned long flags;
7.   save_flags(flags);
8.   cli(); // disables interrupts
9.   if ((bh = sh->buffer_pool) == NULL)
10.     return NULL;
11.   sh->buffer_pool = bh -> b_next;
12.   bh->b_size = b_size;
13.   restore_flags(flags); // re-enables interrupts
14.   return bh;
15. }

With	thanks	to	Jonathan	Aldrich;	example	from	Engler	et	
al.,	Checking	system	rules	Using	System-Specific,	
Programmer-Wri;en	Compiler	Extensions,	OSDI	‘000	

ERROR:	func$on	returns	with	
interrupts	disabled!	

7	



Could	you	have	found	them?	
•  How	o`en	would	those	bugs	trigger?	
•  Driver	bug:	

– What	happens	if	you	return	from	a	driver	with	
interrupts	disabled?	

– Consider:	that’s	one	func$on		
• …in	a	2000	LOC	file	
• …in	a	module	with	60,000	LOC	
• …IN	THE	LINUX	KERNEL	

•  Moral:	Some	defects	are	very	difficult	to	find	
via	tesBng,	inspecBon.	

8	



hhp://news.cnet.com/8301-1009_3-57619754-83/klocwork-our-source-code-analyzer-caught-apples-gotofail-bug/	
9	



Defects	of	interest…	
•  Are	on	uncommon	or	difficult-to-force	
execu$on	paths.	
– Which	is	why	it’s	hard	to	find	them	via	tes$ng.	

•  Execu$ng	(or	interpre$ng/otherwise	
analyzing)	all	paths	concretely	to	find	such	
defects	is	infeasible.	

•  What	we	really	want	to	do	is	check	the	
en're	possible	state	space	of	the	program	
for	par'cular	proper'es.	

10	



Defects	Sta'c	Analysis	can	Catch	

•  Defects	that	result	from	inconsistently	following	
simple,	mechanical	design	rules.	
–  Security:		Buffer	overruns,	improperly	validated	input.	
– Memory	safety:		Null	dereference,	unini$alized	data.	
–  Resource	leaks:		Memory,	OS	resources.	
–  API	Protocols:		Device	drivers;	real	$me	libraries;	GUI	
frameworks.	

–  Excep'ons:		Arithme$c/library/user-defined	
–  Encapsula'on:	Accessing	internal	data,	calling	private	
func$ons.	

–  Data	races:	Two	threads	access	the	same	data	without	
synchroniza$on	

Key:	check	compliance	to	simple,	mechanical	design	rules	
11	



What	is	Sta'c	Analysis?	
•  Systema'c	examina$on	of	an	abstrac'on	of	
program	state	space.	
– Does	not	execute	code!	

•  Abstrac'on:	produce	a	representa$on	of	a	
program	that	is	simpler	to	analyze.	
– Results	in	fewer	states	to	explore;	makes	difficult	
problems	tractable.	

•  Check	if	a	par'cular	property	holds	over	the	
en$re	state	space:	
–  Liveness:	“something	good	eventually	happens.”	
–  Safety:	“this	bad	thing	can’t	ever	happen.”	

	
12	



The	Bad	News:	Rice's	Theorem	

Every	sta$c	analysis	is	necessarily	incomplete	or	unsound	or	
undecidable	(or	mul$ple	of	these)	

"Any	nontrivial	property	about	the	
language	recognized	by	a	Turing	
machine	is	undecidable.“	
	

Henry	Gordon	Rice,	1953	

13	



Error	exists	 No	error	exists	

Error	Reported	 True	posi$ve	
(correct	analysis	result)	

False	posi$ve	

No	Error	Reported	 False	nega$ve	 True	nega$ve	
(correct	analysis	result)	

How	does	tes$ng	relate?	And	formal	verifica$on?		

Sound	Analysis:		
	reports	all	defects	
	->	no	false	nega$ves	
	typically	overapproximated	

	
Complete	Analysis:	

	every	reported	defect	is	an	actual	defect		
	->	no	false	posi$ves	
	typically	underapproximated	

14	



Syntactic Analysis 
Find every occurrence of this pattern: 
 
 
 
 
 
 
grep "if \(logger\.inDebug" . -r 

public	foo()	{	
		…	
			logger.debug(“We	have	”	+	conn	+	“connections.”);	
}	

public	foo()	{	
		…	
		if	(logger.inDebug())	{	
				logger.debug(“We	have	”	+	conn	+	“connections.”);	
		}	
}	



Abstrac'on?	

