
Founda'ons	of		
So,ware	Engineering	

Lecture	7:	Intr.	to	So/ware	Architecture	
and	Documenta8on	
Claire	Le	Goues	

15-313	So/ware	Engineering	1	



Administra'va	

•  Homework	1	due	tonight	
•  Teamwork	assessment	survey	
•  Homework	2	out	tonight	

15-313	So/ware	Engineering	2	



Learning	Goals	
•  Understand	the	abstrac8on	level	of	architectural	
reasoning	

•  Approach	so/ware	architecture	with	quality	
aNributes	in	mind	

•  Dis8nguish	so/ware	architecture	from	(object-
oriented)	so/ware	design	

•  Use	nota8on	and	views	to	describe	the	architecture	
suitable	to	the	purpose	

•  Document	architectures	clearly,	without	ambiguity	
•  Understand	the	benefits	and	challenges	of	
traceability.	

15-313	So/ware	Engineering	3	



About	You	
I	am	familiar	with	how	to	design	distributed,		
high-availability,	or	high-performance	systems	

No	

Theory	Only	

Yes	

15-313	So/ware	Engineering	4	



15-313	So/ware	Engineering	5	

Requirements	

Miracle	/		
genius	developers	

Implementa8on	

Architecture	



Quality	Requirements,	now	what?	

•  "should	be	highly	available"	
•  "should	answer	quickly,	accuracy	is	less	
relevant"	

•  "needs	to	be	extensible"	
•  "should	efficiently	use	hardware	
resources"	

15-313	So/ware	Engineering	6	



So,ware	Architecture	

15-313	So/ware	Engineering	7	



15-313	So/ware	Engineering	8	

From	Bass	et	al.	So/ware	Architecture	in	Prac8ce,	2nd	ed.	



So,ware	Architecture	

The	so'ware	architecture	of	a	program	or	
compu3ng	system	is	the	structure	or	
structures	of	the	system,	which	comprise	
so'ware	elements,	the	externally	visible	
proper3es	of	those	elements,	and	the	
rela3onships	among	them.	
	 	 	 	 	[Bass	et	al.	2003]	
Note:	this	defini8on	is	ambivalent	
to	whether	the	architecture	is	

known,	or	whether	it’s	any	good!	



15-313	So/ware	Engineering	10	

From	Bass	et	al.	So/ware	Architecture	in	Prac8ce,	2nd	ed.	



Why	Architecture?	[BCK03]	
•  Represents	earliest	design	decisions.	
•  Aids	in	communica8on	with	stakeholders	

–  Shows	them	“how”	at	a	level	they	can	understand,	raising	ques8ons	about	
whether	it	meets	their	needs	

•  Defines	constraints	on	implementa8on	
–  Design	decisions	form	“load-bearing	walls”	of	applica8on	

•  Dictates	organiza8onal	structure	
–  Teams	work	on	different	components	

•  Inhibits	or	enables	quality	aNributes	
–  Similar	to	design	paNerns	

•  Supports	predic8ng	cost,	quality,	and	schedule	
–  Typically	by	predic8ng	informa8on	for	each	component	

•  Aids	in	so/ware	evolu8on	
–  Reason	about	cost,	design,	and	effect	of	changes	

•  Aids	in	prototyping	
–  Can	implement	architectural	skeleton	early	



Beyond	func'onal	correctness	
•  Quality	maNers,	eg.,	

– Performance	
– Availability	
– Modifiability,	portability	
– Scalability	
– Security	
– Testability	
– Usability	
– Cost	to	build,	cost	to	operate	

15-313	So/ware	Engineering	12	



Case	Study:		
Architecture	and	Quality	at	TwiQer	

15-313	So/ware	Engineering	13	







Inspec'ng	the	State	of	Engineering	

•  Running	one	of	the	world’s	largest	Ruby	on	Rails	installa8ons	
•  200	engineers	
•  Monolithic:	managing	raw	database,	memcache,	rendering	

the	site,	and	presen8ng	the	public	APIs	in	one	codebase	
•  Increasingly	difficult	to	understand	system;	organiza8onally	

challenging	to	manage	and	parallelize	engineering	teams	
•  Reached	the	limit	of	throughput	on	our	storage	systems	

