
Founda'ons	of	So,ware	
Engineering	

Lecture	12	–	Tes-ng	
Claire	Le	Goues	

	

1	

Learning	goals	
•  Define	so8ware	analysis.	
•  Reason	about	QA	ac-vi-es	with	respect	to	coverage	and	

coverage/adequacy	criteria,	both	tradi-onal	(structural)	
and	non-tradi-onal.	

•  Conceive	of	tes-ng	as	an	ac-vity	designed	to	achieve	
coverage	along	a	number	of	(non-structural!)	dimensions.	

•  Enumerate	tes-ng	strategies	to	help	evaluate	the	following	
quality	aNributes:	usability,	reliability,	security,	robustness	
(both	general	and	architectural),	performance,	integra-on.	

•  Give	tradeoffs	and	iden-fy	when	each	of	those	techniques	
might	be	useful.	

2	

HOW	DO	YOU	KNOW	THAT	YOUR	
PROGRAM	WORKS?	

3	

Ques'ons	

•  How	can	we	ensure	a	system	meets	its	
specifica-on?		

•  How	can	we	ensure	a	system	meets	the	
needs	of	its	users?		

•  How	can	we	ensure	a	system	does	not	
behave	badly?		

	

4	

Two	kinds	of	analysis	ques'ons	
•  Verifica'on:	Does	the	system	meet	its	specifica-on?			

–  i.e.	did	we	build	the	system	correctly?		
•  Verifica'on:	are	there	flaws	in	design	or	code?	

–  i.e.	are	there	incorrect	design	or	implementa-on	
decisions?	

•  Valida-on:	Does	the	system	meet	the	needs	of	
users?		
–  i.e.	did	we	build	the	right	system?		

•  Valida-on:	are	there	flaws	in	the	specifica-on?	
–  i.e.,	did	we	do	requirements	capture	incorrectly?	

5	

Defini'on:	so,ware	analysis	

	
The	systema'c	examina-on	of	a	
so8ware	ar-fact	to	determine	its	

proper-es.	

6	

ANemp-ng	to	be	comprehensive,	as	
measured	by,	as	examples:	

Test	coverage,	inspec-on	checklists,	
exhaus-ve	model	checking.	

Defini'on:	so,ware	analysis	

	
The	systema-c	examina'on	of	a	
so8ware	ar-fact	to	determine	its	

proper-es.	

7	

Automated:	Regression	tes-ng,	sta-c	
analysis,	dynamic	analysis		
Manual:	Manual	tes-ng,	inspec-on,	
modeling		

Defini'on:	so,ware	analysis	

	
The	systema-c	examina-on	of	a	
so,ware	ar'fact	to	determine	its	

proper-es.	

8	

Code,	system,	module,	execu-on	
trace,	test	case,	design	or	
requirements	document.	

Defini'on:	so,ware	analysis	

	
The	systema-c	examina-on	of	a	
so8ware	ar-fact	to	determine	its	

proper'es.	

9	

Func'onal:	code	correctness		
Non-func'onal:	evolvability,	safety,	
maintainability,	security,	reliability,	
performance,	…	

VERY	IMPORTANT	

•  There	is	no	one	analysis	technique	that	
can	perfectly	address	all	quality	concerns.	

• Which	techniques	are	appropriate	
depends	on	many	factors,	such	as	the	
system	in	ques-on	(and	its	size/
complexity),	quality	goals,	available	
resources,	safety/security	requirements,	
etc	etc…	

10	

Principle	techniques	
•  Dynamic:	

– Tes'ng:	Direct	execu-on	of	code	on	test	data	
in	a	controlled	environment.	

– Analysis:	Tools	extrac-ng	data	from	test	runs.	
•  Sta'c:	

– Inspec'on:	Human	evalua-on	of	code,	design	
documents	(specs	and	models),	modifica-ons.	

– Analysis:	Tools	reasoning	about	the	program	
without	execu-ng	it.	

