
Founda'ons	of		
So,ware	Engineering	

Process:	Agile	Prac.ces	
Claire	Le	Goues	

1	



Learning	goals	
•  Define	agile	as	both	a	set	of	itera.ve	process	
prac.ces	and	a	business	approach	for	aligning	
customer	needs	with	development.	

•  Explain	the	mo.va.on	behind	and	reason	about	the	
tradeoffs	presented	by	several	common	agile	
prac.ces.			

•  Summarize	both	scrum	and	extreme	programming,	
and	provide	mo.va.on	and	tradeoffs	behind	their	
prac.ces.		

•  Iden.fy	and	jus.fy	the	process	prac.ces	from	the	
agile	tradi.on	that	are	most	appropriate	in	a	given	
modern	development	process.	

2	



What	problems	are	there	in	
so,ware	development?	

3	



Agile	So,ware	Development	Is	…	

Both:	
•  a	set	of	soMware	engineering	best	
prac.ces	(allowing	for	rapid	delivery	of	
high	quality	soMware)		
•  a	business	approach	(aligning	
development	with	customer	needs	and	
goals)	

4	



Brief	History	of	Agile	

5	

1930s	

Incep&on	of	Itera&ve	and	
Incremental	Development	(IID):	
Walter	Shewhart	(Bell	Labs,	
signal	transmission)	proposed	a	
series	of	“plan-do-study-
act”	(PDSA)	cycles	

2001	

Introduc&on	of	“Agile”:	
The	Agile	Manifesto	
wri[en	by	17	soMware	
developers	

XP	reified:	Kent	Beck	
released	Extreme	
Programming	Explained:	
Embrace	Change	

1999	

Introduc&on	of	Scrum:	
Jeff	Sutherland	and	Ken	
Schwaber	presented	a	paper	
describing	the	Scrum	
methodology	at	a	conference	
workshop	

1995	1970	

Introduc&on	of	the	waterfall:	
Winston	Royce’s	ar.cle	
Managing	the	Development	of	
Large	So<ware	Systems	



Agile	in	a	nutshell	
•  A	project	management	approach	that	seeks	
to	respond	to	change	and	unpredictability,	
primarily	using	incremental,	itera.ve	work	
sequences	(oMen	called	“sprints”).	

•  Also:	a	collec.on	of	prac.ces	to	facility	that	
approach.	

•  All	predicated	on	the	principles	outlined	in	
“The	Manifesto	for	Agile	SoMware	
Development.”	

6	



The	Manifesto	for	Agile	So,ware	
Development	(2001)	

7	

Value																																												

Individuals	and	
interac'ons		 over	 Processes	and	tools	

Working	so,ware	 over	 Comprehensive	
documenta.on	

Customer	
collabora'on	 over	 Contract	nego.a.on	

Responding	to	
change	 over	 Following	a	plan	



The	Twelve	Principles	of	Agile	
So,ware	Development	

1.  Projects	are	built	around	mo.vated	individuals,	who	should	be	trusted	

2.  Face-to-face	conversa.on	is	the	best	form	of	communica.on	(co-loca.on)	

3.  Self-organizing	teams	

4.  Working	soMware	is	delivered	frequently	(weeks	rather	than	months)	

5.  Working	soMware	is	the	principal	measure	of	progress	

6.  Sustainable	development,	able	to	maintain	a	constant	pace	

7.  Con.nuous	a[en.on	to	technical	excellence	and	good	design	

8.  Simplicity—the	art	of	maximizing	the	amount	of	work	not	done—is	essen.al	

9.  Customer	sa.sfac.on	by	rapid	delivery	of	useful	soMware	

10.  Close,	daily	coopera.on	between	business	people	and	developers	
11.  Welcome	changing	requirements,	even	late	in	development	

12.  Regular	adapta.on	to	changing	circumstances	

8	

In
di
vi
du

al
s	a

nd
	

in
te
ra
c'
on

s	
Cu

st
om

er
	

co
lla
bo

ra
'o

n	
W
or
ki
ng
	

so
,
w
ar
e	

Re
sp
on

di
ng
	

to
	c
ha

ng
e	



Agile	Prac'ces	
•  Backlogs	(Product	and	

Sprint)	
•  Behavior-driven	

development	(BDD)	
•  Cross-func.onal	team	
•  Con.nuous		
							integra.on	(CI)	
•  Domain-driven	design	