(MySQL);	read	and	write	hot	spots	throughout	our	databases	
•  Throwing	machines	at	the	problem;	low	throughput	per	

machine	(CPU	+	RAM	limit,	network	not	saturated)	
•  Op8miza8on	corner:	trading	off	code	readability	vs	

performance	



Caching	



TwiQer's	Quality	Requirements/
Redesign	goals??	
•  Improve	median	latency;	lower	outliers	
•  Reduce	number	of	machines	10x	
•  Isolate	failures	
•  "We	wanted	cleaner	boundaries	with	“related”	logic	
being	in	one	place"	
–  encapsula8on	and	modularity	at	the	systems	level	
(rather	than	at	the	class,	module,	or	package	level)	

•  Quicker	release	of	new	features	
–  "run	small	and	empowered	engineering	teams	that	
could	make	local	decisions	and	ship	user-facing	changes,	
independent	of	other	teams"	



JVM	vs	Ruby	VM	

•  Rails	servers	capabile	of	200-300	
requests	/	sec	/	host	

•  Experience	with	Scala	on	the	JVM;	level	
of	trust	

•  Rewrite	for	JVM	allowed	10-20k	
requests	/	sec	/	host	



Programming	Model	
•  Ruby	model:	Concurrency	at	process	level;	request	queued	to	

be	handled	by	one	process	
•  TwiNer	response	aggregated	from	several	services	–	addi8ve	

response	8mes	
•  "As	we	started	to	decompose	the	system	into	services,	each	

team	took	slightly	different	approaches.	For	example,	the	
failure	seman3cs	from	clients	to	services	didn’t	interact	well:	
we	had	no	consistent	back-pressure	mechanism	for	servers	to	
signal	back	to	clients	and	we	experienced	“thundering	herds”	
from	clients	aggressively	retrying	latent	services."	

•  Goal:	Single	and	uniform	way	of	thinking	about	concurrency	
–  Implemented	in	a	library	for	RPC	(Finagle),	connec8on	
pooling,	failover	strategies	and	load	balancing	



Independent	Systems	
•  "	In	our	monolithic	world,	we	either	needed	experts	who	

understood	the	en3re	codebase	or	clear	owners	at	the	
module	or	class	level.	Sadly,	the	codebase	was	geOng	too	
large	to	have	global	experts	and,	in	prac3ce,	having	clear	
owners	at	the	module	or	class	level	wasn’t	working.	Our	
codebase	was	becoming	harder	to	maintain,	and	teams	
constantly	spent	3me	going	on	“archeology	digs”	to	
understand	certain	func3onality.	Or	we’d	organize	“whale	
hun3ng	expedi3ons”	to	try	to	understand	large	scale	
failures	that	occurred."	

•  From	monolithic	system	to	mul8ple	services	
–  Agree	on	RPC	interfaces,	develop	system	internals	
independently	

–  Self-contained	teams	



Storage	
•  Single-master	MySQL	database	boNleneck	despite	more	

modular	code	
•  Temporal	clustering	

–  Short-term	solu8on	
–  Skewed	load	balance	
–  One	machine	+	replica8ons	every	
	3	weeks	

•  Move	to	distributed	database		
(Glizzard	on	MySQL)	with		
"roughly	sortable"	ids	

•  Stability	over	features	–		
using	older	MySQL	version	





Data-Driven	Decisions	

•  Many	small	independent	services,	
number	growing	

•  Own	dynamic	analysis	tool	on	top	of	RPC	
framework	

•  Framework	to	configure	large	numbers	
of	machines	
– Including	facility	to	expose	feature	to	parts	
of	users	only	



25	



On	Saturday,	August	3	in	Japan,	people	watched	
an	airing	of	Castle	in	the	Sky,	and	at	one	moment	
they	took	to	TwiNer	so	much	that	we	hit	a	one-
second	peak	of	143,199	Tweets	per	second.		



Key	Insights:	TwiQer	Case	Study	

•  Architectural	decisions	affect	en8re	
systems,	not	only	individual	modules	

•  Abstract,	different	abstrac8ons	for	
different	scenarios	

•  Reason	about	quality	aNributes	early	
•  Make	architectural	decisions	explicit	
•  Ques8on:	Did	the	original	architect	make	
poor	decisions?	