11	

One	slide	with	a	bunch	of	ideas	you	
should	remember	from	15-214	
•  Verifica-on	vs.	tes-ng	
•  Black	box		
•  TDD	
•  Tes-ng	harness,	
scaffolding,	stubs	

•  Unit	tes-ng/Junit	
•  Nightly	vs.	smoke	tests	
•  Coverage	
	

12	

“Tradi'onal”	coverage	

•  Statement	
•  Branch	
•  Func-on	
•  Path	(?)	
•  MC/DC	

13	

We	can	measure	coverage	on	
almost	anything	

A. Zeller, Testing and Debugging Advanced course, 2010

14	

We	can	measure	coverage	on	
almost	anything	
•  Common	adequacy	criteria	for	tes-ng	approximate	full	

“coverage”	of	the	program	execu-on	or	specifica-on	
space.	

•  Measures	the	extent	to	which	a	given	verifica-on	ac-vity	
has	achieved	its	objec-ves;	approximates	adequacy	of	the	
ac-vity.	
–  Can	be	applied	to	any	verifica:on	ac:vity,	although	most	
frequently	applied	to	tes:ng.		

•  Expressed	as	a	ra-o	of	the	measured	items	executed	or	
evaluated	at	least	once	to	the	total	number	of	measured	
items;	usually	expressed	as	a	percentage.	

15	

Covering	quality	requirements	

•  How	might	we	test	the	following?	

–  Web-applica-on	performance	

–  Scalability	of	applica-on	for	millions	of	users	

–  Concurrency	in	a	mul-user	client-server	applica-on	

–  Usability	of	the	UI	

–  Security	of	the	handled	data	

•  What	are	the	coverage	criteria	we	can	apply	to	those	
quali-es?	

16	

Principle	techniques	
•  Dynamic:	

– Tes'ng:	Direct	execu-on	of	code	on	test	data	
in	a	controlled	environment.	

– Analysis:	Tools	extrac-ng	data	from	test	runs.	
•  Sta'c:	

– Inspec'on:	Human	evalua-on	of	code,	design	
documents	(specs	and	models),	modifica-ons.	

– Analysis:	Tools	reasoning	about	the	program	
without	execu-ng	it.	

17	

What	is	tes'ng?	
•  Direct	execu:on	of	code	on	test	data	in	a	controlled	
environment		

•  Principle	goals:	
–  Valida-on:	program	meets	requirements,	including	
quality	aNributes.	

–  Defect	tes-ng:	reveal	failures.	
•  Other	goals:	

–  Clarify	specifica-on:	Tes-ng	can	demonstrate		
inconsistency;	either	spec	or	program	could	be	wrong		

–  Learn	about	program:	How	does	it	behave	under	various	
condi-ons?	Feedback	to	rest	of	team	goes	beyond	bugs		

–  Verify	contract,	including	customer,	legal,	standards		

18	

"Testing shows the presence,
 not the absence of bugs

 Edsger W. Dijkstra 1969

19	

What	are	we	covering?	
•  Program/system	func-onality:	

– 	Execu-on	space.	
– Input	or	requirements	space.	
– Use	cases.	
– Defect	space.	

•  The	expected	user	experience	(usability).	
•  The	expected	performance	envelope	
(performance,	reliability,	robustness,	
integra-on).	

20	

Regression	tes'ng	(redux)	
•  What	is	“covered”	by	a	set	of	regression	tests?	
•  Why	do	we	do	regression	tes-ng?	
•  Usual	model:		

–  Introduce	regression	tests	for	bug	fixes,	etc.	
–  Compare	results	as	code	evolves	

•  Code1	+	TestSet	◊	TestResults1	
•  Code2	+	TestSet	◊	TestResults2	

–  As	code	evolves,	compare	TestResults1	with	TestResults2,	etc.	
•  Benefits:	

–  Ensure	bug	fixes	remain	in	place	and	bugs	do	not	reappear.	
–  Reduces	reliance	on	specifica-ons,	as	<TestSet,TestResults1>		
acts	as	one.	

21	

Integra'on:	object	protocols	
•  Covers the space of possible API calls, or program “conceptual

states.”	
•  Develop	test	cases	that	involve	representa-ve	sequence	of	opera-ons	on	

objects	
–  Example:	Dic-onary	structure:	Create, AddEntry*, Lookup,

ModifyEntry*, DeleteEntry, Lookup, Destroy
–  Example:	IO	Stream:	Open, Read, Read, Close, Read, Open,

Write, Read, Close, Close
–  Test	concurrent	access	from	mul-ple	threads	

•  Example:	FIFO	queue	for	events,	logging,	etc.	
 Create Put Put Get Get

 Put Get Get Put Put Get

•  Approach	
–  Develop	representa-ve	sequences	–	based	on	use	cases,	scenarios,	profiles		
–  Randomly	generate	call	sequences	

•  Also	useful	for	protocol	interac-ons	within	distributed	designs.	

