Foundations of Software
Engineering

Static analysis (1/2)
Claire Le Goues

. . .
institute For
1 I S SOFTWARE
RESEARCH



Two fundamental concepts

* Abstraction.
—Elide details of a specific implementation.

— Capture semantically relevant details;
ignore the rest.

* Programs as data.

—Programs are just trees/graphs!

—...and we know lots of ways to analyze
trees/graphs, right?

. . .
institute For
2 I S SOFTWARE
RESEARCH



Learning goals

* Give a one sentence definition of static analysis.
Explain what types of bugs static analysis targets.

* Give an example of syntactic or structural static
analysis.

e Construct basic control flow graphs for small
examples by hand.

e Distinguish between control- and data-flow analyses;
define and then step through on code examples
simple control and data-flow analyses.

. . .
institute For
3 I S SOFTWARE
RESEARCH



goto fail;

. .
institute for
4 I S SOFTWARE
RESEARCH



static OSStatus
SSLVerifySignedServerKeyExchange (SSLContext *ctx, bool isRsa,

.fail:

SSLBuffer signedParams,

uint8 t *signature,

UIntl6é signatureLen) {
OSStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)
goto fail;

SSLFreeBuffer (&signedHashes);
SSLFreeBuffer (&hashCtx);
return err;

institute for
5 I S SOFTWARE
RESEARCH



Is there a bug in this code?



1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *
3.get free buffer(struct stripe head * sh,
4. int b _size) {
. struct buffer head *bh;

5

6. unsigned long flags;j ERROR: function returns with
7

8

. save_flags(flags); interrupts disabled!
. cli(); // disables interrug

9. 1if ((bh = sh->buffer pg
10. return NULL;

11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;

With thanks to Jonathan Aldrich; example from Engler et
al., Checking system rules Using System-Specific,
Programmer-Written Compiler E)qensions, OsDI ‘000

institute for
7 I S SOFTWARE
RESEARCH



Could you have found them?

 How often would those bugs trigger?
* Driver bug:

— What happens if you return from a driver with
interrupts disabled?
— Consider: that’s one function
e ...ina 2000 LOC file
e ...in a module with 60,000 LOC
 ..INTHE LINUX KERNEL

* Moral: Some defects are very difficult to find
via testing, inspection.

. . .
institute For
8 I S SOFTWARE
RESEARCH



CNET » News

Klocwork: Our source code
analyzer caught Apple's
'gotofail' bug

If Apple had used a third-party source code analyzer on its encryption
library, it could have avoided the "gotofail" bug.

m

ﬁw B 2 HY = 89 s

Security & Privacy » Klocwork: Our source code analyzer caught Apple's ...

by Declan McCullagh | February 28,2014 1:13 PM PST

W Follow

More + Comments ~ 25

UNEZALM GEN (Warmngl  More mheemation
Code Iy snreachabie.

TraceSack

¥ O JUsers/hedelssen workisace/eax-10.9

O wieyEucharge < 612 The code is «

» [N SecueTranspon s

¥ 6 seceretranaponts ¢ .00
» (8 secorerranspate o+ h goto fail; o
» [N SecureTrasspontirie s 2 if (Cerr = SSLMoshSHAL, update(Bhash(tx, &clientRandom)) = @)

> Nwih 62¢ goto fall;

» 8 swi3Catoutsc if (Cerr = SSLHoshSHAL. update(Bhash(tx, &serverfandon)) = @)

if (Cerr = ReadyMosh(ASSLHashSHAL, Bhash(tx)) !« @)

» (4 ssT3RecoreCalionts. ¢ 628 goto fail; a
: ;:;x::::::; 629 if (Cerr = SSLMashSHAL.update(Bhash(tx, &signedfarans)) != @) H
630 goto fall;
» BIR_ M
 in swmenn 1 goto u&x-—— Apple, we need to tal
> N wBsidTugs h Sode b snreachable) Lfiral(BhashCtx, ShashOut)) 1= @) ]
> [ ssCentc goto foil; Carrest saten:  Anadlyze

» [ WChargeCipher ¢

] 2
» [ s5CigherSpecs.c ] err = sslRowverify(ctx,

mwcemnsat Static code analysis wins! Ctx->peerbkey,

» (g ssiComtent ¢
» (4 swiContexth

» (4 ssiCrymroc & Woowork Issues B [ ocwerk Log veg
> (5 wenptah
> (3 ss0buph Fiter manched 1 of 4 issues. Grouged by Divechery, sorted by Description, then by Resource.
» (8 swOgestrc Oescrption Tascnsery Resource Locatos Seventy
» [N s50pests.h ¥ % JUsers/ -10.9/ 35471, i
» (@ ssMandhate < © UNREACH.CEN: Code 15 usreachatie CandCos  wslfeyExcmame L3 Warnirg (3)
» N sshandihake b
» [ shancanakef nish <
» (6 ssrandsharetelio ¢
» [0 seiepchain ¢
PN asKepchan b
»or ssReyEachange ¢
Wrtabie Smartisent 632060 ® :

Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's
product would have nabbed the "goto fail" bug.

