Foundations of Software
Engineering

Lecture 12 — Testing
Claire Le Goues

Carnegie Mellon University 1 SOt

RESEARCH

Learning goals

* Define software analysis.

* Reason about QA activities with respect to coverage and
coverage/adequacy criteria, both traditional (structural)
and non-traditional.

e Conceive of testing as an activity designed to achieve
coverage along a number of (non-structural!) dimensions.

 Enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness
(both general and architectural), performance, integration.

e Give tradeoffs and identify when each of those techniques
might be useful.

HOW DO YOU KNOW THAT YOUR
PROGRAM WORKS?

Questions

* How can we ensure a system meets its
specification?

* How can we ensure a system meets the
needs of its users?

* How can we ensure a system does not
behave badly?

Two kinds of analysis questions

* Verification: Does the system meet its specification?
— i.e. did we build the system correctly?
* Verification: are there flaws in design or code?

— i.e. are there incorrect design or implementation
decisions?

* Validation: Does the system meet the needs of
users?
— i.e. did we build the right system?

e Validation: are there flaws in the specification?
— i.e., did we do requirements capture incorrectly?

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Attempting to be comprehensive, as
measured by, as examples:

Test coverage, inspection checklists,
exhaustive model checking.

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Automated: Regression testing, static
analysis, dynamic analysis

Manual: Manual testing, inspection,
modeling

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Code, system, module, execution
trace, test case, design or

requirements document.

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Functional: code correctness
Non-functional: evolvability, safety,

maintainability, security, reliability,
performance, ...

VERY IMPORTANT

* There is no one analysis technique that
can perfectly address all quality concerns.

* Which techniques are appropriate
depends on many factors, such as the
system in question (and its size/
complexity), quality goals, available
resources, safety/security requirements,
etc etc...

10

Principle techniques

* Dynamic:
— Testing: Direct execution of code on test data
in a controlled environment.
— Analysis: Tools extracting data from test runs.
e Static:

— Inspection: Human evaluation of code, design
documents (specs and models), modifications.

— Analysis: Tools reasoning about the program
without executing it.

11

One slide with a bunch of ideas you
should remember from 15-214

* Verification vs. testing
* Black box
e TDD

* Testing harness,
scaffolding, stubs

* Unit testing/Junit
* Nightly vs. smoke tests

* Coverage

12

“Traditional” coverage

Statement
Branch
Function
Path (?)
MC/DC

13

We can measure coverage on
almost anything

Jtic R e L) He |Edk View Drow Object W
i P tiew Cul4n
x lyling = - oG . Qo
—_ s e conmmt or 1o oo) SB5 Oenn ' 7 |BRIER You Dow ghiec

| tew CtrN N\ O
- 4":‘—

l Chsa
Ctr+O

aPrevChar = * *
LQuoteCoane = 0

Draweli Application - [Drawel5]

f DER e vow row oo

L5 If wa foand * ' than wn aven rusber of * craractess in fromt . 5[5
s means 1t 13 the atert of @ coamant, end oddf muder sesns it 13 § bow

rFor leowt = | To Len{sline)
£Char = Mid(shine. lcours, 1)

Chrlel

" AR T e e T i e et Ve e,
R e] -

P

I

A. Zeller, Testing and Debugging Advanced course, 2010

14

We can measure coverage on
almost anything

e Common adequacy criteria for testing approximate full
“coverage” of the program execution or specification
space.

* Measures the extent to which a given verification activity
has achieved its objectives; approximates adequacy of the
activity.

— Can be applied to any verification activity, although most
frequently applied to testing.

* Expressed as a ratio of the measured items executed or
evaluated at least once to the total number of measured
items; usually expressed as a percentage.

15

Covering quality requirements

e How might we test the following?

— Web-application performance
— Scalability of application for millions of users

— Concurrency in a multiuser client-server application

— Usability of the Ul
— Security of the handled data

 What are the coverage criteria we can apply to those

qualities?

16

Principle techniques

* Dynamic:
— Testing: Direct execution of code on test data
in a controlled environment.
— Analysis: Tools extracting data from test runs.
e Static:

— Inspection: Human evaluation of code, design
documents (specs and models), modifications.

— Analysis: Tools reasoning about the program
without executing it.

17

What is testing?

* Direct execution of code on test data in a controlled
environment
* Principle goals:
— Validation: program meets requirements, including
quality attributes.
— Defect testing: reveal failures.

* Other goals:

— Clarify specification: Testing can demonstrate
inconsistency; either spec or program could be wrong

— Learn about program: How does it behave under various
conditions? Feedback to rest of team goes beyond bugs

— Verify contract, including customer, legal, standards

18

"Testing shows the presence,
not the absence of bugs
Edsger W. Dijkstra 1969

What are we covering?

