
Foundations of
Software Engineering

Architecture – From Styles to Hypes

Christian Kästner

15-313 Software Engineering 1

Learning Goals

• Recognize architectural styles and their
implications

• Reason about system structures and their
tradeoffs with architectural views and styles

• Reason about tradeoffs of Microservice
architectures

• Understand the key ideas of DevOps

• Understand ideas of architecture evaluation

15-313 Software Engineering 2

Interlude: Teamwork Clinic

15-313 Software Engineering 3

Common Issues

• Dealing with interpersonal issues

• Dealing with different expectations

• Dealing with slipping commitments

15-313 Software Engineering 4

Assumptions about Relationships

• Level -1: Exploitation, No Relationships

• Level 1: Transactional Role, Civility

• Level 2: Working Relationship, Rec. as
Unique Person

• Level 3: Strong Emotions, Love and
Intimacy

• Expectations differ by country, religion,
ethnicity, and local cultures

15-313 Software Engineering 5

[Schein 2016]

Cultural Islands

• Temporarily suspend rules to maintain
face

• “Talk to the Camp Fire”

• 1 Check-In Question without
interruptions

• 2 Reflection and open conversation

• External facilitator useful

15-313 Software Engineering 6

[Schein 2016]

15-313 Software Engineering 7

15-313 Software Engineering 8

Latane, Bibb, Kipling Williams, and Stephen Harkins. "Many hands make light the
work: The causes and consequences of social loafing." Journal of personality and
social psychology 37.6 (1979): 822.

Social loafing

• People exerting less effort within a group
• Reasons

– Diffusion of responsibility
– Motivation
– Dispensability of effort / missing recognition
– Avoid pulling everybody / "sucker effect"
– Submaximal goal setting

• “Evaluation potential, expectations of co-worker
performance, task meaningfulness, and culture
had especially strong influence”

15-313 Software Engineering 9

Karau, Steven J., and Kipling D. Williams. "Social loafing: A meta-analytic review and
theoretical integration." Journal of personality and social psychology 65.4 (1993): 681.

Social Loafing:
Mitigation Strategies
• Involve all team members, colocation
• Assign specific tasks with individual

responsibility
– Increase identifiability
– Team contracts, measurement

• Provide choices in selecting tasks
• Promote involvement, challenge developers
• Reviews and feedback
• Team cohesion, team forming exercises
• Small teams

15-313 Software Engineering 10

Mitigating Social Loafing:
Responsibilities & Buy-In

• Involve team members in decision
making

• Assign responsibilities (ideally goals not
tasks)

• Record decisions and commitments;
make record available

15-313 Software Engineering 11

Common Issues

• Dealing with interpersonal issues

• Dealing with different expectations

• Dealing with slipping commitments

15-313 Software Engineering 12

More on Architectural Reasoning

15-313 Software Engineering 13

15-313 Software Engineering 14

Client

Server

Database

Where to
validate user
input?

Example: Yelp App

FeopleCars Scenario (Final Exam 2015)

15-313 Software Engineering 15

15-313 Software Engineering 16

15-313 Software Engineering 17

What
qualities can
you reason

and not
reason
about?

Tradeoffs?
For which

quality is Arch
1 better? For
which Arch 2?

Real-time Bus Tracking (Midterm 2016)

15-313 Software Engineering 18

Architectural Styles

• Pipes and Filters

• Object-Oriented Organization, Services

• Event-Based, Implicit Invocation

• Layered System

• Repositories

• …

15-313 Software Engineering 19

Give one new example of a system with each architectural
style and discuss why it is (or is not) appropriate.

Case Study: ROS

15-313 Software Engineering 20

ROS

• "Robot Operating System", open source

• The philosophical goals of ROS can be
summarized as:
–Peer-to-peer

– Tools-based

–Multi-lingual

– Thin

– Free and Open-Source

15-313 Software Engineering 21

15-313 Software Engineering 22

Quigley, Morgan, et al. "ROS: an open-source
Robot Operating System." ICRA workshop on
open source software. Vol. 3. No. 3.2. 2009.

Quality Goals?

15-313 Software Engineering 23

" A Distributed, Modular Design"

• users can use as much or as little of ROS
as they desire

• modularity of ROS allows you to pick and
choose which parts are useful for you
and which parts you'd rather implement
yourself

• large community of user-contributed
packages (3000 packages)

15-313 Software Engineering 24

Architectural Style?