22	

Prac'ces	–	integra'on	tes'ng	
•  Do	incremental	integra-on	tes-ng	

–  Test	several	modules	together	
–  S-ll	need	scaffolding	for	modules	not	under	test	

•  Avoid	“big	bang”	integra-ons	
–  Going	directly	from	unit	tests	to	whole	program	tests	
–  Likely	to	have	many	big	issues	
–  Hard	to	iden-fy	which	component	causes	each	

•  Test	interac-ons	between	modules	
–  Ul-mately	leads	to	end-to-end	system	test	

–  			

23	

What	are	we	covering?	
•  Program/system	func-onality:	

–  	Execu-on	space	(white	box!).	
–  	Input	or	requirements	space	(black	box!).		

•  The	expected	user	experience	(usability).	
–  GUI	tes'ng,	A/B	tes'ng	

•  The	expected	performance	envelope	(performance,	
reliability,	robustness,	integra-on).	
–  Security,	robustness,	fuzz,	and	infrastructure	tes-ng.	
–  Performance	and	reliability:	soak	and	stress	tes-ng.	
–  Integra-on	and	reliability:	API/protocol	tes-ng	

24	

Automa'ng	GUI/Web	Tes'ng	(from	214)	

•  First:	why	is	this	hard?	
•  Capture	and	Replay	Strategy		

–  mouse	ac-ons	
–  system	events	

•  Test	Scripts:	(click	on	buNon	
labeled	"Start"	expect	value	X	
in		field	Y)	

•  Lots	of	tools	and	frameworks		
–  e.g.	JUnit	+	Jemmy	for	Java/
Swing	

•  (Avoid	load	on	GUI	tes-ng	by	
separa-ng	model	from	GUI)	

25	

Usability:	A/B	tes'ng	
•  Controlled	randomized	experiment	with	two	
variants,	A	and	B,	which	are	the	control	and	
treatment.			

•  One	group	of	users	given	A	(current	system);	
another	random	group	presented	with	B;	
outcomes	compared.	

•  O8en	used	in	web	or	GUI-based	applica-ons,	
especially	to	test	adver-sing	or	GUI	element	
placement	or	design	decisions.	

26	

Example	

•  A	company	sends	an	adver-sing	email	to	
its	customer	database,	varying	the	
photograph	used	in	the	ad...		

27	

Example:	group	A	(99%	of	users)	

• Act	now!	
Sale	ends	
soon!	

28	

Example:	group	B	(1%)	

• Act	now!	
Sale	ends	
soon!	

29	

HOW	DOES	THIS	TECHNIQUE	
GENERALIZE,	ESPECIALLY	TECHNICALLY?	

30	

What	are	we	covering?	
•  Program/system	func-onality:	

–  	Execu-on	space	(white	box!).	
–  	Input	or	requirements	space	(black	box!).		

•  The	expected	user	experience	(usability).	
•  The	expected	performance	envelope	(performance,	
reliability,	robustness,	integra'on).	
–  Security,	robustness,	fuzz,	and	infrastructure	tes-ng.	
–  Performance	and	reliability:	soak	and	stress	tes-ng.	
–  Integra-on	and	reliability:	API/protocol	tes-ng	

31	

(214	review)	Random	tes'ng	
•  Select	inputs	independently	at	random	from	the	program’s	

input	domain:	
–  Iden-fy	the	input	domain	of	the	program.	
–  Map	random	numbers	to	that	input	domain.	
–  Select	inputs	from	the	input	domain	according	to	some	
probability	distribu-on.	

–  Determine	if	the	program	achieves	the	appropriate	outputs	on	
those	inputs.	

•  Random	tes-ng	can	provide	probabilis-c	guarantees	about	
the	likely	faul-ness	of	the	program.	
–  E.g.,	Random	tes-ng	using	~23,000	inputs	without	failure	(N	=	
23,	000)	establishes	that	the	program	will	not	fail	more	than	
one	-me	in	10,000	(F	=	104),	with	a	confidence	of	90%	(C	=	0.9).	