16	



Abstrac'on:	abstract	syntax	tree	

•  Tree	representa$on	of	the	
syntac$c	structure	of	source	
code.		
–  Parsers	convert	concrete	

syntax	into	abstract	syntax,	and	
deal	with	resul$ng	ambigui$es.	

•  Records	only	the	seman$cally	
relevant	informa$on.		
–  Abstract:	doesn’t	represent	

every	detail	(like	parentheses);	
these	can	be	inferred	from	the	
structure.	

•  (How	to	build	one?	Take	
compilers!)	

•  Example:	5	+	(2	+	3)	

+	

5	 +	

2	 3	

17	



Type	checking	

18	

class	X	{	
		Logger	logger;	
		public	void	foo()	{	
				…	
				if	(logger.inDebug())	{	
						logger.debug(“We	have	”	+	
conn	+	“connections.”);	
				}	
		}	
}	
class	Logger	{	
			boolean	inDebug()	{…}	
			void	debug(String	msg)	{…}	
}	

class X 

method 
foo 

… field 
logger 

if stmt … 

method 
invoc. 

logger inDebug 

block 

method 
invoc. 

logger debug parameter 
… 

Logger 

boolean 

expects boolean 

Logger 

Logger ->boolean 

String -> void 
String 

void 



Structural	Analysis	

class	X	{	
		Logger	logger;	
		public	void	foo()	{	
				…	
				if	(logger.inDebug())	{	
						logger.debug(“We	have	”	+	
conn	+	“connections.”);	
				}	
		}	
}	

class X 

method 
foo 

… field 
logger 

if stmt … 

method 
invoc. 

logger inDebug 

block 

method 
invoc. 

logger debug parameter 
… 

19	



Abstract	syntax	tree	walker	
•  Check	that	we	don’t	create	strings	outside	of	a	
Logger.inDebug	check	

•  Abstrac$on:	
–  Look	only	for	calls	to	Logger.debug()
–  Make	sure	they’re	all	surrounded	by	if	(Logger.inDebug())	

•  Systema$c:	Checks	all	the	code	
•  Known	as	an	Abstract	Syntax	Tree	(AST)	walker	

–  Treats	the	code	as	a	structured	tree	
–  Ignores	control	flow,	variable	values,	and	the	heap	
–  Code	style	checkers	work	the	same	way	

20	



21	

class	X	{	
		Logger	logger;	
		public	void	foo()	{	
				…	
				if	(logger.inDebug())	{	
						logger.debug(“We	have	”	+	
conn	+	“connections.”);	
				}	
		}	
}	
class	Logger	{	
			boolean	inDebug()	{…}	
			void	debug(String	msg)	{…}	
}	

class X 

method 
foo 

… field 
logger 

if stmt … 

method 
invoc. 

logger inDebug 

block 

method 
invoc. 

logger debug parameter 
… 



Bug finding 

22	



Control/Dataflow	analysis	
•  Reason	about	all	possible	execu$ons,	via	
paths	through	a	control	flow	graph.	
– Track	informa$on	relevant	to	a	property	of	
interest	at	every	program	point.	

•  Define	an	abstract	domain	that	captures	
only	the	values/states	relevant	to	the	
property	of	interest.		

•  Track	the	abstract	state,	rather	than	all	
possible	concrete	values,	for	all	possible	
execu$ons	(paths!)	through	the	graph.	

23	



Control/Dataflow	analysis	
•  Reason	about	all	possible	execu$ons,	via	
paths	through	a	control	flow	graph.	
– Track	informa$on	relevant	to	a	property	of	
interest	at	every	program	point.	

•  Define	an	abstract	domain	that	captures	
only	the	values/states	relevant	to	the	
property	of	interest.		

•  Track	the	abstract	state,	rather	than	all	
possible	concrete	values,	for	all	possible	
execu$ons	(paths!)	through	the	graph.	

24	



Control	flow	graphs	
•  A	tree/graph-based	

representa$on	of	the	
flow	of	control	through	
the	program.	
–  Captures	all	possible	
execu$on	paths.	

•  Each	node	is	a	basic	
block:	no	jumps	in	or	out.	

•  Edges	represent	control	
flow	op$ons	between	
nodes.	