* Program/system functionality:
— Execution space.

— Input or requirements space.
— Use cases.

— Defect space.
* The expected user experience (usability).

* The expected performance envelope

(performance, reliability, robustness,
integration).

20

Regression testing (redux)

* Whatis “covered” by a set of regression tests?
* Why do we do regression testing?

Usual model:
— Introduce regression tests for bug fixes, etc.

— Compare results as code evolves
* Codel + TestSet () TestResults1
« Code2 + TestSet () TestResults2
— As code evolves, compare TestResultsl with TestResults2, etc.

Benefits:
— Ensure bug fixes remain in place and bugs do not reappear.

— Reduces reliance on specifications, as <TestSet,TestResults1>
acts as one.

21

Integration: object protocols

» Covers the space of possible API calls, or program “conceptual
states.”

* Develop test cases that involve representative sequence of operations on
objects

— Example: Dictionary structure: Create, AddEntry*, Lookup,
ModifyEntry*, DeleteEntry, Lookup, Destroy

— Example: IO Stream: Open, Read, Read, Close, Read, Open,
Write, Read, Close, Close

— Test concurrent access from multiple threads
* Example: FIFO queue for events, logging, etc.
Create Put Put Get Get
Put Get Get Put Put Get

* Approach
— Develop representative sequences — based on use cases, scenarios, profiles
— Randomly generate call sequences

* Also useful for protocol interactions within distributed designs.

22

Practices — integration testing

Do incremental integration testing
— Test several modules together
— Still need scaffolding for modules not under test
* Avoid “big bang” integrations
— Going directly from unit tests to whole program tests
— Likely to have many big issues
— Hard to identify which component causes each
e Test interactions between modules
— Ultimately leads to end-to-end system test

w

What are we covering?

* Program/system functionality:
— Execution space (white box!).
— Input or requirements space (black box!).
* The expected user experience (usability).
— GUI testing, A/B testing
 The expected performance envelope (performance,
reliability, robustness, integration).
— Security, robustness, fuzz, and infrastructure testing.
— Performance and reliability: soak and stress testing.
— Integration and reliability: APl/protocol testing

24

Automating GUI/Web Testing (from 214)

First: why is this hard?

Capture and Replay Strategy
— mouse actions
— system events

e Test Scripts: (click on button

labeled "Start" expect value X
in fieldY)
e Lots of tools and frameworks
— e.g. JUnit + Jemmy for Java/
Swing

* (Avoid load on GUI testing by
separating model from GUI)

25

Usability: A/B testing

e Controlled randomized experiment with two
variants, A and B, which are the control and
treatment.

* One group of users given A (current system);
another random group presented with B;
outcomes compared.

e Often used in web or GUI-based applications,
especially to test advertising or GUI element
placement or design decisions.

26

Example

* A company sends an advertising email to
its customer database, varying the
photograph used in the ad...

27

Example: group A (99% of users)

e Act now!
Sale ends
soon!

Example: group B (1%)

e Act now!
Sale ends
soon!

HOW DOES THIS TECHNIQUE
GENERALIZE, ESPECIALLY TECHNICALLY?

30

What are we covering?

* Program/system functionality:
— Execution space (white box!).
— Input or requirements space (black box!).

 The expected user experience (usability).

* The expected performance envelope (performance,
reliability, robustness, integration).
— Security, robustness, fuzz, and infrastructure testing.
— Performance and reliability: soak and stress testing.
— Integration and reliability: APl/protocol testing

31

(214 review) Random testing

* Select inputs independently at random from the program’s
input domain:
— ldentify the input domain of the program.
— Map random numbers to that input domain.
— Select inputs from the input domain according to some
probability distribution.
— Determine if the program achieves the appropriate outputs on
those inputs.
 Random testing can provide probabilistic guarantees about
the likely faultiness of the program.

— E.g., Random testing using ~23,000 inputs without failure (N =

23, 000) establishes that the program will not fail more than
one time in 10,000 (F = 10%), with a confidence of 90% (C = 0.9).

32

Reliability: Fuzz testing

* Negative software testing method that feeds
malformed and unexpected input data to a
program, device, or system with the purpose of
finding security-related defects, or any critical
flaws leading to denial of service, degradation
of service, or other undesired behavior (A.
Takanen et al, Fuzzing for Software Security
Testing and Quality Assurance, 2008)

* Programs and frameworks that are used to
create fuzz tests or perform fuzz testing are
commonly called fuzzers.