32	

Reliability:	Fuzz	tes'ng	
•  Nega-ve	so8ware	tes-ng	method	that	feeds	
malformed	and	unexpected	input	data	to	a	
program,	device,	or	system	with	the	purpose	of	
finding	security-related	defects,	or	any	cri-cal	
flaws	leading	to	denial	of	service,	degrada-on	
of	service,	or	other	undesired	behavior	(A.	
Takanen	et	al,	Fuzzing	for	So8ware	Security	
Tes-ng	and	Quality	Assurance,	2008)	

•  Programs	and	frameworks	that	are	used	to	
create	fuzz	tests	or	perform	fuzz	tes-ng	are	
commonly	called	fuzzers.	

33	

Types	of	faults	found	
•  Pointer/array	errors	
•  Not	checking	return	codes	
•  Invalid/out	of	boundary	data	
•  Data	corrup-on	
•  Signed	characters	
•  Race	condi-ons	
•  Undocumented	features	
•  …Possible	tradeoffs?	

34	

Fuzzing	process	

35	

Fuzzing	approaches	
•  Generic:	crude,	random	corrup-on	of	valid	data	without	any	regard	to	the	

data	format.	
•  Pajern-based:	modify	random	data	to	conform	to	par-cular	paNerns.	For	

example,	byte	values	alterna-ng	between	a	value	in	the	ASCII	range	and	
zero	to	“look	like”	Unicode.		

•  Intelligent:	uses	semi-valid	data	(that	may	pass	a	parser/sanity	checker’s	
ini-al	line	of	defense);	requires	understanding	the	underlying	data	format.		
For	example,	fuzzing	the	compression	ra-o	for	image	formats,	or	fuzz	PDF	
header	or	cross-reference	table	values.	

•  Large	Volume:	fuzz	tests	at	large	scale.	The	Microso8	Security	
Development	Lifecycle	methodology	recommends	a	minimum	of		100,000	
data	fuzzed	files.	

•  Exploit	variant:	vary	a	known	exploita-ve	input	to	take	advantage	of	the	
same	aNack	vector	with	a	different	input;	good	for	evalua-ng	the	quality	
of	a	security	patch.	

36	

Assessing	robustness	
•  Test	erroneous	inputs	and	boundary	cases	

–  Assess	consequences	of	misuse	or	other	failure	to	achieve	precondi-ons	
–  Bad	use	of	API	
–  Bad	input	data,	files	(e.g.,	corrupted),	or	communica-on	connec-ons	
–  Buffer	overflow	(security	exploit)	is	a	robustness	failure	(deliberate	interface	

misuse)	
•  Test	apparatus	needs	to	be	able	to	catch	and	recover	from	crashes	and	

other	hard	errors	(e.g.,	Ballista	tool)	
–  Some-mes	mul-ple	inputs	need	to	be	at/beyond	boundaries	

•  The	ques-on	of	responsibility	
–  Is	there	external	assurance	that	precondi-ons	will	be	respected?	
–  This	is	a	design	commitment	that	must	be	considered	explicitly.	

–  d		

public static int binsrch (int[] a, int key) {

 int low = 0;
 int high = a.length - 1;

 while (true) {

 if (low > high) return -(low+1);

 int mid = (low+high) / 2;

 if (a[mid] < key) low = mid + 1;
 else if (a[mid] > key) high = mid - 1;
 else return mid;
 }
}

Java

What	if	the	array	reference	a	is	null?	

37	

Assessing	robustness	
•  Test	erroneous	inputs	and	boundary	cases	

–  Assess	consequences	of	misuse	or	other	failure	to	achieve	precondi-ons	
–  Bad	use	of	API	
–  Bad	input	data,	files	(e.g.,	corrupted),	or	communica-on	connec-ons	
–  Buffer	overflow	(security	exploit)	is	a	robustness	failure	(deliberate	interface	

misuse)	
•  Test	apparatus	needs	to	be	able	to	catch	and	recover	from	crashes	and	

other	hard	errors	(e.g.,	Ballista	tool)	
–  Some-mes	mul-ple	inputs	need	to	be	at/beyond	boundaries	

•  The	ques-on	of	responsibility	
–  Is	there	external	assurance	that	precondi-ons	will	be	respected?	
–  This	is	a	design	commitment	that	must	be	considered	explicitly.	