(DDD)	
•  Informa.on	radiators	

(Kanban	board,	Task	
board,	Burndown	
chart)	

•  Acceptance	test-driven	
development	(ATDD)	

•  Itera.ve	and	
incremental	
development	(IID)	

•  Pair	programming	
•  Planning	poker	
•  Refactoring	
•  Scrum	mee.ngs	

(Sprint	planning,	Daily	
scrum,	Sprint	review	
and	retrospec.ve)	

•  Small	releases	
•  Simple	design	
•  Test-driven	

development	(TDD)	
•  Agile	tes.ng	

•  Timeboxing	
•  Use	case	
•  User	story	
•  Story-driven	modeling	
•  Retrospec.ve	
•  On-site	customer	
•  Agile	Modeling	
•  40-hour	weeks	
•  Short	development	

cycles	
•  Collec.ve	ownership	
•  Open	workspace	
•  Velocity	tracking	
•  Etc.	

9	



40-hour	Weeks	

No	one	can	work	a	second	consecu.ve	
week	of	over.me.	Even	isolated	over.me	
used	too	frequently	is	a	sign	of	deeper	
problems	that	must	be	addressed.	

10	



Planning	Poker	

11	



Collec've	Ownership	

Every	programmer	improves	any	code	
anywhere	in	the	system	at	any	.me	if	they	
see	the	opportunity.	

12	



Kanban	Board	

13	



Simple	Design	

“Say	everything	once	and	only	once”:	
At	every	moment,	the	design	runs	all	the	
tests,	communicates	everything	the	
programmers	want	to	communicate,	
contains	no	duplicate	code,	and	has	the	
fewest	possible	classes	and	methods.	

14	



On-site	Customer	

A	customer	sits	with	the	team	full-.me.	

15	



Pair	Programming	

16	

Driver	

Navigator	



Short	development	cycle	

The	soMware	development	process	is	
organized	in	a	way	in	which	the	full	
soMware	development	cycle—from	design	
phase	to	implementa.on	phase	to	test	and	
deployment	phase—is	performed	within	a	
short	.mespan,	usually	several	months	or	
even	weeks.	

17	



Small	Releases	

The	system	is	put	into	produc.on	in	a	few	
months,	before	solving	the	whole	problem.	
New	releases	are	made	oMen—anywhere	
from	daily	to	monthly.	

18	



Refactoring	vs.	Design	

The	design	of	the	system	is	evolved	
through	transforma.ons	of	the	exis.ng	
design	that	keep	all	the	tests	running.	

19	



Con'nuous	Integra'on	(CI)	

New	code	is	integrated	with	the	current	
system	aMer	no	more	than	a	few	hours.	
When	integra.ng,	the	system	is	built	from	
scratch	and	all	tests	must	pass	or	the	
changes	are	discarded.	
	

20	



Test-driven	development	

Programmers	write	unit	tests	minute	by	
minute.	These	tests	are	collected	and	they	
must	all	run	correctly.	Customers	write	
func.onal	tests	for	the	stories	in	an	
itera.on.		

21	



Open	workspace	

22	



Solving	So,ware	Development	
Problems	with	Agile	Prac'ces	

23	

		 Problem	in	So,ware	Development	 Agile	Methods	That	Mi'gate	It	
1.	 Requirement	changes	during	the	

development	process	
Close	rela.on	with	customer,	short	development	
cycle,	small	releases,	planning	poker,	Kanban	board	

2.	 Scope	creep	 Short	development	cycle,	small	releases,	planning	
poker	

3.	 Architecture	erosion	 Collec.ve	ownership,	pair	programming	
4.	 Under-	or	overes.ma.on	(.me	and	

budget),	s.cking	to	the	plan	
Close	rela.on	with	customer,	planning	poker,	short	
development	cycle,	small	releases	

5.	 Bringing	in	new	developers	(.me	
and	effort	for	their	training),	steep	
learning	curve	

Collec.ve	ownership	(pros	&	cons),	planning	poker	

6.	 Change	of	management	during	the	
development	process	

Close	rela.onship	with	customer	

7.	 Introducing	new	bugs	as	you	develop	
soMware	

40-hour	week,	collec.ve	ownership,	short	
development	cycle,	small	releases,	tests,	CI,	pair	
programming	

Contd.	