(Credit: Klocwork)

It was a single repeated line of code -- "goto fail" -- that left millions of Apple users
vulnerable to Internet attacks until the company finally fixed it Tuesday.

http://news.cnet.com/8301-1009 3-57619754-83/klocwork-our-source-code-analyzer-caught-

9

Featured Posts

Google unveils Androi
wearables
Internet & Media

Motorol;

powere(
Internet (

0K, Glat
inmy fa
Cutting E

Apple iF
product
Apple

iPad wit
comeba
Apple

Most Popular

ﬁ Giant 3[

house
6k Facel

Exclusiv
Doeschi
716 Twe

Google'
-. four can
N 771 Goc

Connect With CNET

Facebook
Like Us

[ Y !- Nandla +

-gotofail-

IﬂStItUthFLCJ) /

P

SOFTWARE
RESEARCH



Defects of interest...

e Are on uncommon or difficult-to-force
execution paths.

— Which is why it’s hard to find them via testing.
* Executing (or interpreting/otherwise

analyzing) all paths concretely to find such
defects is infeasible.

 What we really want to do is check the
entire possible state space of the program
for particular properties.

©
institute for
10 I S SOFTWARE
RESEARCH



Defects Static Analysis can Catch

* Defects that result from inconsistently following
simple, mechanical design rules.

— Security: Buffer overruns, improperly validated input.
— Memory safety: Null dereference, uninitialized data.
— Resource leaks: Memory, OS resources.

— API Protocols: Device drivers; real time libraries; GUI
frameworks.

— Exceptions: Arithmetic/library/user-defined

— Encapsulation: Accessing internal data, calling private
functions.

— Data races: Two threads access the same data without
synchronization

Key: check compliance to simple, mechanical design rules

institute for
11 I S SOFTWARE
RESEARCH



What is Static Analysis?

e Systematic examination of an abstraction of
program state space.

— Does not execute code!

* Abstraction: produce a representation of a
program that is simpler to analyze.

— Results in fewer states to explore; makes difficult
problems tractable.

 Check if a particular property holds over the
entire state space:

— Liveness: “something good eventually happens.”
— Safety: “this bad thing can’t ever happen.”

©
institute for
12 I S SOFTWARE
RESEARCH



The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

Every static analysis is necessarily incomplete or unsound or

undecidable (or multiple of these)
[ ]
institute for
O



Error Reported True positive False positive
(correct analysis result)

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

How does testing relate? And formal verification?

institute for
14 I S SOFTWARE
RESEARCH



Syntactic Analysis

Find every occurrence of this pattern:

public foo() {

logger.debug(“We have ” + conn + “connections.”);

}

public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}

}

grep "if \(logger\.inDebug" . -r



Abstraction?

E public void| foo() {

. int a = computeSomething();
(x if (a == "5")

. doMoreStuff();

°
institute for
16 I S SOFTWARE
RESEARCH



Abstraction: abstract syntax tree

* Tree representation of the e Example: 5+ (2 + 3)
syntactic structure of source
code.

— Parsers convert concrete
syntax into abstract syntax, and
deal with resulting ambiguities.

* Records only the semantically 5 +

relevant information.
— Abstract: doesn’t represent /\
every detail (like parentheses);

these can be inferred from the 2 3
structure.

e (How to build one? Take
compilers!)

institute for
17 I S SOFTWARE
RESEARCH




Type checking

class X {
Logger logger;
public Vbid foo() {

if (1pgger.inDebug()) {
logger.debug(“We have 7 +
conn + “connections.”);

}
}

}
class Loggelr {

boolean /inDebug() {..}
void debug(String msg) {..}

}

class X
_—
field method
logger foo
Logger ___———~
if stmt
expects bgolean
method block
invoc.
__beoleam, AN
logger inDebug method
Logger ->boolean invoc.
logger debug parameter
L r -..String
String -> void

institute for
18 I S SOFTWARE
RESEARCH



Structural Analysis

class X

_—

class X {
Logger logger;
public void foo() {

if (logger.inDebug()) {
logger.debug(“We have
conn + “connections.”);

}
}

”