214	Review:	Design	

•  Design	process	(analysis,	design,	
implementa8on)	

•  Design	goals	(cohesion,	coupling,	
informa8on	hiding,	design	for	reuse,	…)	

•  Design	paNerns	(what	they	are,	for	what	
they	are	useful,	how	they	are	described)	

•  Frameworks	and	libraries	(reuse	
strategies)	

	
15-313	So/ware	Engineering	28	



Levels	of	Abstrac'on	
•  Requirements	

–  high-level	“what”	needs	to	be	done	

•  Architecture	(High-level	design)	
–  high-level	“how”,	mid-level	“what”	

•  OO-Design	(Low-level	design,	e.g.	design	paNerns)	
– mid-level	“how”,	low-level	“what”	

	
•  Code	

–  low-level	“how”	



Design	vs.	Architecture	
Design	Ques8ons	

•  How	do	I	add	a	menu	item	in	
Eclipse?	

•  How	can	I	make	it	easy	to	add	
menu	items	in	Eclipse?	

•  What	lock	protects	this	data?	

•  How	does	Google	rank	pages?	

•  What	encoder	should	I	use	for	
secure	communica8on?	

•  What	is	the	interface	between	
objects?	

Architectural	Ques8ons	

•  How	do	I	extend	Eclipse	with	a	
plugin?	

•  What	threads	exist	and	how	do	
they	coordinate?	

•  How	does	Google	scale	to	billions	
of	hits	per	day?	

•  Where	should	I	put	my	firewalls?	

•  What	is	the	interface	between	
subsystems?	



Objects	

Model	
	



Design	PaQerns	

Model	
/	Subject	

View	

Controller	

Factory	

Observer	

Command	



Design	PaQerns	

Model	
/	Subject	

View	

Controller	

Factory	

Observer	

Command	



Design	PaQerns	

Model	
/	Subject	

View	

Controller	

Factory	

Observer	

Command	

/	

/	

/	

/	



Architecture	

Model	
/	Subject	

View	

Controller	

Factory	

Observer	

Command	

/	

/	

/	

/	



Architecture	

Model	
/	Subject	

View	

Controller	

Factory	

Observer	

Command	



Architecture	



Architecture	Documenta'on	&	
Views	

15-313	So/ware	Engineering	38	



Architecture	Disentangled	

15-313	So/ware	Engineering	39	

Architecture	as	
structures	and	rela8ons	
(the	actual	system)	
	

Architecture	as	
documenta8on	
(representa8ons	of		the	system)	
	

Architecture	as	(design)	process		
(ac8vi8es	around	the	other	two)	



Why	Document	Architecture?	
•  Blueprint	for	the	system	

– Ar8fact	for	early	analysis	
– Primary	carrier	of	quality	aNributes	
– Key	to	post-deployment	maintenance	and	
enhancement	

•  Documenta8on	speaks	for	the	architect,	today	
and	20	years	from	today	
– As	long	as	the	system	is	built,	maintained,	and	
evolved	according	to	its	documented	architecture	

•  Support	traceability.	













15-313	So/ware	Engineering	46	



Common	Views	in	Documen'ng	
So,ware	Architecture	
•  Sta8c	View	

– Modules	(subsystems,	structures)	
and	their	rela8ons	(dependencies,	…)	

•  Dynamic	View	
– Components	(processes,	runnable	en88es)	
and	connectors	(messages,	data	flow,	…)	

•  Physical	View	(Deployment)	
– Hardware	structures	and	their	connec8ons	

15-313	So/ware	Engineering	47	



Views	and	Purposes	
•  Every	view	should	align	with	a	purpose	
•  Different	views	are	suitable	for	different	
reasoning	aspects	(different	quality	goals),	
e.g.,	
– Performance	
– Extensibility	
– Security	
– Scalability	
– …	

15-313	So/ware	Engineering	48	



15-313	So/ware	Engineering	49	



15-313	So/ware	Engineering	50	

Orders	 Inventory	 Users	

Order	App	Shipping		App	AddInventoryA
pp	

Security	
Facade	Data	Model	



15-313	So/ware	Engineering	



15-313	So/ware	Engineering	52	



15-313	So/ware	Engineering	53	

Ghemawat,	Sanjay,	Howard	Gobioff,	and	Shun-Tak	Leung.	"The	
Google	file	system."	ACM	SIGOPS	opera3ng	systems	review.	Vol.	
37.	No.	5.	ACM,	2003.	



