
15-313: Foundations of Software Engineering

Assignment 6: Open Source Excursion

Learning Goals:
• Holistically apply software engineering methods in the context of a real-world problem,

including process, requirements, architecture, measurement, and quality assurance.
• Gain broad and deep exposure to the culture and practices of open-source communities
• Design an appropriate infrastructure for an own open-source project.
• Engage with an open-source community.
• Identify process issues and suggest improvements in real-world projects, including

communication, collaboration, tooling, quality assurance, formal and informal rules and
policies.

• Coordinate within a team and adopt practices for efficient teams.
• Understand a project’s architecture and design and make a decision about the feasibility

of a proposed task.
• Divide and schedule work within a project.
• Discuss how agile practices affect development.
• Discuss business concerns and business models of software development.

Your high-level goal is to produce and submit a non-trivial modification or extension to an open-
source project in a way that maximizes the chances that the project maintainers accept it. If you
demonstrate to us that your change has been accepted and integrated into the project’s code
base, you will get 17 (5.6%) bonus points. Your team will select an open source project, select
a change to implement, actually contribute to the project, and present your insights to the class.
You will individually reflect on your teamwork and open source experience.

Overview
Selecting a task: As a team, you will select an open-source project and complete one or more
bug fixes or extensions within it. For the rest of this assignment, we will refer to bug fixes and
extensions as tasks. You have considerable freedom in which project and tasks you choose, so
long as they adhere to the following criteria:

• The open source project should be active, with many contributors. Previous students
have lamented choosing dead or maintenance projects without sufficient community
support. Do not make this mistake. Notice, that also the opposite problem can exist,
though it is rare: in a project that is new and very active with many professional
developers working on it, it may be difficult to contribute a task before it is completed by
others.

• The task(s) should be taken from a bug report or feature request in a public database or
message board, following whatever protocol the project uses to communicate and track
open issues. Do not invent a task. Address an actual, documented project need.

• The task must require changes to the project’s source code. Pure documentation or
design tasks are not appropriate.

• You may choose one large task or several smaller, related tasks. Choose tasks that
benefit from teamwork and are appropriate for your team size (i.e., do not select one
small independent task per team member). The tasks should be scoped such that each
team member spends ~36 hours each on the project: ~8 hours to identify a project and
get the lay of the land; ~18 hours to create a work list, design, and execute your
changes; and ~6 hours to reflect and prepare your report and presentation.

If you have questions on these criteria, contact the course staff.

Planning the task: As you did in Homework 1, plan before you start coding. You should identify
risks and requirements and develop a collaboration plan and schedule.

Performing the task: As a team, implement the proposed changes/tasks. You should write
code and perform adequate quality assurance activities. Beyond that, you may also need to:

• Take further steps to understand the project’s code. You might find it useful to engage in
intra-team discussions using static or dynamic diagrams. You might also find it useful to
elicit feedback on your ideas by communicating with members of the open-source
community.

• Submit your changes to the project. Create any necessary documentation to enable
acceptance of your code. New contributors rarely have commit privileges to a master
repository. Common contribution mechanisms include pull requests, emails to a project
lead, or discussion board posts. You may also need to update the bug database.

• Plan and perform an appropriate level of “marketing” for your submission. Avoid stepping
on toes and keep your activities appropriate for the project culture. Try to mimic
contributors who have previously successfully submitted similar work.

• Solicit feedback and respond to those who take the time to evaluate your work.

You are required to submit your work to the open-source project. It is not required that the
project accepts your submission, but you will get bonus points if they do. If your code is
accepted after the homework deadline but before the final exam, inform the course staff.

Reporting and reflection: You will report on your project and task selection, work, and
experience in several ways (see below). This will include a group presentation to the class.

Deadlines and deliverables
This homework has four (4) deliverables at three (3) separate deadlines.