Solving	So,ware	Development	
Problems	with	Agile	Prac'ces*	(contd.)	

24	

		 Problem	in	So,ware	Development	 Agile	Methods	That	Mi'gate	It	
8.	 Challenge	of	communica.on	 Close	rela.on	with	customer	
9.	 Developer	turnover	 Collec.ve	ownership	(pros	&	cons),	40-hour	week	
10.	 Integra.on	issues	 Collec.ve	ownership	
11.	 Difficulty	of	tracking	bugs	 Collec.ve	ownership,	short	development	cycle,	

small	releases,	CI,	tests	
12.	 Disagreement	between	developers	 Close	rela.on	with	customer	
13.	 Scheduling	problems	(global	team)	 Close	rela.on	with	customer	
14.	 “Groupthink”	(tendency	of	

developers	to	agree	with	one	
another,	common	thinking	among	
them),	fear	of	hur.ng	the	feelings	of	
other	developers	

Planning	poker,	pair	programming	

15.	 Challenges	with	integra.ng	with	
legacy	code	

Collec.ve	ownership	

*	This	is	an	expanded,	but	s.ll	not	comprehensive	list.	



Scrum	

25	



Customer,	team,	scrum	master	(?)	

26	



Scrum	Process	

27	



Extreme	Programming	(XP)	

28	

Human	evolu'on	

XP	evolu'on	



Programming	is	4	ac'vi'es	

"Listening,	Tes.ng,	Coding,	Designing.	
That's	all	there	is	to	soMware.	Anyone	who	
tells	you	different	is	selling	something.”	
	–Kent	Beck	(Extreme	Programming	
Explained)	

29	



Extreme	Programming	(XP)	

30	



XP	Values	

•  Communica.on:	Verbal	communica.on	
is	be[er	than	wri[en	communica.on.	
•  Simplicity:	Do	the	simplest	thing	that	
could	possibly	work.	
•  Feedback:	Get	lots	of	feedback,	esp	from	
customer	(“first-effort”	prototype).	
•  Courage:	(somewhat	underspecified)	

31	



XP	Prac'ces	(subset	of	Agile!)	
•  TDD	(test-first	approach).	
•  Planning	game:	1-3	week	itera.ons,	one	itera.on	at	a	.me,	customer	decides	which	

user	stories	to	use	
•  Whole	team/on-site	customer:	“customer	speaks	with	one	voice.”		Customer	may	be	a	

whole	team.			
•  Small	releases,	with	valuable	func.onality,	to	guard	against	unhappy	customers.	
•  System	metaphor	is	a	single	shared	story	of	how	it	works.		(Sort	of	like	architecture)	
•  Simplest	thing	that	possibly	works	(coding	for	today)	
•  Refactor	all	the	.me,	because	you	don’t	have	up-front	design	before	programming.			
•  Collec.ve	ownership.		Everyone	is	responsible	for	everything.		If	a	programmer	sees	

something	she	doesn’t	like,	she	can	go	change	it.		Task	ownership	is	individual.			
•  Pair	programming.		can	code	alone	for	nonproduc.on	code	like	prototypes	
•  Con.nuous	Integra.on.		A	day	of	development	at	most.		
•  Sustainable	pace.		40	hour	work	weeks.	
•  Coding	standards,	Especially	since	all	code	can	change	at	all	.mes.	

32	



Evolu'on,	explora'on	
•  Evolu.onary:	code	grows/evolves	rather	
than	being	planned)	
– contrast	with	RUP	(itera.ve	and	incremental)	

•  No	requirements	documents:	programmers	
and	the	customer	assemble	and	discuss	the	
customer's	needs.		
– Compile	stories,	remove	ambiguity	from	the	
stories	by	making	sure	that	they	are	testable	
and	es.mable.		
– Order	by	business	value.	

33	



Ques'ons/Conversa'on	

•  Case	study:	What	happened	with	C3?	
•  Tradeoffs	of	prac.ces:	on-site	customer/
co-located	team,	TDD,	user	stories/
planning	game,	small	releases,	system	
metaphor,	code	for	today,	refactor,	
collec.ve	ownership,	pair	programming,	
con.nuous	integra.on,	sustainable	pace,	
coding	standards.			

34	