•  Intra-procedural:	within	
one	func$on.	
–  cf.	inter-procedural	

1.  a = 5 + (2 + 3)
2.  if (b > 10) {
3.    a = 0;
4.  }
5.  return a;

(entry)	

a=5+(2+3)

if(b>10)

a = 0

return a;

(exit)	25	



More	on	representa'on	
•  Basic	defini$ons:	

–  Nodes	N	–	statements	of	program		
–  Edges	E	–	flow	of	control	
–  pred(n)	=	set	of	all	predecessors	of	n		
–  succ(n)	=	set	of	all	successors	of	n		
–  Start	node,	set	of	final	nodes	(or	one	final	node	to	which	they	all	
flow).		

•  Program	points:	
–  One	program	point	before	each	node	
–  One	program	point	a`er	each	node		
–  Join	point:	point	with	mul$ple	predecessors		
–  Split	point:	point	with	mul$ple	successors		

26	



1-3 

5-6 

0 

end 

27	



1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh, 
4.                 int b_size) {
5.   struct buffer_head *bh;
6.   unsigned long flags;
7.   save_flags(flags);
8.   cli(); // disables interrupts
9.   if ((bh = sh->buffer_pool) == NULL)
10.     return NULL;
11.   sh->buffer_pool = bh -> b_next;
12.   bh->b_size = b_size;
13.   restore_flags(flags); // re-enables interrupts
14.   return bh;
15. }

With	thanks	to	Jonathan	Aldrich;	example	from	Engler	et	
al.,	Checking	system	rules	Using	System-Specific,	
Programmer-Wri;en	Compiler	Extensions,	OSDI	‘000	

28	



1.  int foo() {
2.     unsigned long flags;
3.     int rv;
4.     save_flags(flags);
5.     cli();
6.     rv = dont_interrupt();
7.     if (rv > 0) {
8.        // do_stuff 
9.         restore_flags();
10.     } else {
11.      handle_error_case();
12.     }
13.     return rv;
14.  }

(entry)	

unsigned long flags;
int rv;
save_flags(flags);

cli();

rv = dont_interrupt();

 if (rv > 0) 

 // do_stuff 
 restore_flags(); handle_error_case();

 return rv;

(exit)	 29	



1.  int foo() {
2.     unsigned long flags;
3.     int rv;
4.     save_flags(flags);
5.     cli();
6.     rv = dont_interrupt();
7.      if (rv > 0) {
8.        // do_stuff 
9.         restore_flags();
10.     } else {
11.      handle_error_case();
12.     }
13.     return rv;
14.  }

(entry)	

unsigned long flags;
int rv;
save_flags(flags);

cli();

rv = dont_interrupt();

 if (rv > 0) 

 // do_stuff 
 restore_flags(); handle_error_case();

 return rv;

(exit)	 30	



1.  int foo() {
2.     unsigned long flags;
3.     int rv;
4.     save_flags(flags);
5.     cli();
6.     rv = dont_interrupt();
7.      while (rv > 0) {
8.        // do_stuff 
9.         restore_flags();
10.     } else {
11.      handle_error_case();
12.     }
13.     return rv;
14.  }

(entry)	

unsigned long flags;
int rv;
save_flags(flags);

cli();

rv = dont_interrupt();

 if (rv > 0) 

 // do_stuff 
 restore_flags(); handle_error_case();

 return rv;

(exit)	 31	



1.  int foo() {
2.     unsigned long flags;
3.     int rv;
4.     save_flags(flags);
5.     cli();
6.     rv = dont_interrupt();
7.      while (rv > 0) {
8.        // do_stuff 
9.         restore_flags();
10.     } else {
11.      handle_error_case();
12.     }
13.     return rv;
14.  }

(entry)	

unsigned long flags;
int rv;
save_flags(flags);

cli();

rv = dont_interrupt();

 if (rv > 0) 

 // do_stuff 
 restore_flags(); handle_error_case();

 return rv;

(exit)	 32	



1.  int foo() {
2.     unsigned long flags;
3.     int rv;
4.     save_flags(flags);
5.     cli();
6.     rv = dont_interrupt();
7.      while (rv > 0) {
8.        // do_stuff 
9.         restore_flags();
10.     } 
11.      handle_error_case();
12.     
13.     return rv;
14.  }

(entry)	

unsigned long flags;
int rv;
save_flags(flags);

cli();

rv = dont_interrupt();

 if (rv > 0) 

 // do_stuff 
 restore_flags(); handle_error_case();

 return rv;

(exit)	 33	

 while (rv > 0) 

 // do_stuff 
 restore_flags();



Control/Dataflow	analysis	
•  Reason	about	all	possible	execu$ons,	via	
paths	through	a	control	flow	graph.	
– Track	informa$on	relevant	to	a	property	of	
interest	at	every	program	point.	