Part A: Task Selection and Planning (85 pts, team due Thursday, November 17th,
11:59pm)

The first deliverable is an initial report on the project and task(s) you select, with a proposed
schedule (with estimates).

Start by researching candidate open source projects with an eye towards making an informed
decision about which project you will contribute to. As examples, consider: the type of software,
the project age, the number of active contributors, the amount of activity and communication
among contributors, the number and types of feature requests/bug reports you might address,
the tools and mechanisms the project uses to communicate and collaborate, the dominant
programming language/paradigm/framework, as well as the larger context in which the software
operates. Communication with the candidate open source projects is encouraged.

Your goal is to to make a principled, informed decision as to which project and task(s) you will
tackle. The type of information you collect can vary depending on how your team makes this
decision. However, you should justify that decision by grounding it in facts about the projects/
tasks you consider.

Your report should include:
1. Overview and justification: A report on the project you selected, summarizing the

relevant characteristics you considered when making your selection. Beyond whatever
additional information you collect in your research, include at least a name, a website
link, and a brief description of the project (what it does, who uses it, etc). Explain the
criteria your team used in selecting it over any others, referencing the collected
information from your overview. You may contrast it to other projects you considered but
rejected, if applicable (approximately 2 paragraphs, soft limit).

Once your team has settled on a project and one or more candidate tasks, research your ideas
in more detail. Read the documentation. Build and execute the source code, and try to read/
understand it. You should explore the code to the point that you understand how your
modification fits in the overall picture, and that you are convinced that it is both non-trivial but
doable with the resources (time, team members) available.

In selecting a task, consider the functional and non-functional implications and requirements of
your proposed task(s), as well as how it fits in the larger project structure. We do not want a full
software requirements specification. Instead, we want lightweight documentation of your tasks’
requirements and evidence that you understand how it fits into the larger project.

Your report should include:
2. Successful build: Evidence that you can build and run the software (e.g., a screenshot

or text output from a successful build, a screenshot of the running program). Getting an
open-source project to build/run can be a huge effort, and we want to mitigate this risk.

3. Task(s) description: A brief textual description of your proposed change(s). If you are
proposing several changes, list all proposed changes and a priority order. Depending on
how difficult the changes end up being, you may do not necessarily have to implement
all of them. However, if your actual changes deviate from the plan, we expect a short
explanation with the final submission. (< 2 paragraphs per task).

4. Task link(s): Evidence that the task(s) is/are requested by the community (a screenshot
or link suffices).

Once you have selected a project and task(s), estimate time and effort and schedule your work,
as you did for Homework 1. As in Homework 1, we will grade your planning, but not your
accuracy after the fact. It is completely acceptable if plans change, as long as you document the
changes and their reasons and update the plan. The plan should illustrate how you will work as
a team on this assignment and anticipate and plan for the main risks.

Your report should also include:
5. An initial time plan: As in Homework 1, choose any format as long as it is clear (e.g.,

network diagram, Gantt diagram, plain text). This should include at least: individual tasks
and milestones, with deliverables; estimated effort for each task; dependencies between
tasks; and a best-effort assignment of tasks to team members. If you have evidence
supporting your estimates, include it. Consider how Thanksgiving might interfere with
your schedule. We do not expect a full QA plan in this initial report, but be sure to
schedule time for QA activities. See the final team report for more on QA. (< 1 page)

6. A short risk assessment. As in Homework 1, identify and briefly describe key risks in
each task and discuss how you plan to mitigate those risks. (1 paragraph, soft limit)

7. An initial process plan. As in Homework 1, describe the process your team plans to
follow. This should mention quality assurance and how you plan to communicate and
collaborate as well as divide and integrate work. (< 0.5 page, soft limit)

8. Task scope justification: Evidence that the tasks are of a sufficient and reasonable
size and complexity for your team and for this assignment. Your scheduling and effort
estimation, below, may be used to help justify your argument here. (1 paragraph per
task)