33

Types of faults found

* Pointer/array errors

* Not checking return codes

* Invalid/out of boundary data
* Data corruption

* Signed characters

* Race conditions
 Undocumented features

e ...Possible tradeoffs?

34

Fuzzing process

FUZZER

—

‘GET / HTIT/1.1

Aocupts dmoge/eil, ivage/x->liteap,

VALID request

trago/jpen, </

Acceprn-Encoding: qgip, deflate
Ancopo . o@: en-ug

Connacticn: ¥eep-Alivo
-
—

'GET a’lafaiaiaiaiaiaisAsiafaiaiaiaiaiak
HTTP/1.1

Accept: inage/glf, lmage/x->Ditsap,
irag=/iceq, */*

Accept-Enccding: gzlip, deflate

ACCept-Lanpunoe:: Cn-us
Connacticns Heep-Alive

S—

VALID response

ANOMALOUS request

—

GET tatntxtstatastotstatats HTTIP/1.1
Accept: inage/gif, image/x-xbitmsp,

iragz/joea, */*
Accept-Irocding: gzlp, deflate
Acscept -Lary t ens-us

Connecticn: ¥Feep-Allve

-

ERROR response

ANOMALY sent

—

GET horpe// (T
:C) ETTPS1.1
frage/a-rlitewp,

deflate

Socept: dmagc/oif,
lenge/jpeq, */*

Asgept-Encoding: qgzip,
Ascept- SOOE: CR-US
Connacticn: ¥eep-Alive

S —

ANOMALOUS response

ANOMALY sent

SUT

KTTP/1.1 200 O

Date: Wed, 07 Now 2007 09:44:49 0T
Seyver: NykedServer/2.1 ILinux)
tasc-Modifled: Ned, 07 Nov 2007 09:44:3¢
Mocept-Fangesa; yres

Content-Length: 130

Conrection: <¢loae

Centent -Type: toxt/Meal; charaecr-UTF-8

™~

ovr

—

KTTIP/3.1 404 Mot Found

Dote: Wed, 07 Now 2007 03:49:27 GMT
Server: MyWebServer/2.1 |Linux)
Ceontent -length: 224

Conrnectica: <lose

Content-Type: text/keml;
ChaTeet«l20-8359-1

__
—

—

KTIP/3.1 509 Intormal Server Srror
Date Tue, 01 Jan 1570 €&.00:00 T
Eerver: ()

Centent-length: -1

Ceqeent -Type: VYV

Conrection: close

J\

cesssnsns| NO RESPONSE]| sasssssax

J\

35

Fuzzing approaches

* Generic: crude, random corruption of valid data without any regard to the
data format.

* Pattern-based: modify random data to conform to particular patterns. For
example, byte values alternating between a value in the ASCII range and
zero to “look like” Unicode.

* Intelligent: uses semi-valid data (that may pass a parser/sanity checker’s
initial line of defense); requires understanding the underlying data format.
For example, fuzzing the compression ratio for image formats, or fuzz PDF
header or cross-reference table values.

* Large Volume: fuzz tests at large scale. The Microsoft Security
Development Lifecycle methodology recommends a minimum of 100,000
data fuzzed files.

* Exploit variant: vary a known exploitative input to take advantage of the
same attack vector with a different input; good for evaluating the quality
of a security patch.

36

Assessing robustness

 Test erroneous inputs and boundary cases
— Assess consequences of misuse or other failure to achieve preconditions

public static int binsrch (int[] a, int key) {

int low = O;
int high = a.length - 1;

while (true) {
if (low > high) return -(low+1);
int mid = (low+high) / 2;
if (| a[mid] |< key) low = mid + 1;

else if (a[mid] > high = mid - 1;
else return mid;

What if the array reference a is null?

37

Assessing robustness

* Test erroneous inputs and boundary cases

— Assess consequences of misuse or other failure to achieve preconditions
— Bad use of API

— Bad input data, files (e.g., corrupted), or communication connections

— Buffer overflow (security exploit) is a robustness failure (deliberate interface
misuse)

* Test apparatus needs to be able to catch and recover from crashes and
other hard errors (e.g., Ballista tool)

— Sometimes multiple inputs need to be at/beyond boundaries
 The question of responsibility

— Is there external assurance that preconditions will be respected?

— This is a design commitment that must be considered explicitly.

What if the array reference a is null?

38

Stress testing

* Robustness testing technique: test beyond
the limits of normal operation.

e Can apply at any level of system granularity.

e Stress tests commonly put a greater
emphasis on robustness, availability, and
error handling under a heavy load, than on

what would be considered “correct”
behavior under normal circumstances.

