
Foundations of
Software Engineering

Part 1: Overview

Claire Le Goues, Christian Kästner

15-313 Software Engineering 1

Learning Goals

• Broad scope of software engineering

• Importance of nontechnical issues

• Overview key challenges

• Syllabus, introduction and team forming

15-313 Software Engineering 2

15-313 Software Engineering 3

15-313 Software Engineering 4

5

“…participants who multitasked on a laptop
during a lecture scored lower on a test
compared to those who did not multitask, and
participants who were in direct view of a
multitasking peer scored lower on a test
compared to those who were not. The results
demonstrate that multitasking on a laptop
poses a significant distraction to both users
and fellow students and can be detrimental to
comprehension of lecture content.”

6

Faria Sana, Tina Weston, and Nicholas J. Cepeda. 2013.
Laptop multitasking hinders classroom learning for both

users and nearby peers. Comput. Educ. 62 (March 2013), 24-
31.

“…students who took notes on laptops
performed worse on conceptual questions
than students who took notes longhand.
We show that whereas taking more notes
can be beneficial, laptop note takers’
tendency to transcribe lectures verbatim
rather than processing information and
reframing it in their own words is
detrimental to learning.”

7

Psychol Sci. 2014 Jun;25(6):Epub 2014 Apr 23.
The pen is mightier than the keyboard: advantages of longhand
over laptop note taking. Mueller PA1, Oppenheimer DM2.

Software is Everywhere
Software is Important
(duh)

15-313 Software Engineering 8

15-313 Software Engineering 9

Gov’t example: Software is integral to
DoD systems.

Quoting an Air Force
lieutenant general,
“The only thing you
can do with an F- 22
that does not require
software is take a
picture of it.”

15-313 Software Engineering 10

Crouching Dragon, Hidden Software: Software in Dod Weapon Systems (Ferguson, IEEE Software, 2001)

15-313 Software Engineering 11

15-313 Software Engineering 12

15-313 Software Engineering 13

15-313 Software Engineering 14

15-313 Software Engineering 15

Failed Software Projects

• SAGE (Semi-Automatic Ground
Environment); started 1951, almost obsolte
when finished in 1963; higher costs than
Manhattan project

• FBI Virtual Case File stopped in 2005 after 3
years and 170 M$

• London stock exchange stopped Taurus
project 1993 after 11 years when 13200%
over budget

15-313 Software Engineering 16

“But we’re CMU students and we
are really, really smart!”

15-313 Software Engineering 17

Software Engineering?

What is engineering? And how is it different from
hacking/programming?

15-313 Software Engineering 18

1968 NATO Conference on
Software Engineering

• Provocative Title

• Call for Action

• “Software crisis”

15-313 Software Engineering 19

• Name
• Interesting software

development experience?
• Specific topic of interest?

Case Study 1: PeopleCars

15-313 Software Engineering 22

Case Study 1: PeopleCars

• Scenario and question from last year’s
final

• Read scenario and question

• Discuss answers with your neighbors

• Keep answers until last lecture

15-313 Software Engineering 23

Syllabus and course mechanics

15-313 Software Engineering 24

Course Themes

• Software engineering as a human process

• Process

• Requirements

• Measurement

• Quality, incl. Security

• Time and team management

• Economics

• Strategic thinking about software

15-313 Software Engineering 25

Prerequisite: 214

• Assumes working knowledge of Java
• Assumes knowledge of object-oriented

design (UML, design patterns, …)
• Assumes experience with small projects

(e.g., Scrabble)

• 313 largely focused on human issues and
quality beyond functional correctness

• 313 focused on larger scale

15-313 Software Engineering 26

Active Lecture

• Case study driven

• Discussion highly encouraged

• Contribute own experience

• Regular active in-class exercises

• In-class presentation

• Discussions over definitions

15-313 Software Engineering 27

Readings and Quizzes

• Reading assignments for most lectures

–Preparing in-class discussions

–Background material, case descriptions,
possibly also podcast, video, wikipedia

–Complement with own research

• Short and easy online quizzes on
readings, due by start of lecture

15-313 Software Engineering 28

Textbook

• No single textbook

• Assigned readings from different sources
– Book chapters (library)