We strongly recommend that you interact with the course staff during this process to verify that
the scope of your proposal seems reasonable. We strongly encourage you to do this as early as
possible, and before you start investing too heavily in your plans. We will try to reply within 24
hours. You catch us after class or in our offices or post to Piazza or send an email to the course
staff at staff-15313@lists.andrew.cmu.edu, briefly describing the project(s) and task(s) you are
considering. You may include one project/task that you think you’ve settled on, or several based
on your research. If you plan to discuss this with us after class or during office hours, still send
an email before hand, since we may have to research your project. This check-in is not
mandatory, but if you skip it, we will be less forgiving in the final grading if it transpires that the
task(s) you selected were poorly-scoped for your team!

Submit the initial report covering the 8 points listed above as a single PDF file per team to
Canvas. Include the names of all team members on the title page and ensure the document is
structured to make it easy to find the 8 points. Page limits are provided for guidance; we will not
enforce them. However, if you write a response that is substantially shorter than the guidance
suggests, you should reconsider whether your analysis is sufficiently deep.

Part B: Project Report (85 pts, team, due Tuesday, December 6th, 2:00 pm)

After completing and submitting the modification, write a report about the tasks you have
performed. The report will include a description of the project and its business context, a
description of your tasks and their context, an explanation of deviations from your plans in Part
A, and a discussion of your quality assurance efforts and why they were suitable. Specifically,
we expect the following sections:

1. Selected project: A brief description of the open source system to which you
contributed (1 paragraph). You may reuse text from Part A.

2. Project context and business model: An analysis of the open-source project’s context
and business model. This may include a short history of the project, competing open-
and closed-source projects, or a discussion of the developers’ motivations to build this
system. Essentially, we want to know why this project exists and why it is important.
(<0.5 page, soft limit)

3. Task description (per task): A description of the tasks you have implemented and a
high-level description of how you implemented them (<0.5 page, soft limit).

4. Submitted artifacts (per task): Evidence of the code, documentation, or other artifacts
you produced for the task, and evidence that you submitted them to the project. We
prefer links to publicly available resources (repository, email, pull request, etc), but will
accept a zip file of your artifacts with a screenshot documenting the submission.

5. QA strategy: Describe which QA activities you performed and justify why you selected
these QA activities over others. Describe metrics if appropriate. The justification will
likely refer to relevant requirements as well as to the project’s practices. (<1 page, soft
limit)

6. QA evidence: Evidence of your quality assurance activities described above. For
example, provide source code or links to source code of tests, provide test protocols,
comments or protocols from code reviews, reports from static analysis tools, links to or
screenshots from a continuous integration platform, and so forth.

7. Plan updates: A description and justification of deviations between your initial plans and
your performed activities (as in Homework 1). Changes are expected, but they should be

https://legacy.exchange.cs.cmu.edu/owa/?ae=Item&t=IPM.Note&a=New&to=staff-15313%2540lists.andrew.cmu.edu&nm=staff-15313%2540lists.andrew.cmu.edu

tracked and explained. Describe changes in scope (e.g., fewer tasks) and in the
schedule and work allocation. Provide an updated schedule and note differences.
Explain the causes of the changes, such as unanticipated risks. (<1 page, soft limit)

8. (Optional) Evidence that your changes have been accepted into the code base of the
open source project in forms of links or screenshots.

Page limits are provided for guidance; we will not enforce them. Collect all parts in a single PDF
document with clear subsections and the names of all team members and submit that file to
Canvas.

Part C: Presentation (55 pts, team, due Tuesday, December 6th, 2:00 pm)

The last two lectures of class are dedicated to group presentations about your open source
contributions. We will randomly assign the presentation order and put all the slide decks on a
laptop. We expect all team members to take an active role in the presentation. We will provide
feedback sheets for every audience member (see appendix). There will be 5-10 minutes of
questions from the class following each presentation. Presentation times should not exceed 10
minutes (hard limit).