–  d		

What	if	the	array	reference	a	is	null?	

a[mid]

38	

Stress	tes'ng	

•  Robustness	tes-ng	technique:	test	beyond	
the	limits	of	normal	opera-on.	

•  Can	apply	at	any	level	of	system	granularity.	
•  Stress	tests	commonly	put	a	greater	
emphasis	on	robustness,	availability,	and	
error	handling	under	a	heavy	load,	than	on	
what	would	be	considered	“correct”	
behavior	under	normal	circumstances.	

39	

Soak	tes'ng	
•  Problem:	A	system	may	behave	exactly	as	
expected	under	ar-ficially	limited	execu-on	
condi-ons.	
– E.g.,	Memory	leaks	may	take	longer	to	lead	to	
failure	(also	mo-vates	sta-c/dynamic	analysis,	but	
we’ll	talk	about	that	later).	

•  Soak	tes'ng:	tes-ng	a	system	with	a	significant	
load	over	a	significant	period	of	-me	(posi:ve).	

•  Used	to	check	reac-on	of	a	subject	under	test	
under	a	possible	simulated	environment	for	a	
given	dura-on	and	for	a	given	threshold.		

40	

41	

Completeness?	
•  Sta-s-cal	thresholds	

–  Defects	reported/repaired	
–  Rela-ve	propor-on	of	defect	kinds	
–  Predictors	on	“going	gold”	

•  Coverage	criterion	
–  E.g.,	100%	coverage	required	for	avionics	so8ware	
–  Distorts	the	so8ware	
–  Matrix:	Map	test	cases	to	requirements	use	cases	

•  Can	look	at	historical	data	
–  Within	an	organiza-on,	can	compare	across	projects;	Develop	expecta-ons	

and	predictors	
–  (More	difficult	across	organiza-ons,	due	to	difficulty	of	commensurability,	E.g.,	

telecon	switches	vs.	consumer	so8ware)	
•  Rule	of	thumb:	when	error	detec-on	rate	drops	(implies	diminishing	

returns	for	tes-ng	investment).	
•  Most	common:	Run	out	of	-me	or	money	

42	

QUICK	ASIDE	ON	BUG	FIXING	AND	THE	
TRICKY	RELATIONSHIP	BETWEEN	
DESIGN,	INTENT,	IMPLEMENTATION,	
AND	YOUR	CRANKY	USERS…	

43	

Race	condi'ons	
•  Races	can	occur	when:	

–  Mul-ple	threads	of	control	access	shared	data	
–  Data	gets	corrupted	when	internal	integrity	assump-ons	are	
violated.	

•  How	we	protect	against	races	
–  Use	“lock”	objects	that	enable	access	by	one	thread	at	a	-me	

•  E.g.,	event	dispatch		
•  A	language	feature	in	Java,	Ada95,	etc.	

–  Follow	a	thread	discipline	in	which	only	one	thread	can	access	
cri-cal	data	(Common	in	GUI	APIs	e.g.,	graphical	toolkit	redraw)	

•  Issue:	Basically	the	hardest	bugs	to	find,	fix,	and	protect	
against.			
–  Why?	

44	

java.io.BufferedInputStream

•  Buffering	wrapper	for	unbuffered	
stream	input:	read,	close,	reset,	
skip,	mark,	etc.	

•  JDK	<	1.2:	Race	condi-on	between	
methods	read	and	close:	
interleaved	execu-on	could	cause	
read	to	throw	
NullPointerException		
–  But	not	always;	concurrency	à	non-

determinis-c!	

•  JDK1.2	fixes	by	synchronize-ing	
the	methods,	preven-ng	close	
and	read	from		interleaving.	