39

Soak testing

* Problem: A system may behave exactly as
expected under artificially limited execution
conditions.

— E.g., Memory leaks may take longer to lead to

failure (also motivates static/dynamic analysis, but
we’ll talk about that later).

* Soak testing: testing a system with a significant
load over a significant period of time (positive).
* Used to check reaction of a subject under test

under a possible simulated environment for a
given duration and for a given threshold.

40

Completeness?

Statistical thresholds
— Defects reported/repaired
— Relative proportion of defect kinds
— Predictors on “going gold”
* Coverage criterion
— E.g., 100% coverage required for avionics software
— Distorts the software
— Matrix: Map test cases to requirements use cases
* Canlook at historical data

— Within an organization, can compare across projects; Develop expectations
and predictors

— (More difficult across organizations, due to difficulty of commensurability, E.g.,
telecon switches vs. consumer software)

* Rule of thumb: when error detection rate drops (implies diminishing
returns for testing investment).

* Most common: Run out of time or money

42

QUICK ASIDE ON BUG FIXING AND THE
TRICKY RELATIONSHIP BETWEEN
DESIGN, INTENT, IMPLEMENTATION,
AND YOUR CRANKY USERS...

43

Race conditions

 Races can occur when:
— Multiple threads of control access shared data
— Data gets corrupted when internal integrity assumptions are
violated.
* How we protect against races
— Use “lock” objects that enable access by one thread at a time

* E.g., event dispatch
* Alanguage feature in Java, Ada95, etc.

— Follow a thread discipline in which only one thread can access
critical data (Common in GUI APIs e.g., graphical toolkit redraw)

e /ssue: Basically the hardest bugs to find, fix, and protect
against.
— Why?

44

java.io.BufferedInputStream

Buffering wrapper for unbuffered
stream input: read, close, reset,
skip, mark, etc.

JDK < 1.2: Race condition between

methods read and close:

interleaved execution could cause

read to throw

NullPointerException

— But not always; concurrency = non-
deterministic!

JDK1.2 fixes by synchronize-ing

the methods, preventing close

and read from interleaving.

(Aaron Greenhouse)

eredInputStres

=101

| File Edi

View Favorites Tools Help

| &

java.awt.datatr a |
java.awtdnd
java. awt. event
java.awt.font
java.awt.geom
java.awt.im
java.awt.im.sp

java.awt.image
o
JJ

iava ot irman
4

ava.o

Interfaces

Datalnput

DataOutput
Externalizabi

FileFiiter
FilenameFiltet

Objectinput
Objectinputis
ObjectOutput

ObjectStream
Senalizable

Classes

Bufferedinputs
BufferedOutpu
BufferedReade

Buffered\Writer

ByteArraylnpu

ByteArrayO itl—l o
3

bomvfvvmi i Mlm s
I |

-~
Overview Package [@Eey Use Tree Deprecated Index Help Java
PREVCLASS NEXT CLASS FROMES NO FRAMES 5
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.io

Class BufferedInputStream

java.lang.Object
-:-——j ava.io.InputStrean
l—-wm&m
-:-— -java.io.BufferedInputStream

public class BufferedbnputSiream
extends FilterlnputStream

A BufferedInputStrean adds functionality to another input stream-namely,
the ability to buffer the input and to support the nark and reset methods.
When the Buf feredInputStreanis created, an internal buffer array is createc
As bytes from the stream are read or skipped, the internal buffer is refilled as
necessary from the contained input stream, many bytes at a time. The nark
operation remembers a point in the input stream and the reset operation cause
all the bytes read since the most recent mark operation to be reread before new
bytes are taken from the contained input stream. v

4 | LlJ

[@ Done

[[[[My Computer 4

45

Reaction to bug fix

“This really sucks. Now just to convert
to [JDK 1.2] I’'ve got to rewrite code that
has worked since JDK 1.02... It’s pretty
obvious that syncing close would break

- »”
things.
Comment in Bug ID #4225348:

“Attempt to close while reading
causes deadlock” a2V Wa l

46

Why was everyone so mad?

e Java socket programming idiom that requires the ability to close mid-read:
“Hung” socket stream: Use separate thread to close and interrupt “hung”
read or write

* In other words: clients assumed read and close can interleave!
— Bug fix prevents interleaving.
— Intent inferred — s it correct?
* Design choices — What is/was the design intent?
— Interleaving intended — Fix race while allowing interleaving
— Interleaving not intended — Provide alternative idiom to get the same effect.

* What should the Java designers have done? What’s a good solution to this
problem? Whose fault was it?