– News articles

– Lecture notes

• Recommended supplementary
reading: Sommerville,
Software Engineering, edition 7 or 8
– Aim for a used edition for <10$

15-313 Software Engineering 29

Gaining Experience

• Case study analyses

• Team assignments

• Open source engagement

• No “survivor”-style projects –
wait till 15-413

15-313 Software Engineering 30

Evaluation

• Assignments (50 %)
– Regular homeworks,

mostly in teams with individual component
– Open source engagement

• Midterm (15 %)
• Final (20 %)
• Participation in lecture and recitation (10 %)
• Quizzes on reading assignments (5%)
• Read the learning goals!

15-313 Software Engineering 31

Participation

• Participation is important

–Participation in in-class discussions

–Active participation in recitations

–Both quality and quantity are important,
quality more than quantity

• Participation != Attendance

15-313 Software Engineering 32

Recitations

• Practical tasks, preparation for
homework, extra material, discussions

• Please bring laptop, have github account

• This week: Good practices for
collaborating with Git

15-313 Software Engineering 33

Assignments

• Planning and developing a nontrivial
software project as a team

• Develop and execute a test plan

• Solicit requirements

• Implement an own static and dynamic
analysis, extending FindBugs

• Contributing to an open source project of
your choice

15-313 Software Engineering 34

Team Assignments

• Mirror realistic setting

• Assigned teams throughout the semester
– Fill in team building survey before next

lecture

• Peer evaluation and conflict resolution
process as needed

• Most team assignments have individual
components

15-313 Software Engineering 35

Late day policy

• No late days

– (simply doesn't work with team
assignments)

• Accommodations in case of health issues,
travel for interviews, … on case by case
base

– Inform us at least 2 days before deadline

15-313 Software Engineering 36

Academic Honesty

• 214-like Collaboration Policy

• University Policy on Academic Integrity

+

• In group work, be honest about
contribution of group members;
do not cover for others

15-313 Software Engineering 37

Course Infrastructure

• Course website
– schedule, slides, syllabus, office hours

• Canvas (beta testing for CMU)
– homeworks, grades, discussions

• Git/Github for coding and collaboration

• Office hours on web page, open door policy
staff-15313@lists.cmu.edu,

15-313 Software Engineering 38

mailto:staff-15313@lists.cmu.edu
mailto:staff-15313@lists.cmu.edu
mailto:staff-15313@lists.cmu.edu

15-313 Software Engineering 39

Two Surveys

Survey Goals

• Forming balanced groups

• Shaping the courses based on

– your background knowledge

– your interests

• Identifying experience in the room

15-313 Software Engineering 40

Reading Assignment Sep 1

• Sommerville Software Engineering, ed 7
or 8 – Chapter “Project Management”

• Complete quick quiz on Canvas before
class

15-313 Software Engineering 41

Software Engineering?

15-313 Software Engineering 42

Envy of Engineers

• Producing a car/bridge
– Estimable costs and risks

– Expected results

– High quality

• Separation between plan
and production

• Simulation before construction

• Quality assurance through measurement

• Potential for automation
15-313 Software Engineering 43

Software Engineering?

15-313 Software Engineering 44

„The Establishment and use of sound
engineering principles in order to obtain
economically software that is reliable
and works efficiently on real machines.”

[Bauer 1975, S. 524]

Dangerous Analogy

• Software = Design = Plan

• Programming is design, not
production
–Production (copying/loading a

program) is automated

– Simulation not necessary

• Agile technologies possible

• Quality measurement?

15-313 Software Engineering 45

Requirements

Design

Product

Designing

Building