45	(Aaron	Greenhouse)	

Reac'on	to	bug	fix	

	“This	really	sucks.		Now	just	to	convert	
to	[JDK	1.2]	I’ve	got	to	rewrite	code	that	
has	worked	since	JDK	1.02…	It’s	prejy	
obvious	that	syncing	close	would	break	
things.”	
	 	Comment	in	Bug	ID	#4225348:	

	“AJempt	to	close	while	reading	
	causes	deadlock”	

46	

Why	was	everyone	so	mad?	
•  Java	socket	programming	idiom	that	requires	the	ability	to	close	mid-read:	

“Hung”	socket	stream:	Use	separate	thread	to	close	and	interrupt		“hung”	
read	or	write	

•  In	other	words:	clients	assumed	read	and	close	can	interleave!	
–  Bug	fix	prevents	interleaving.	
–  Intent	inferred		—		is	it	correct?	

•  Design	choices		—		What	is/was	the	design	intent?	
–  Interleaving	intended		—		Fix	race	while	allowing	interleaving	
–  Interleaving	not	intended		—		Provide	alterna-ve	idiom	to	get	the	same	effect.	

•  What	should	the	Java	designers	have	done?	What’s	a	good	solu-on	to	this	
problem?		Whose	fault	was	it?		

47	

Upshot	
•  Fix	was	undone	in	JDK1.3	

– Re-enabled	socket	idiom.	
– Compromises	safety	of	the	class	by	re-enabling	the	race	
condi-on	

•  BufferedInputStream	was	fixed	to	both	prevent	the	race	and	
allow	socket	idiom	for	JDK	1.5	

•  Issue	#1	–	Race	condi-on	in	deployed	produc-on	library	code	
•  Issue	#2	–	Lack	of	documenta-on	of	design	intent	with	

respect	to	concurrency.	
•  Moral:	bugs	are	hard,	and	correctness	depends	on	context	

and	user	expecta'ons.	

48	

Learning	goals	
•  Conceive	of	tes-ng	as	an	ac-vity	designed	to	achieve	

coverage	along	a	number	of	(non-structural!)	dimensions.	
•  Enumerate	tes-ng	strategies	to	help	evaluate	the	following	

quality	aNributes:	usability,	reliability,	security,	robustness	
(both	general	and	architectural),	performance,	integra-on.	

•  Give	tradeoffs	and	iden-fy	when	each	of	those	techniques	
might	be	useful.	

•  Integrate	tes-ng	into	your	project’s	lifecycle	and	prac-ces.	
•  Outline	a	test	plan.	

49	

How	can	so,ware	fail?	
Faults	of	omission	
•  Specified	behavior	that	for	

some	reason	is	not	present	
in	the	so8ware,	e.g.	that	
the	programmer	forgot	to	
include.	

•  22—54%	of	so8ware	faults	
(B.	Marick,	2000).	

Faults	of	commission	
•  An	unintended	behavior,	

that	is,	behavior	that	is	not	
not	part	of	specifica-on.	
i.e.,	implemen-ng	the	
wrong	thing.	

50	

Correc-ng	(isola-ng	and	fixing)	a	fault	of	commission	requires	
more	effort	than	a	fault	of	omission	(V.	Basili,	1994).		

51	

•  Two	modes:	high-power	
beam,	low	power	beam.	

•  High	power	beam	should	only	
ac-vate	with	beam	spreader	
in	place.	

•  Previous	versions	of	Therac	
had	hardware	interlocks	to	
prevent	high	beam	without	
beam	spreader;	Therac	25	
used	so8ware	interlocks.	

•  Race	condi-on	+	integer	
overflow:	if	operator	provided	
manual	input	exactly	when	a	
one-byte	counter	overflowed,	
the	interlock	failed.	

•  Result:	high	power	beam	
without	spreader,	radia-on	
burns	and	sickness.		

52	

•  A	system	is	a	series	of	externally	observable	states	(remember	
requirements?).	

•  Correct	service	is	delivered	when	the	the	system	func'on	is	
implemented,	as	observed	externally.	

•  Things	go	wrong	when	the	system	enters	into	an	externally	visible	
erroneous	state:	
–  Hazard:	the	bad	thing	that	the	erroneous	state	leads	to	(ex:	a	pa-ent	dies	

from	radia-on		overdose)		
–  Failure:	the	delivered	service	deviates	from	correct	service;	the	system	enters	

one	or	more	erroneous	states	(the	machine,	Therac-25,	believes	that	the	data	
it	has	is	valid	when	it’s	not	and	shoots	a	beam	of	radia-on)	

–  Error:	the	dynamic	devia-on	of	the	system	from	the	correct	to	an	incorrect	
external	state	(resul-ng	in	a	failure)	(errorCounter	overflows	and	goes	to	0)	

–  Fault:	the	sta-c	problem	in	the	code,	hypothesized	cause	of	an	error	(when	
data	is	invalid,	incremen-ng	a	variable	called	“error	counter”	instead	of	
se}ng	it	to	1).	