• Pipes and Filters

• Object-Oriented Organization, Services

• Event-Based, Implicit Invocation

• Layered System

• Repositories

• …

15-313 Software Engineering 25

ROS Communication Infrastructure

• Message Passing
–Publish/subscribe for channels

–Messages interfaces through IDL (cross-
language)

• Recording and Playback of Messages

• Remote procedure calls

• Share configuration through
global key-value store

15-313 Software Engineering 26

15-313 Software Engineering 27

Tradeoff discussion

• Decoupling

• Reuse, Extensibility

• Reliability

• Understandability

• Performance

• Community contributions

15-313 Software Engineering 28

A current architectural hype:
Microservices

15-313 Software Engineering 29

Service Oriented Architectures
(SOA)
• Service: self-contained

functionality

• Remote invocation,
language-independent
interface

• Dynamic lookup possible

• Often used to wrap
legacy systems

15-313 Software Engineering 30

Service
Registry

Service
Requestor

Service
Provider bind/

call

publish find

Microservices

15-313 Software Engineering 31

15-313 Software Engineering 32

source: http://martinfowler.com/articles/microservices.html

15-313 Software Engineering 33

Microservices

• Building applications as suite of small and easy to
replace services
– fine grained, one functionality per service

(sometimes 3-5 classes)
– composable
– easy to develop, test, and understand
– fast (re)start, fault isolation

• Interplay of different systems and languages, no
commitment to technology stack

• Easily deployable and replicable
• Embrace automation, embrace faults

15-313 Software Engineering 34

Example Services

• Send text message / email / letter

• Credit card transaction

• Get product/profile image

• User management, settings

• Subscriptions

• Recommendations, ads

15-313 Software Engineering 35

15-313 Software Engineering 36

source: https://abdullin.com/post/how-micro-services-approach-worked-out-in-production/

Arrow: use data from

Technical Considerations

• HTTP/REST/JSON communication

• Independent development and
deployment

• Self-contained services (e.g., each with
own database)

–multiple instances behind load-balancer

• Streamline deployment

15-313 Software Engineering 37

15-313 Software Engineering 38

source: http://martinfowler.com/articles/microservices.html

Drawbacks (excerpt)

• Complexities of distributed systems
– network latency, faults, inconsistencies

– testing challenges

• Resource overhead, RPCs

• Shifting complexities to the network

• Operational complexity

• Adoption frequently by breaking down
monolithic application

15-313 Software Engineering 39

DevOps

15-313 Software Engineering 40

15-313 Software Engineering 41

Automating Deployment

• Release several times per day

• Incremental rollout, quick rollback

15-313 Software Engineering 42

Quality Goals

• Rapid releases and feedback
(despite large code base)

• Quick onboarding

15-313 Software Engineering 43

Infrastructure/Configuration as
Code

• Manage configuration files in version
control system

• Consistent infrastructure setup for
testing, development, and deployment

• Configuration includes ports, target
servers and routing, …

15-313 Software Engineering 44

15-313 Software Engineering 45

• Lightweight virtualization
• Sub-second boot time
• Sharable virtual images with full setup incl.

configuration settings
• Used in development and deployment
• Separate docker images for separate services

(web server, business logic, database, …)

Docker example

15-313 Software Engineering 46

FROM ckaestne/typechef-kconfig

RUN apt-get -y update && apt-get install -y git-core gcc make

ADD https://github.com/.../master.tar.gz linuxa2.tar.gz
RUN tar xfz linuxa2.tar.gz; rm linuxa2.tar.gz;
 mv TypeChef-LinuxAnalysis2-master LinuxAnalysis2;
 cd LinuxAnalysis2; sbt mkrun

ADD config.txt LinuxAnalysis2/config.txt

CMD cd LinuxAnalysis2; ./run.sh

https://github.com/ckaestne/TypeChef-docker

Configuration Automation

• Chef, Puppet, Kubernetes, Mesos, Ansible
• Managing large-scale deployment (different

containers on different machines)
• Matching containers to resources, scaling as

needed based on metrics
• Automated restarts and upgrades
• Declarative high-level configuration generates

specific configuration files
• Automated rollouts and rollbacks
• Dependency resolution on and setups

15-313 Software Engineering 47

Case Study: Facebook

• Challenges

–Configuration sprawl across many systems

–Many tuning decisions during runtime

–Configuration errors were common cause of
downtime

15-313 Software Engineering 48

Tang, Chunqiang, et al. "Holistic configuration management at Facebook."
Proceedings of the 25th Symposium on Operating Systems Principles. ACM, 2015.

Case Study: Facebook

• Goals

–Gating new product features, frequent and
early releases (e.g. for 1% of users)

–Conducting experiments

– Traffic control and load balancing

–Monitoring, alters, remediation

 15-313 Software Engineering 49

Tang, Chunqiang, et al. "Holistic configuration management at Facebook."
Proceedings of the 25th Symposium on Operating Systems Principles. ACM, 2015.

Case Study: Facebook

15-313 Software Engineering 50

Case Study: Facebook

Case Study: Facebook

15-313 Software Engineering 51

Architecture Evaluation

15-313 Software Engineering 52

Architecture evaluation

• Goal: does the architecture satisfy
requirements?

• ATAM – Architecture Tradeoff
Analysis Method
– Present requirements

– Present architecture

– Analyze architecture

– Present results – risks and
non-risks

15-313 Software Engineering 53

15-313 Software Engineering 54

Source:sei.cmu.edu

Utility tree

15-313 Software Engineering 55

Source:arnon.me

Summary

• Address team issues early and explicitly

• Architecture helps with reasoning about
qualities

• Architecture styles help with reasoning
about tradeoffs and implications

• Microservices, DevOps and their
advantages and problems

• Architecture evaluation is a thing

15-313 Software Engineering 56