}

+

field method

logger foo
 _—

if stmt

method block
InvocC.

logger inDebug method

invocC.

logger \

debug parameter

institute for
19 I S SOFTWARE
RESEARCH




Abstract syntax tree walker

* Check that we don’t create strings outside of a
Logger .1inDebug check

e Abstraction:

— Look only for calls to Logger .debug()
— Make sure they’re all surrounded by if (Logger.inDebug())

e Systematic: Checks all the code

 Known as an Abstract Syntax Tree (AST) walker
— Treats the code as a structured tree
— lgnores control flow, variable values, and the heap
— Code style checkers work the same way

institute for
20 I S SOFTWARE
RESEARCH



class X

_— ~

field
logger

method
foo

class X {
Logger logger;
public void foo() {

if (logger.inDebug()) {
logger.debug(“We have
conn + “connections.”);

}
}

”

}
class Logger {

boolean inDebug() {..}
void debug(String msg) {..}

}

+

~N
DIOC

logge ' method

V’k

logger [debug parameter

institute for
21 I S SOFTWARE
RESEARCH



Bug finding

= public Boolean decide() {
if (computeSomething()==3)
return Boolean. TRUE;
if (computeSomething()==4)
return false;
return null;

} | ; 4 Buginfo X - = E
# 2B -

A.java: 69
+1 Navigation

Bug: FBTest.decide() has Boolean return type and returns explicit null

A method that returns either Boolean.TRUE, Boolean.FALSE or null is an accident waiting to happen.
This method can be invoked as though it returned a value of type boolean, and the compiler will insert
automatic unboxing of the Boolean value. If a null value is returned, this will result in a
NullPointerException.

Confidence: Normal, Rank: Troubling (14)
Pattern: NP BOOLEAN RETURN_NULL
Type: NP, Category: BAD PRACTICE (Bad practice)

HISULULE TUI
2 SOFTWARE
RESEARCH



Control/Dataflow analysis

 Reason about all possible executions, via
paths through a control flow graph.

— Track information relevant to a property of
Interest at every program point.

e Define an abstract domain that captures
only the values/states relevant to the

property of interest.

* Track the abstract state, rather than all
possible concrete values, for all possible

executions (paths!) through the graph.

©

institute for

23 I S SOFTWARE
RESEARCH



Control/Dataflow analysis

* Reason about all possible executions, via
paths through a control flow graph.

— Track information relevant to a property of
Interest at every program point.

. . .
institute For
24 I S SOFTWARE
RESEARCH



Control flow graphs

* Atree/graph-based

representation of the
flow of control through
the program.
— Captures all possible
execution paths.

Each node is a basic

block: no jumps in or out.

Edges represent control
flow options between
nodes.

Intra-procedural: within
one function.

— cf. inter-procedural

1.
2.
3.
4.
5.

a =5+ (2 + 3)
if (b > 10) {
a = 0;
}
return a:
(entry)
v
a=5+(2+3)
v
if(b>10)
a=2=~0
\
return a;
v .

(exit)

institute for
I S SOFTWARE
RESEARCH




More on representation

e Basic definitions:
— Nodes N — statements of program
— Edges E — flow of control
— pred(n) = set of all predecessors of n
— succ(n) = set of all successors of n
— Start node, set of final nodes (or one final node to which they all
flow).
* Program points:
— One program point before each node
— One program point after each node
— Join point: point with multiple predecessors
— Split point: point with multiple successors

institute for
26 I S SOFTWARE
RESEARCH



public int foo() {
doStuff();
return 4; 1-3

5-6 — end

institute for
27 I S SOFTWARE
RESEARCH



1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4, int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags);

8. «cli(); // disables interrupts

9. 1f ((bh = sh->buffer pool) == NULL)
10. return NULL;

11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;

15.}

With thanks to Jonathan Aldrich; example from Engler et
al., Checking system rules Using System-Specific,
Programmer-Written Compiler Exgensions, OSDI ‘000

institute for
28 I S SOFTWARE
RESEARCH



0O o O WDN -
L]

O
°

10.
11.
12.
13.
14.

int foo() {

(entry)

!

unsigned long flags;
int rv;
save_flags(flags);

unsigned long flags;
int rv;

save flags(flags);

cli();

rv = dont interrupt();

if (rv > 0) {

!

cli();

!

// do_stuft
restore flags();

rv = dont interrupt();

} else {

handle error case();

}

!

if (rv > 0)

return rv;

}

// do_stuff
restore flags();

/\

handle error case();

\/

return rv;

| .
- institute for
: 29 I S SOFTWARE
(exit) RESEARCH




(entry)

!