47

Upshot

 Fix was undone in JDK1.3
— Re-enabled socket idiom.

— Compromises safety of the class by re-enabling the race
condition

* BufferedinputStream was fixed to both prevent the race and
allow socket idiom for JDK 1.5

* |ssue #1 — Race condition in deployed production library code

* Issue #2 — Lack of documentation of design intent with
respect to concurrency.

* Moral: bugs are hard, and correctness depends on context
and user expectations.

48

Learning goals

e Conceive of testing as an activity designed to achieve
coverage along a number of (non-structural!) dimensions.

 Enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness
(both general and architectural), performance, integration.

e Give tradeoffs and identify when each of those techniques
might be useful.

* |ntegrate testing into your project’s lifecycle and practices.
e Qutline a test plan.

49

How can software fail?

Faults of omission Faults of commission

e Specified behavior that for * An unintended behavior,
some reason is not present that is, behavior that is not
in the software, e.g. that not part of specification.
the programmer forgot to i.e., implementing the
include. wrong thing.

e 22—54% of software faults
(B. Marick, 2000).

Correcting (isolating and fixing) a fault of commission requires
more effort than a fault of omission (V. Basili, 1994).

50

Two modes: high-power
beam, low power beam.

High power beam should only
activate with beam spreader
in place.

Previous versions of Therac
had hardware interlocks to
prevent high beam without
beam spreader; Therac 25
used software interlocks.

Race condition + integer
overflow: if operator provided
manual input exactly when a
one-byte counter overflowed,
the interlock failed.

Result: high power beam
without spreader, radiation
burns and sickness.

52

A system is a series of externally observable states (remember
requirements?).

* Correct service is delivered when the the system function is
implemented, as observed externally.

e Things go wrong when the system enters into an externally visible
erroneous state:

BRGECICERY AN error may not always result in a failure RGHSGICUEIES

IWSUEERE (The Therac-20 had the same fault, and the

ol CHITTEHE same error, but there was a hardware e; the system enters
olilNeld@nl¢ override that prevented the failure). elieves that the data
it i On)

he correct to an incorrect

r overflows and goes to 0)

atic problem in the code, hypothesized cause of an error (when
' ' & ater” instead of

SSUIR 1y itiple faults may cause an error together.

Terminology

53

Basic definitions

* Test case: given a program, a configuration
(including environment), a set of inputs to that
program, a set of expected outputs, and an
oracle comparator that determines whether the
actual output of the program matches the
expected output.

— Note the difference between a test input and a test
case!

 Test suite: a collection of test cases.

* Oracle problem: figuring out what the output of
the program should be for a given input.

54

Oracle comparator: why is this
hard?

* For simple programs, oracle comparator can
just be, for example, diff.

 For more complicated programs, an exact
match may not be necessary.

 Example: a webserver where the exact
response time varies with some random range.
If web pages are returned within 5 milliseconds,
we say everything is fine.
— The oracle comparator for a test of the web server’s

performance needs to do more than just check the
output with diff!

55

Differential Testing

* When multiple implementations are available, search for
differences between them (hand-selected or random
inputs).

— Also works for multiple "equivalent" configurations
 Example Csmith:

* n C Compiler and the same compilers at different optimization
levels.

* Generate random short code fragments

 Compile code with each compiler,
execute and compare output

* On output differences the

"majority" wins c
* Found 325 previous unknown

compiler bugs

56
Yang et al. Finding and Understanding Bugs in C Compilers. In Proc. PLDI 2011

Old: Verification at Different Levels

B Acceptance testing: Is
main Class P the software acceptable
to the user?

System testing: Test the
overall functionality of
the system

Class A

o () Integration testing: Test
method mAl : : how modules interact
I . with each other

method mA2()

Module testing: Test
each class, file, module
or component

Unit testing: Test each

o] C unit (method)
This view underlying similarities individually
5

7

v1¢-S1

€Te-ql

Functional Correctness

Specification

Formal Verificati
Unit Testing h

Type Checking

Statistic Analysis

Requirements definition

Inspections, Reviews

Integration/System/Acceptance/Regression/GUI/Blackbox/
Model-Based/Random Testing

 Change/Release Management

58

Class Integration and Test Order

* Old programs tended to be very hierarchical. Integration order
was easy.

— Test the “leaves’ of the call tree, integrate up to the root

— Goal is to minimize the number of stubs needed
* OO programs make this more complicated

— Lots of kinds of dependencies (call, inheritance, use, aggregation)

— Circular dependencies : A inherits from B, B uses C, C aggregates A
e CITO : Which order should we integrate and test ?