•  Define	an	abstract	domain	that	captures	
only	the	values/states	relevant	to	the	
property	of	interest.		

•  Track	the	abstract	state,	rather	than	all	
possible	concrete	values,	for	all	possible	
execu$ons	(paths!)	through	the	graph.	

34	



Abstract	domain:	laSces	
•  Lawce	D	=	(S,	r)	

– D	is	domain	of	program	proper$es	
–  S	is	a	(possibly	infinite)	set	of	elements.		Must	
contain	unique	largest	(top)	and	smallest	elements	
(bohom).	

–  r	is	a	binary	rela$on	over	elements	of	S	
•  Required	proper$es	for	r:	

–  Is	a	par$al	order	(reflexive,	transi$ve,	and	an$-
symmetric)	

– Every	pair	of	elements	has	a	unique	greatest	lower	
bound	(meet)	and	a	unique	least	upper	bound	(join)	

35	



Say	wha?	
•  We	are	tracking	all	possible	values	related	to	a	
property	of	interest	at	every	program	point.	

•  Possible	values---the	informa$on	we’re	
tracking---modeled	as	an	element	of	the	lawce	
that	defines	the	domain.	

•  Use	the	lawce	to	compute	informa$on,	by	
building	constraints	that	describe	how	the	
informa$on	changes	through	the	program:	
– Transfer	func'on:	Effect	of	instruc$ons	on	state	
– Meet/join:	effect	of	control	flow	

36	



Example:	interrupt	checker	

37	

enabled	 disabled	

maybe-enabled	

?	



An	interrupt	checker	
•  Abstrac'on	

–  Three	abstract	states:	enabled,	disabled,	maybe-enabled	
– Warning	if	we	can	reach	the	end	of	the	func$on	with	
interrupts	disabled.	

•  Transfer	func$on:	
–  If	a	basic	block	includes	a	call	to	cli(),	then	it	moves	
the	state	of	the	analysis	from	disabled	to	enabled.			

–  If	a	basic	block	includes	a	call	to	restore_flags(),	
then	it	moves	the	state	of	the	analysis	from	enabled	to	
disabled.		

38	



cli();

assume:	pre-block	program	point:	interrupts	disabled	

post-block	program	point:	interrupts	enabled	

39	



assume:	pre-block	program	point:	interrupts	enabled	

post-block	program	point:	interrupts	disabled	

 // do_stuff 
 restore_flags();

(Note	that,	in	graphs,	I	leave	out	some	intermediate	program	
points	when	they’re	not	interes$ng;	you’ll	see	what	I	mean	in	
a	second.)	

40	



 if (rv > 0) 

 // do_stuff 
 restore_flags(); handle_error_case();

interrupts	enabled	

true	branch:	
interrupts	disabled	

false	branch:	
interrupts	disabled	

interrupts	disabled	

13.  return rv;

interrupts…?	

assume:	pre-block	program	point:	interrupts	disabled	

Join	

41	



Join/branching	
•  What	to	do	with	informa$on	that	comes	to/from	mul$ple	

previous	states?	
•  When	we	get	to	a	branch,	what	should	we	do?	

1.  explore	each	path	separately	
•  Most	exact	informa$on	for	each	path	
•  But—how	many	paths	could	there	be?	
•  Leads	to	state	explosion,	loops	add	an	infinity	problem.	join	paths	
back	together	

2.  Join!	
•  Less	exact,	loses	informa$on	(…Rice’s	theorem...)	
•  But	no	state	explosion,	and	terminates	(more	in	a	bit)	

•  Not	just	condi$onals!	
–  Loops,	switch,	and	excep$ons	too!	

42	



Interrupt	analysis:	join	func'on	

•  Abstrac$on	
– 3	states:	enabled,	disabled,	maybe-enabled	
– Program	counter	

•  Join:	If	at	least	one	predecessor	to	a	
basic	block	has	interrupts	enabled	and	at	
least	one	has	them	disabled…	

43	



Join	

•  Join(enabled,	enabled)	à	enabled	
•  Join(disabled,	disabled)	à	disabled	
•  Join(disabled,	enabled)	à	maybe-enabled	
•  Join(maybe-enabled,	*)	à	maybe-enabled	

44	



 if (rv > 0) 

 // do_stuff 
 restore_flags(); handle_error_case();

interrupts	enabled	

true	branch:	
interrupts	disabled	

false	branch:	
interrupts	disabled	

interrupts	disabled	

13.  return rv;

Join(enabled,	disabled)	à	
maybe	enabled	

assume:	pre-block	program	point:	interrupts	disabled	

Join:	abstract!	