The goal of the presentation is primarily to teach the class about the project to which you
contributed, and your experiences. You should mention your contribution (the actual tasks), but
we do not expect you to include, for example, any code or diagrams from your report, unless
they’re helpful for supporting a point about your interactions with the project. If you have
contributed multiple tasks you may want to focus the presentation on a subset. Your
presentation should cover the following three topics (in any order and structure you deem
appropriate):

1. High-level project and task description: Describe the project in terms of its high-level
goals and the context in which it operates. This may include a brief history and the
business context, if interesting or relevant. For example, it may be interesting to note
that a project was spawned from a closed-source operation, or that it competes primarily
with a closed-source counterpart. Include a brief description of the task(s) you
performed, such that the audience has sufficient context to understand your explanation
of your experiences, below. You should not spend more than 1/2 of the presentation on
describing the project and your task(s).

2. Project governance and communication: Describe the processes and tools the
project uses to coordinate among contributors. Are these processes formal or informal?
Provide an explicit description (possibly with a diagram) of the acceptance process used
for efforts like the task you completed. If applicable, include standards or expectations
regarding software engineering activities including requirements, architecture, and
quality assurance; alternatively mention that no such standards exist.

3. Your experiences: Summarize your experiences (and what you learned!) interacting
with this community of open source developers, focusing on any surprising or unusual
aspects of the process or interaction. Did you run into any trouble understanding,
changing, or contributing to a large, pre-existing project? Were there unanticipated
challenges in either implementing your change, or in getting the change submitted to
and accepted by the project maintainers? Did the project collaboration process or culture
help or hinder your effort in any way? Characterize any interaction you had with the team
leadership and community, highlighting especially any useful/useless input you received.
You may (but are not required to) also relate the experience from this homework
assignment with relevant experience from internships or other projects.

Your summary of your experiences can be at whatever level of detail you think is interesting or
informative. Given the time limit, selecting and highlighting the two or three most important or
interesting observations is likely more useful than trying to be complete.

All team members should have an active role in the presentation. For effective communication,
you may want to prepare slides. The first slide should include the names of all team members. It
is essential that you practice the presentation beforehand.

Be aware that short presentations are more difficult than long ones. Ensure that you get to the
point quickly and eliminate all information that is not essential. However, still provide sufficient
context information that the key issue and your reflection are understandable for your target
audience. Your primary target audience is your fellow students.

You must upload your slides as a single PDF document (separate from the report) to Canvas.
If you choose not to use slides for the presentation, you must still submit a title slide with your
group members’ names and a title.

During the presentations, we will hand out feedback sheets (see appendix) and expect that
every student is able to identify a challenge or insight and is able to ask one question. We will
have a few minutes for questions after each presentation.

Part D: Individual Reflection (75 pts, Thursday, December 8th, 11:59pm)

The final document is be a three-part reflection on (1) teamwork throughout the semester, (2)
the potential effects of agile practices, and (3) open source.

1. Teamwork: You have been in a team throughout this semester (HW1-4, HW6). Look
back on the entire semester and reflect on your team experiences. The following
questions may guide you: What has worked, what hasn’t? If you could start 313 or
another course over with the same team, what would you change? What have you
learned about teamwork and your role in teamwork? 
(We would also appreciate feedback on what we can do next year to help students work
more effectively in teams, bearing in mind that the instructor-assigned heterogeneous
teams of 3-5 students is non-negotiable. We anticipate problems as part of the learning
experience, but would like to avoid unduly frustrating situations.)

2. Agile practices: Your teamwork this semester likely did not include many agile
practices, such as standup meetings, pair programming, or test-driven development.
Discuss which of those practices could have helped in your homework and how they
may have addressed team issues. You may also relate those practices to other
experiences outside the course. Be specific, pointing out problematic situations that
actually arose and identify which practices could have helped, why, and how.