— Must “break cycles”

— Common goal : least stubbing

* Designs often have few cycles, but cycles creep in during
implementation

59

Practices — testing throughout the
lifecyle

* Favor unit testing over integration and system testing

— Top-down testing
* Test full system with stubs (for undeveloped code).
* Tests design (structural architecture), when it exists.
— Bottom-up testing
* Units -> Integrated modules -> system
e Unit tests find defects earlier (less cost and less risk)
— During design, make API specifications specific
* Missing or inconsistent interface (API) specifications

* Missing representation invariants for key data structures

* What are the unstated assumptions?
— Null refs ok? Integrity check responsibility? Thread creation ok?

e Over-reliance on system testing can be risky
— Possibility for finger pointing within the team
— Difficulty of mapping issues back to responsible developers
— Root cause analysis becomes blame analysis

60

Practices — reporting defects

A Bug 141261 - crash - Shell create, Repositionwindow() - Unexpected Eclipse crash RC3 (JavaNati - Microsoft Interne... I8 [=] B3

| Fle Edt View Favortes TIooks Help | A

| Qeack) -] 2] [O Seach cFavoites € | (- i A-F [J & 3

| Address [&] hitps://bugs.eclipse.org/bugs/show_bug.cai?id=141261

2l
| Google| G- el R © O D E - | % Bookmaks+ &5 blocked > @ Setiings~
JLirI(s) TortoiseSYN &] Google €] CourseCast & Gmail "¥» My Yahoo! &] Podtechweb (&] Donotweb &) STl wiki &] 15211 Portal &

» .
ecli pse Eclipse bugs
o 230.4
Bugzilla Bug 141261 crash - Shell create, RepositionWindow() - U: d Eclipse crash RC3 (JavaN ativeCrash) Last
modified:
2006-11-14
17:46:58
Bug List: (31 of 200) First Last Prev Next Show last search results Searchpage Enter new by
[Eclipse] Hardware: [Macintosh = . Igor Goldenberg
Bug#: Ll . Reporter: Zigorg(@, com
Product: | Platform B 08: I Mac 03 j’ Add CC: I
Version: [3.2 vI
Component: | SWT :I‘ CC: [grant_gayed@ca.ibm.com
Status: NEW Priority: | P3 'I Mike_Wilson@ca.ibm.com
Resolution: ity: - ﬁ, paper@animecity.nu
Silenio Quarti Severity: | major steve_narthover@ca.ibm.com
Assigned To: """~ . p Target[— =
<Silenio_Quarti@ca.ibm.com> Milestone: I
" Remove selected CCs
QA Contact: I
URL: |

Summary: Icrash - Shell create, RepositionVindow() - Unexpected Eclipse c

Status
‘Whitehoard:
Keywords: |
Attachment ‘Type ‘ Created | Size
Create a New Attact (prop d patch, testcase, etc)) | View All

Bug 141261 depends on:

Show d d tree
Bug 141261 blocks: |

Yotes: 0 Show votes for this bug Vote for this bug

Additional Cq -
Al | - 3
&l T T 15 | intemet 4

* Reproducible defects

— Easier to find and fix

— Easier to validate

— Built-in regression test

— Increased confidence
 Simple and general

— More value doing the fix

— Helps root-cause analysis
* Non-antagonistic

— State the problem

— Don't blame

61

(In reply to comwment #3)

> I'm sorry but we really don't have enough details to bhe able
> problem. Could you try with another VM?

>

Problem didn't happen with another JRE - just the sun JRE.

Practices — track defects | i

Issue: Bug, feature request, or query

— May not know which of these until analysis is done, so

track in the same database (Issuezilla)

Provides a basis for measurement

— Defects reported: which lifecycle phase

— Defects repaired: time lag, difficulty

— Defect categorization

— Root cause analysis (more difficult!)
Provides a basis for division of effort

— Track diagnosis and repair

— Assign roles, track team involvement
Facilitates communication

— Organized record for each issue

— Ensures problems are not forgotten
Provides some accountability

— Can identify and fix problems in process

— Not enough detail in test reports

— Not rapid enough response to bug reports
Should not be used for HR evaluation!

This looks like a duplicate of the bug 92250. Could you try if
with -XX:MaxPermSize=256m ?

After further investigation, setting the permgenspace to 1024
problem.

#% This bug has been marked as a duplicate of 92250 #***

This problem is still occurring on the dependent product with M
to 1024M. Please investigate.