(Note:	this	is	where	informa$on	gets	“lost.”)	 45	



Control/Dataflow	analysis	
•  Reason	about	all	possible	execu$ons,	via	
paths	through	a	control	flow	graph.	
– Track	informa$on	relevant	to	a	property	of	
interest	at	every	program	point.	

•  Define	an	abstract	domain	that	captures	
only	the	values/states	relevant	to	the	
property	of	interest.		

•  Track	the	abstract	state,	rather	than	all	
possible	concrete	values,	for	all	possible	
execu$ons	(paths!)	through	the	graph.	

46	



Reasoning	about	a	CFG	
•  Analysis	updates	state	at	program	points:	
points	between	nodes.	

•  For	each	node:	
– determine	state	on	entry	by	examining/combining	
state	from	predecessors.	

– evaluate	state	on	exit	of	node	based	on	effect	of	the	
opera$ons	(transfer).	

•  Iterate	through	successors	and	over	enBre	
graph	unBl	the	state	at	each	program	point	
stops	changing.	

•  Output:	state	at	each	program	point	
47	



1.  int foo() {
2.     unsigned long flags;
3.     int rv;
4.     save_flags(flags);
5.     cli();
6.     rv = dont_interrupt();
7.     if (rv > 0) {
8.        // do_stuff 
9.         restore_flags();
10.     } else {
11.      handle_error_case();
12.     }
13.     return rv;
14.  }

(entry)	

unsigned long flags;
int rv;
save_flags(flags);

cli();

rv = dont_interrupt();

 if (rv > 0) 

 // do_stuff 
 restore_flags(); handle_error_case();

 return rv;

(exit)	 48	

σ	à	enabled	

σ	à	enabled	

σ	à	disabled	

σ	à	disabled	

σ	à	disabled	 σ	à	disabled	

σ	à	enabled	 σ	à	disabled	

Σ:	Maybe	enabled:	problem!	



Abstrac'on	
1.  void foo() {
2.     …
3.     cli();
4.    if (a) {
5.       restore_flags();
6.     } 
7.  }

(entry)	

3.  cli();

4.  if (rv > 0) 

5.  restore_flags();

(exit)	

49	



Data-	vs.	control-flow	

•  Dataflow:	tracks	abstract	values	for	each	
of	(some	subset	of)	the	variables	in	a	
program.	

•  Control	flow:	tracks	state	global	to	the	
func$on	in	ques$on.	

50	



Zero/Null-pointer	Analysis	

•  Could	a	variable	x	ever	be	0?		
– (what	kinds	of	errors	could	this	check	for?)	

•  Original	domain:	N	maps	every	variable	
to	an	integer.	

•  Abstrac$on:	every	variable	is	non	zero	
(NZ),	zero(Z),		or	maybe	zero	(MZ)		

51	



Zero	analysis	transfer	

• What	opera$ons	are	relevant?	

52	



Zero	analysis	join	

•  Join(zero,	zero)	à	zero	
•  Join(not-zero,	not-zero)	à	not-zero	
•  Join(zero,	not-zero)	à	maybe-zero	
•  Join(maybe-zero,	*)	à	maybe-zero	

53	



Example	

•  Consider	the	following	program:	
x = 10; 
y = x; 
z = 0; 
while (y > -1) { 
  x = x/y; 
  y = y-1; 
  z = 5; 
} 

•  Use	zero	analysis	to	determine	if	y	could	be	
zero	at	the	division.		

54	



Learning	goals	
•  Give	a	one	sentence	defini$on	of	sta$c	analysis.	
Explain	what	types	of	bugs	sta$c	analysis	targets.	

•  Give	two	examples	of	syntac$c	or	structural	sta$c	
analysis.	

•  Construct	basic	control	flow	graphs	for	small	
examples	by	hand.	

•  Dis$nguish	between	control-	and	data-flow	analyses;	
define	and	then	step	through	on	code	examples	
simple	control	and	data-flow	analyses.	

55	