3. Open source: Reflect on your view of the open source movement and its ideals and
related business models. In our initial survey, most of you indicated that you had very
limited prior experience with open source. Have your views changed? The following
questions may guide your reflection: Why have/haven’t you contributed previously?
Which claims of the open source movement are supported by your experience in this
(and other) projects? Do you expect to contribute to open source in the future?

Aim not to exceed 3 pages total (soft limit). As in other homework, a good reflection document
will include concrete statements about lessons learned, with clear supporting evidence, such as
examples, to support them. The questions within the three topics are provided as initial
guidance; you do not need to cover them all. A good document will discuss a few issues in

depth instead of superficially answering the questions above. Submit your reflection document
as a single PDF with three clear subsections to Canvas.

Grading and Evaluation
This assignment is worth 300 points. You will be graded as a team (225 points), and as an
individual (75 points). We will grade you based on the learning goals listed above. The project
description contributes 85 points (26.7%), the report contributes 85 points (26.7%), the
presentation contributes 55 points (16.6%), and the individual reflection contributes 75 points
(25%). You will receive 17 bonus points (5.6%) if you provide evidence that your change was
accepted into the project.

This assignment is open-ended in many ways, and we expect you to use your judgment on what
is reasonable and to properly identify a project and appropriately scope the work. If you have
questions contact the course staff.

To receive full credit for the initial report document should include:

• A description of the factors you considered in selecting a project and set of tasks, and
sufficient information on the project you selected to inform that decision.

• A clear justification for your decision regarding project selection.
• Evidence that you have been able to successfully compile and run the code.
• Clear, but brief, descriptions of the tasks you are proposing to make, and the

requirements for those tasks, and evidence that the tasks are requested by the
community.

• Convincing justification as to why this is a non-trivial task and is appropriately scoped for
the assignment. For full credit, explain why the task is well-suited for teamwork and use
reasonable effort estimation to demonstrate that the tasks are scoped well for the
available developer hours. One way to address this issue badly is to select one
independent task per team member (don’t do this).

• A realistic schedule that includes work items (or tasks), milestones, dependencies, etc,
including time estimates for every work items, indicating work is going to be divided.

• A list of at least two relevant risks and corresponding mitigation strategies
• An outline of the process mechanisms you will adopt.

To receive full credit for the project report, we expect:

• A description of the project and it’s context and business model
• A clear description of your task(s) and what you did to complete it/them.
• A clear description of your QA strategy and the actually performed QA steps
• A justification why your QA strategy is appropriate for the performed task in the context

of the system and its requirements
• Updated planning documents with a justification explaining deviations. (We do not

penalize deviations as long as they are explained).
• Evidence of the submitted code and the described QA activities
• Code of reasonably high quality standards, as usual

To receive full credit for the project presentation, we expect:

• Participation from all team members.
• Effective communication of the key issues, with sufficient context, within the time limit.

• Content addressing and demonstrating understanding of all three points listed above
(High-level description; project governance and communication; your experiences and
insights).

• Constructive feedback for other presentations in class (see Appendix B for the feedback
form that you will use).

To receive full credit for the individual reflection, we expect:

• A detailed and well-written structured reflection each of the three separate issues.
• A reflection grounded in your experiences from this and prior homework assignments.
• An analysis beyond superficial statements and mere truisms (“I would do enough

architecture to be able to start implementing”) that ties specifically to the context and
requirements for a room reservation system.

• Substantive arguments behind your opinion. We do not penalize any opinion as long as
there is a reasonable argument behind it.

Teamwork

This assignment is to be done in your assigned teams. All parts except the reflection should be
done in a team context and submitted on behalf of the team. You are highly encouraged to
openly discuss all issues that may arise in the process of working within the teams. If severe
teamwork issues arise please contact the course staff.