Bug List: (48 of 200) First L

What wversion of the Sun JRE are you using? I suggest trying wi
later, as there are known memory leak problems with 1.5.0_06 or

[Ecllpsg] 160502 Hardware: |PC ‘I Reporter: Clare Carty ‘
Bugt: — 08: [Tnx = Sccarty@ca.ibm. com>

Add CC:
CC: [ceary@ca.bm.cam
john_arthome@ca.ibm.cor

Broduct: |Platform :I- Version: [3.2.1 'I
¢ . ; = .
omponent: | Runtime Priority: I'P3 .I

Btaing: REOPENED Severity: |blocker 'I

Resolution: Target
'O
platform-runtime-inbox Miles:;r\:' - £
Assigned To: <platform-runtime- T

nbox@eclpse.org>
QA Contact: |
URL: |

Summary: |JVM crash at random intervals on SUSE 9 with Sun JRE 1.5

[" Remove selected CCs

Status I
Whiteboard:

Keywords: Ivm

Attachment Type Created Size Actions
screenshot of crash | imagefipeg | 2006-10-11 12:14 | 131.55 KB | Edit

Create a New Aftachment (proposed patch, testcase, etc.) View All

Bug 160502 depends on:

Show dependency tree

2NOW GEPENGENCY IEe
Bug 160502 blocks:

Votes: 0 Show votes for this bug Vote for this bug
62

Practices —social issues

* There are differences
between developer and tester
culture. Acknowledge that
testers often deliver bad

Nnews. .
' Reassign bug to [pde-urinboxigeclipse.org
. . . o . .
) AVO I d usin g d efe Cts N Reassign bug to default assignee and QA contact of selected component

. Commit
performance evaluations
— Is the defect real?
— Bad will within team

View Bug Activity | Format For Printing | Clone This Bug

Description: [reply] Opened: 2005-07-25 07:.03
[
Work hard to deteCt defeCtS l I didn't even know that there was an undo feature inside the GUI 'Edit,or, but
before integration testing ziazgectacr.'l ently presse -4 1nstead o -5 and the undo started... &

- EaSIer tO narrOW SCOpe and Try adding some extension in the extensions page and then press CTRL-Z.
resp0n5|b||ity This is actually two bugs imho;

- LeSS adversa rial 1. The details is wvery wvery poor so I really don't know what happened. A

stacktrace would be great for debugging.
* Issues vs. defects

2. The undo obviously does not work correctly.

here is a screenshot of the crash:
http://mnemo.minimunm.se/eclipse crashes/eclipse undo crash.png

I don't have time for extensive reprod testing atm, maybe Someone else can
ass1st wi 15 and see 1 ey can ge e plugin.xXml edltor To Ccrash using
weird combinations of editing and CTRL-Z undoing.

Practices — use regression tests

* Goal: catch new bugs introduced by code changes
— Check to ensure fixed bugs stay fixed
— New bug fixes often introduce new issues/bugs
— Incrementally add tests for new functionality

* Which new tests to run when adding new functionality?

fa o | | & assertTrue ("1.3." + path, 'result.isUNC()]):
= org.eclipse.core.tests. iuntime = assertEquals("1.4." + path, (String) expectedNon.getii),
B@ .settings }
- METAINF y
BB Plugin_Testing -] -
-2 Plugintests_Testing . . . '
3& ste J * This test is for bizarre cases that previously caused errors.
e .
B og / X i .
EIB eclipse = public void testRegression() {
B¢ core try o

new Path("C:%\/eclipse');

E’& tests :
& intemal } CatCl.l {Exception e) {
E-C plugintests fail("1.0", e):
B-C> runtime }
E-C> compatibilty try
E-(= content if (WINDOWS) { |
E-E jobs IPath path = new Pathi{"d:%\\%}\ive");

[;3 locks assertTrue ("2.0", 'path.isUNC{)):
: assertEquals("2.1", 1, path.segmentCount ()]

@ model '

B peif assertEquals ("2.2", "ive", path.segment (0)):
@ session } .

@ shean + catch (Exception e) {

fail("2.99", e); 64

e [3) AlTests.java1.34
I TR

+

When a Regression Test Fails

* Regression tests are evaluated based on whether the
result on the new program P is equivalent to the
result on the previous version P-1

— If they differ, the test is considered to have failed
e Regression test failures represent three possibilities :

— The software has a fault — Must fix the fix

— The test values are no longer valid on the new version —
Must delete or modify the test

— The expected output is no longer valid — Must update the
test

e Sometimes hard to decide which !!