1. int foo() { zzilggfd long flags;
2. unsigned long flags; save flags(flags);

3. int rv;

4. save flags(flags); l

5. cli(); cli();

6. rv = dont interrupt(); l

7. if (rv > 0) {

8. // do stuff rv = dont interrupt();
9. restore flags(); l

10. } else {

11. handle error case(); if (rv > 0)

12. }

13. return rv;

14. } J{”éstEZiléiigs( ) s handle error case();

\/

return rv;

l [ ]

institute for
: 30 - S SOFTWARE
(exit) RESEARCH




(entry)

!

1. int foo() { zzilgged long flags;
2. unsigned long flags; save_fiags(flags) ;
3. int rv; l

4. save flags(flags);

5. cli(); cli();

6. rv = dont interrupt(); l

7. while (rv > 0) {

8. // do_stuff rv = dont interrupt();
9. restore flags(); l

10. } else {

11. handle error case(); if (rv > 0)

12. }

13. return rv;

14. } // do_ stuff

restore flags(); handle error case();

\/

return rv;

| :
- institute for
1 31 IS SOFTWARE
(EXIt) RESEARCH




(entry)

!

1. int foo() { zzilgged long flags;
2. unsigned long flags; save_fiags(flags) ;

3. int rv; l

4. save flags(flags);

5. cli(); cli();

6. rv = dont interrupt(); l

7. while (rv > 0) {

8. // do stuff rv = dont interrupt();
9. restore flags(); l

10. } else—{

11. handle error case(); if (rv > 0)

12. +

13. return rv;

14. } // do_stuff handle error case();

restore flags();

\/

return rv;

| .

institute for
. 32 - S SOFTWARE
(exit) RESEARCH




(entry)

!

1. int foo() { lizilg\rfd long flags;
2. unsigned long flags; save flags(flags);

3. int rv;

4. save flags(flags); l

5. cli(); cli();

6. rv = dont interrupt(); l

7. while (rv > 0) {

8. // do stuff rv = dont_interrupt();
9. restore flags(); l

10. }

11. handle error case(); while (rv > 0)
12.

13. return rv;

14. } J{”ésSz;:E?iigs( ) s handle error case();

\/

return rv;

l [ ]

institute for
: 33 - S SOFTWARE
(exit) RESEARCH




Control/Dataflow analysis

e Define an abstract domain that captures
only the values/states relevant to the
property of interest.

o
institute for
34 I S SOFTWARE
RESEARCH



Abstract domain: lattices

e Lattice D= (S, r)
— D is domain of program properties

— Sis a (possibly infinite) set of elements. Must
contain unique largest (top) and smallest elements
(bottom).

— ris a binary relation over elements of S
* Required properties for r:

— Is a partial order (reflexive, transitive, and anti-
symmetric)

— Every pair of elements has a unique greatest lower
bound (meet) and a unique least upper bound (join)

institute for
35 I S SOFTWARE
RESEARCH



Say wha?

 We are tracking all possible values related to a
property of interest at every program point.

e Possible values---the information we’re
tracking---modeled as an element of the lattice
that defines the domain.

* Use the lattice to compute information, by
building constraints that describe how the
information changes through the program:

— Transfer function: Effect of instructions on state
— Meet/join: effect of control flow

institute for
36 I S SOFTWARE
RESEARCH



Example: interrupt checker

maybe-enabled

°
institute for
37 I S SOFTWARE
RESEARCH



An interrupt checker

* Abstraction
— Three abstract states: enabled, disabled, maybe-enabled
— Warning if we can reach the end of the function with

interrupts disabled.
e Transfer function:

— If a basic block includes a calltocli (), then it moves
the state of the analysis from disabled to enabled.

— If a basic block includes a call to restore flags(),
then it moves the state of the analysis from enabled to

disabled.

institute for
38 I S SOFTWARE
RESEARCH



assume: pre-block program point: interrupts disabled

l

cli();

l

post-block program point: interrupts enabled

institute for
39 I S SOFTWARE
RESEARCH



assume: pre-block program point: interrupts enabled

l

// do_stuff
restore flags();

l

post-block program point: interrupts disabled

(Note that, in graphs, | leave out some intermediate program
points when they’re not interesting; you'll see what | mean in
a second.)

institute for
40 I S SOFTWARE
RESEARCH



Join

assume: pre-block program point: interrupts disabled

true branch:
interrupts disabled

if

(rv > 0)

false branch:
interrupts disabled

// do_ stuff

restore flags();

handle error case();

interrupts enabled interrupts disabled

interrupts...?