Examples of Architecture Descriptions 









15-313	So/ware	Engineering	58	

Bash	Component	Architecture	

Example	source:	
hNp://www.aosabook.org	



15-313	So/ware	Engineering	59	

The	RPython	Translator,	Transla'on	steps	

Example	source:	
hNp://www.aosabook.org	



15-313	So/ware	Engineering	60	 Example	source:	
hNp://www.aosabook.org	

	Moodle:	Typical	university	systems	architecture	–	Key	subsystems	



Selec'ng	a	Nota'on	
•  Suitable	for	purpose	
•  O/en	visual	for	compact	representa8on	
•  Usually	boxes	and	arrows	
•  UML	possible	(semi-formal),	but	possibly	
constraining	
– Note	the	different	abstrac8on	level	–	Subsystems	or	
processes,	not	classes	or	objects	

•  Formal	nota8ons	available	
•  Decompose	diagrams	hierarchically	and	in	
views	

15-313	So/ware	Engineering	61	



What	is	Wrong	Today?	
•  In	prac8ce	today’s	documenta8on	consists	of	

– Ambiguous	box-and-line	diagrams	
–  Inconsistent	use	of	nota8ons	
– Confusing	combina8ons	of	viewtypes	

•  Many	things	are	le/	unspecified:	
– What	kind	of	elements?	
– What	kind	of	rela8ons?	
– What	do	the	boxes	and	arrows	mean?	
– What	is	the	significance	of	the	layout?	



Guidelines:	Avoiding	Ambiguity	
•  Always	include	a	legend	
•  Define	precisely	what	the	boxes	mean	
•  Define	precisely	what	the	lines	mean	
•  Don't	mix	viewtypes	uninten8onally	

– Recall:	Module	(classes),	C&C	(components)	
•  Supplement	graphics	with	explana8on	

– Very	important:	ra8onale	(architectural	intent)	
•  Do	not	try	to	do	too	much	in	one	diagram	

– Each	view	of	architecture	should	fit	on	a	page	
– Use	hierarchy	



What could the arrow mean? 
•  Many possibilities 

–  A passes control to B 
–  A passes data to B 
–  A gets a value from B 
–  A streams data to B 
–  A sends a message to B 
–  A creates B 
–  A occurs before B 
–  B gets its electricity from A 
– … 

B A 



Recommenda'ons	for		
Recita'on		and	Homework	
•  Use	UML	or	UML-like	nota8ons:	

– Class	diagrams	for	sta8c	and	physical	views	
– Communica8on	diagrams	for	dynamic	view	
– Use	correct	abstrac8on	level	(usually	not	
classes/objects)	

•  Extend	nota8on	as	needed	
– Provide	a	legend	explaining	the	extensions	
or	devia8ons	from	standard	UML	nota8on	

15-313	So/ware	Engineering	65	



Further	Readings	
•  Bass,	Clements,	and	Kazman.		So/ware	Architecture	in	Prac8ce.		Addison-

Wesley,	2003.	
•  Boehm	and	Turner.	Balancing	Agility	and	Discipline:	A	Guide	for	the	

Perplexed,	2003.	
•  Clements,	Bachmann,	Bass,	Garlan,	Ivers,	LiNle,	Merson,	Nord,	Stafford.	

Documen8ng	So/ware	Architectures:	Views	and	Beyond,	2010.		
•  Fairbanks.		Just	Enough	So/ware	Architecture.		Marshall	&	Brainerd,	2010.	
•  Jansen	and	Bosch.	So/ware	Architecture	as	a	Set	of	Architectural	Design	

Decisions,	WICSA	2005.	
•  LaNanze.	Architec8ng	So/ware	Intensive	Systems:	a	Prac88oner’s	Guide,	

2009.	
•  Sommerville.	So/ware	Engineering.	Edi8on	7/8,	Chapters	11-13	
•  Taylor,	Medvidovic,	and	Dashofy.		So/ware	Architecture:	Founda8ons,	

Theory,	and	Prac8ce.		Wiley,	2009.	
	