65

Evolving Tests Over Time

* Changes to external interfaces can sometimes cause
all tests to fail

— Modern capture / replay tools will not be fooled by trivial
changes like color, format, and placement

— Automated scripts can be changed automatically via global
changes in an editor or by another script

* Adding one test does not cost much — but over time
the cost of these small additions start to pile up

66

Practices - Updating Test Suites

 Which tests to keep can be based on several policies
— Add a new test for every problem report
— Ensure that a coverage criterion is always satisfied
 Sometimes harder to choose tests to remove
— Remove tests that do not contribute to satisfying coverage
— Remove tests that have never found a fault (risky !)
— Remove tests that have found the same fault as other tests
(also risky!)
— (no one ever got fired for leaving a test suite in...)
* Reordering strategies

— |If a suite of N tests satisfies a coverage criterion, the tests can
often be reordered so that the first N-x tests satisfies the

criterion — so the remaining tests can be removed

67

Practices: Root cause analysis

ldentify the “root causes” of frequent defect types,
locations

— Requirements and specifications?

— Architecture? Design? Coding style? Inspection?
Try to find all the paths to a problem

— If one path is common, defect is higher priority

— Each path provides more info on likely cause
Try to find related bugs

— Helps identify underlying root cause of the defect

— Can use to get simpler path to problem

— This can mean easier to fix

|ldentify the most serious consequences of a defect

68

Test Process Maturity Levels

Level O: There’s no difference between testing and
debugging

Level 1: The purpose of testing is to show
correctness

Level 2: The purpose of testing is to show that the
software doesn’t work

Level 3: The purpose of testing is not to prove
an]}/tthing specific, but to reduce the risk of using the
software

Level 4: Testing is a mental discipline that helps all IT
professionals develop higher quality software.

69

Test plans

 What quality techniques are
used and for what purpose. S e vervien
In terms Of testi ng: 2 Reference Documents

3 Software Test Environment

— What we will test uil-talmeiney v
411 Testlevel|
4.1.2 Test Classes

_HOWWGW”IteSt 42 PlannedTests...”””“”"""

- When We WiII do SO’ When We Test 2 — Convergence ofMuItlqund PrOJect
will stop.

— Who will write the tests, who
Wi” run them. 5 Test Schedules

— Why we know it’s a good set
of tests.

»
N
=

Test 6 — Surface Tensicon Test |
Test 7 — Mukifluid system test |
Test 8 — Mukifluid AMR test . . .]
Test @ — Mukifluid system regression test |

PoppdbhpR R
NNNNNNN
NGO NRWN

R
N
©

N~ ©

Requirements Traceability

70

ANSI/IEEE 829-1983

* Test plan: “A document describing the scope,
approach, resources, and schedule of
intended testing activities. It identifies test
items, the features to be tested, the testing
tasks, who will do each task, and any risks
requiring contingency planning.”

e Emphasizes documentation, not actual
testing: a well documented vacuum.

71

Why Produce a Plan?

* Ensure the test plan addresses the needs of stakeholders

e Customer: may be a required product, for operations and support
— E.g., Government systems integration, safety-critical certification: avionics, health devices, etc.

* Aseparate test organization may implement part of the plan
— “IV&V” — Independent verification and validation

* May benefit development team
— Set priorities: Use planning process to identify areas of hazard, risk, cost

* Additional benefits — the plan is a team product
— Test quality
* Improve coverage via list of features and quality attributes
* Analysis of program (e.g. boundary values)
* Avoid repetition and check completeness
— Communication
* Get feedback on strategy
* Agree on cost, quality with management
— Organization
* Division of labor
* Measurement of progress

72

Managing Test Artifacts

* Don’t fail because of lack of organization

e Keep track of :
— Test design documents
— Tests
— Test results
— Automated support

* Use configuration control

e Keep track of source of tests —when the
source changes, the tests must also change

73

Chaos monkey/Simian army

* A Netflix infrastructure testing system.

* “Malicious” programs randomly trample on
components, network, datacenters, AWS instances...

— Chaos monkey was the first — disables production
instances at random.

— Other monkeys include Latency Monkey, Doctor
Monkey, Conformity Monkey, etc... Fuzz testing at the
infrastructure level.

— Force failure of components to make sure that the
system architecture is resilient to unplanned/random
outages.

* Netflix has open-sourced their chaos monkey code.

74

QA throughout lifecycle

Relative Cost of Software Fault Propogation

368 7 77— ——
400 Relative | |
350 1) . Cost to
'| Repair |
300] = i 1
250 | 130 f
200 '\ 64 |
37— '
150 | 50 2 - 7 x|
100 | 10 0 = 3| &= Customer
| S 4%35 1 = f e L Integration
0 | 159 o - Test
0o :., Code
N , Design
< O e ;
<2 N O X Requirements
“1” Identifies o Phase
Phase Defect & Repaired
Introduced

75