Appendix A: Selecting a Project

You may select any active open source project in any language. Examples include:
• Apache Spark (https://spark.apache.org/), Apache Hadoop (http://hadoop.apache.org/),

and Apache Cassandra (http://cassandra.apache.org/)
• Eclipse (http://eclipse.org). For example, add cross-platform support for opening a file on

the command line (https://bugs.eclipse.org/bugs/show_bug.cgi?id=4922). There are
other ideas available at http://wiki.eclipse.org/Summer_of_Code.

• Audacity (http://audacityteam.org/community/)
• PostgreSQL (https://wiki.postgresql.org/wiki/Todo)
• http://caml.inria.fr/cgi-bin/hump.cgi lists open source OCaml projects.
• Adding autosaving for untitled editors in JEdit (http://sourceforge.net/p/jedit/feature-

requests/)

Other places to look include:
• GitHub (https://github.com/). Click on Explore at the top of the homepage and look

through trending projects by programming language, or check out the currently most
active projects (https://github.com/trending). Look through an interesting project's wiki
and issues list to find worthwhile tasks.

• Apache projects (http://www.apache.org/)
• Mozilla projects (https://developer.mozilla.org/en-US/docs/

Introduction#Find_a_bug_we%27ve_identified_as_a_good_fit_for_new_contributors.).
Mozilla has a number of Open Source projects (including Firefox and Thunderbird) that
are actively being developed and they recommend bugs for new contributors.

• LibreOffice Easy Hacks - (https://wiki.documentfoundation.org/Development/
Easy_Hacks)

Finally, here is a list of student tasks and projects from previous years. Some of the tasks listed
were only part of the group’s overall contribution:

• An autosave feature for Adobe Brackets (http://brackets.io/)
• Implemented find and replace in DrJava (www.drjava.org/)
• Create a test suite with 100% coverage for 2 packages and refactored a method in Lime

Text (https://github.com/limetext/lime)
• Implemented a download after play feature, added information to the program output,

and the option to convert a song to a mp3 file in mps-youtube (https://github.com/np1/
mps), a command line youtube player

• Added the abililty to handle fractional inputs to LibreOffice Draw (https://
wiki.documentfoundation.org/Development/Easy_Hacks)

• Merged similar methods and added error handling to the create function in Elasticsearch
(https://github.com/elasticsearch/elasticsearch)

https://spark.apache.org/
http://hadoop.apache.org/
http://cassandra.apache.org/
http://eclipse.org/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=4922
http://wiki.eclipse.org/Summer_of_Code
http://audacityteam.org/community/
https://wiki.postgresql.org/wiki/Todo
http://caml.inria.fr/cgi-bin/hump.cgi
http://sourceforge.net/p/jedit/feature-requests/
http://sourceforge.net/p/jedit/feature-requests/
https://github.com/
https://github.com/trending
http://www.apache.org/
https://developer.mozilla.org/en-US/docs/Introduction#Find_a_bug_we%2527ve_identified_as_a_good_fit_for_new_contributors
https://developer.mozilla.org/en-US/docs/Introduction#Find_a_bug_we%2527ve_identified_as_a_good_fit_for_new_contributors
https://wiki.documentfoundation.org/Development/Easy_Hacks
https://wiki.documentfoundation.org/Development/Easy_Hacks
http://brackets.io/
http://www.drjava.org/
https://github.com/limetext/lime
https://github.com/np1/mps
https://github.com/np1/mps
https://wiki.documentfoundation.org/Development/Easy_Hacks
https://wiki.documentfoundation.org/Development/Easy_Hacks
https://github.com/elasticsearch/elasticsearch

Appendix B: Presentation Feedback Form

313 Open Source Project - Feedback Sheet
(please write your name on the back)

Group name/number:

Name an unusual challenge or process issue that the team faced:

Write one question you have about the presentation or how the presentation could be
expanded:

Suggest one thing the presenters can do to improve their communication (please be honest and
constructive, we do not use this for grading the presenters):
 
 
 
 