Terminology	

Faults	in	dead	code	do	not	cause	errors.	

53	

An	error	may	not	always	result	in	a	failure	
(The	Therac-20	had	the	same	fault,	and	the	
same	error,	but	there	was	a	hardware	
override	that	prevented	the	failure).		

Mul-ple	faults	may	cause	an	error	together.	

Basic	defini'ons	
•  Test	case:	given	a	program,	a	configura-on	
(including	environment),	a	set	of	inputs	to	that	
program,	a	set	of	expected	outputs,	and	an	
oracle	comparator	that	determines	whether	the	
actual	output	of	the	program	matches	the	
expected	output.	
– Note	the	difference	between	a	test	input	and	a	test	
case!	

•  Test	suite:	a	collec-on	of	test	cases.	
•  Oracle	problem:	figuring	out	what	the	output	of	
the	program	should	be	for	a	given	input.	

54	

Oracle	comparator:	why	is	this	
hard?	
•  For	simple	programs,	oracle	comparator	can	
just	be,	for	example,	diff.	

•  For	more	complicated	programs,	an	exact	
match	may	not	be	necessary.		

•  Example:	a	webserver	where	the	exact	
response	-me	varies	with	some	random	range.		
If	web	pages	are	returned	within	5	milliseconds,	
we	say	everything	is	fine.	
– The	oracle	comparator	for	a	test	of	the	web	server’s	
performance	needs	to	do	more	than	just	check	the	
output	with	diff!	

55	

Differen'al	Tes'ng	
•  When	mul-ple	implementa-ons	are	available,	search	for	

differences	between	them	(hand-selected	or	random	
inputs).	
–  Also	works	for	mul-ple	"equivalent"	configura-ons	

•  Example	Csmith:	
•  n	C	Compiler	and	the	same	compilers	at	different	op-miza-on	
levels.	

•  Generate	random	short	code	fragments	
•  Compile	code	with	each	compiler,		
execute	and	compare	output	

•  On	output	differences	the		
"majority"	wins	

•  Found	325	previous	unknown		
compiler	bugs	

Yang	et	al.	Finding	and	Understanding	Bugs	in	C	Compilers.	In	Proc.	PLDI	2011	
56	

Old:	Verifica'on	at	Different	Levels	

Class	A	

method	mA1()	

method	mA2()	

Class	B	

method	mB1()	

method	mB2()	

main	Class	P	
■  Acceptance	tes-ng:	Is	

the	so8ware	acceptable	
to	the	user?	

■  Integra-on	tes-ng:	Test	
how	modules	interact	
with	each	other	

■  System	tes-ng:	Test	the	
overall	func-onality	of	
the	system	

■  Module	tes-ng:	Test	
each	class,	file,	module	
or	component	

■  Unit	tes-ng:	Test	each	
unit	(method)	
individually	This	view	obscures	underlying	similari'es	
57	

Functional Correctness

•  Specification

•  Formal Verification

•  Unit Testing

•  Type Checking

•  Statistic Analysis

•  Requirements definition

•  Inspections, Reviews

•  Integration/System/Acceptance/Regression/GUI/Blackbox/
Model-Based/Random Testing

•  Change/Release Management

15-214	
15-313	

58	

Class	Integra'on	and	Test	Order	
•  Old	programs	tended	to	be	very	hierarchical.		Integra-on	order	

was	easy.	
–  Test	the	“leaves”	of	the	call	tree,	integrate	up	to	the	root	
–  Goal	is	to	minimize	the	number	of		stubs	needed	

•  OO	programs	make	this	more	complicated	
–  Lots	of	kinds	of	dependencies	(call,	inheritance,	use,	aggrega-on)	
–  Circular	dependencies	:	A	inherits	from	B,	B	uses	C,	C	aggregates	A	

•  CITO	:	Which	order	should	we	integrate	and	test	?	
–  Must	“break	cycles”	
–  Common	goal	:	least	stubbing	

•  Designs	o8en	have	few	cycles,	but	cycles	creep	in	during	
implementa-on	

59	

Prac'ces	–	tes'ng	throughout	the	
lifecyle		
•  Favor	unit	tes-ng	over	integra-on	and	system	tes-ng	

–  Top-down	tes-ng	
•  Test	full	system	with	stubs	(for	undeveloped	code).	
•  Tests	design	(structural	architecture),	when	it	exists.	