13.

return rv;

institute for
a1 I S SOFTWARE
RESEARCH



Join/branching

* What to do with information that comes to/from multiple
previous states?

* When we get to a branch, what should we do?

1. explore each path separately
* Most exact information for each path
 But—how many paths could there be?

e Leads to state explosion, loops add an infinity problem. join paths
back together

2. Join!

* Less exact, loses information (...Rice’s theorem...)
e But no state explosion, and terminates (more in a bit)

* Not just conditionals!
— Loops, switch, and exceptions too!

institute for
42 I S SOFTWARE
RESEARCH



Interrupt analysis: join function

 Abstraction

— 3 states:
—Program

e Join: If at
basic bloc
least one

enabled, disabled, maybe-enabled
counter

east one predecessor to a
< has interrupts enabled and at

nas them disabled...

©
institute for
43 I S SOFTWARE
RESEARCH



Join

* Join(enabled, enabled) 2 enabled

* Join(disablec

* Join(disablec

, disabled) = disa
, enabled) 2 may

nled

ne-enabled

* Join(maybe-enabled, *) 2 maybe-enabled

[ ]
institute for
44 I S SOFTWARE
RESEARCH



Join: abstract!

assume: pre-block program point: interrupts disabled

true branch:
interrupts disabled

if (rv > 0)

false branch:

interrupts disabled

// do_ stuff

restore flags();

handle error case();

interrupts enabled

Joinfenabled, disa

13.

return rv;

(Note: this is where information gets “lost.”) .

interrupts disabled

institute for
I S SOFTWARE
RESEARCH



Control/Dataflow analysis

* Track the abstract state, rather than all
possible concrete values, for all possible
executions (paths!) through the graph.

. .
institute for
46 I S SOFTWARE
RESEARCH



Reasoning about a CFG

* Analysis updates state at program points:
points between nodes.
* For each node:

— determine state on entry by examining/combining
state from predecessors.

— evaluate state on exit of node based on effect of the
operations (transfer).

* [terate through successors and over entire
graph until the state at each program point
stops changing.

* QOutput: state at each program point

©
institute for
47 I S SOFTWARE
RESEARCH



0O J o Ul W N K
L]

O
°

10.
11.
12.
13.
14.

int foo() {

}

unsigned long flags;

int rv;

(entry)
l o = enabled

unsigned long flags;
int rv;
save flags(flags);

save flags(flags);

cli();

rv = dont interrupt();

if (rv > 0) {
// do stuff

l o = enabled

cli();
l o = disabled

rv =

dont interrupt();

restore flags();

} else {

handle error case();

}

return rv;

l o = disabled

if (rv > 0)

> disabled/\ o = disabled

// do_stuff

restore flags();

handle error case();

oew

return rv;

l 2: Maybe enabled: problem!

- institute for
: 48 I S SOFTWARE
(exit) RESEARCH




Abstraction

(entry)

1. void foo() {

2. -

3. cli();

4. if (a) {

5. restore flags(); 4. if (rv > 0)
6. }

7.

(exit)

®
institute for
49 I S SOFTWARE
RESEARCH




Data- vs. control-flow

e Dataflow: tracks abstract values for each
of (some subset of) the variables in a

program.

* Control flow: tracks state global to the
function in question.

©

institute for

50 I S SOFTWARE
RESEARCH



Zero/Null-pointer Analysis

* Could a variable x ever be 0?
— (what kinds of errors could this check for?)

* Original domain: N maps every variable
to an integer.

* Abstraction: every variable is non zero
(NZ), zero(Z), or maybe zero (MZ)

. . .
institute For
51 I S SOFTWARE
RESEARCH



Zero analysis transfer

* What operations are relevant?

©
institute for
52 I S SOFTWARE
RESEARCH



Zero analysis join

* Join(zero, zero) =2 zero

* Join(not-zero, not-zero) = not-zero
* Join(zero, not-zero) > maybe-zero

* Join(maybe-zero, *) 2 maybe-zero

. . .
institute For
53 I S SOFTWARE
RESEARCH



Example

* Consider the following program:

X

y
Z

}

X

y
Z

10;

X;
0;
while (y > -1) {

x/y;
y-1;
5;

e Use zero analysis to determine if y could be

zero at the division.

54

institute for
SOFTWARE
RESEARCH



Learning goals

* Give a one sentence definition of static analysis.
Explain what types of bugs static analysis targets.

* Give two examples of syntactic or structural static
analysis.

e Construct basic control flow graphs for small
examples by hand.

e Distinguish between control- and data-flow analyses;
define and then step through on code examples
simple control and data-flow analyses.

©
institute for
55 I S SOFTWARE
RESEARCH