–  BoNom-up	tes-ng	
•  Units	->	Integrated	modules	->	system	

•  Unit	tests	find	defects	earlier	(less	cost	and	less	risk)	
–  During	design,	make	API	specifica-ons	specific	

•  Missing	or	inconsistent	interface	(API)	specifica-ons	
•  Missing	representa-on	invariants	for	key	data	structures	
•  What	are	the	unstated	assump-ons?	

–  Null	refs	ok?	Integrity	check	responsibility?	Thread	crea-on	ok?	

•  Over-reliance	on	system	tes-ng	can	be	risky	
–  Possibility	for	finger	poin-ng	within	the	team	
–  Difficulty	of	mapping	issues	back	to	responsible	developers	
–  Root	cause	analysis	becomes	blame	analysis	

60	

Prac'ces	–	repor'ng	defects	
•  Reproducible	defects	

–  Easier	to	find	and	fix	
–  Easier	to	validate		
–  Built-in	regression	test	
–  Increased	confidence	

•  Simple	and	general	
–  More	value	doing	the	fix	
–  Helps	root-cause	analysis	

•  Non-antagonis-c	
–  State	the	problem	
–  Don't	blame		

61	

Prac'ces	–	track	defects	
•  Issue:	Bug,	feature	request,	or	query	

–  May	not	know	which	of	these	un-l	analysis	is	done,		so	
track	in	the	same	database	(Issuezilla)	

•  Provides	a	basis	for	measurement	
–  Defects	reported:	which	lifecycle	phase	
–  Defects	repaired:	-me	lag,	difficulty	
–  Defect	categoriza-on	
–  Root	cause	analysis	(more	difficult!)	

•  Provides	a	basis	for	division	of	effort	
–  Track	diagnosis	and	repair	
–  Assign	roles,	track	team	involvement	

•  Facilitates	communica-on	
–  Organized	record	for	each	issue	
–  Ensures	problems	are	not	forgoNen	

•  Provides	some	accountability	
–  Can	iden-fy	and	fix	problems	in	process	
–  Not	enough	detail	in	test	reports	
–  Not	rapid	enough	response	to	bug	reports	

•  Should	not	be	used	for	HR	evalua-on!	

62	

Prac'ces	–social	issues	
•  There	are	differences	

between	developer	and	tester	
culture.	Acknowledge	that	
testers	o8en	deliver	bad	
news.	

•  Avoid	using	defects	in	
performance	evalua-ons	
–  Is	the	defect	real?	
–  Bad	will	within	team	

•  Work	hard	to	detect	defects	
before	integra-on	tes-ng	
–  Easier	to	narrow	scope	and		

responsibility	
–  Less	adversarial		

•  Issues	vs.	defects	

63	

Prac'ces	–	use	regression	tests	
•  Goal:	catch	new	bugs	introduced	by	code	changes	

–  Check	to	ensure	fixed	bugs	stay	fixed	
–  New	bug	fixes	o8en	introduce	new	issues/bugs	
–  Incrementally	add	tests	for	new	func-onality	

•  Which	new	tests	to	run	when	adding	new	func-onality?	

		

64	

When	a	Regression	Test	Fails	
•  Regression	tests	are	evaluated	based	on	whether	the	
result	on	the	new	program	P	is	equivalent	to	the	
result	on	the	previous	version	P-1	
–  If	they	differ,	the	test	is	considered	to	have	failed	

•  Regression	test	failures	represent	three	possibili-es	:	
–  The	so8ware	has	a	fault	–	Must	fix	the	fix	
–  The	test	values	are	no	longer	valid	on	the	new	version	–	
Must	delete	or	modify	the	test	

–  The	expected	output	is	no	longer	valid	–	Must	update	the	
test	

•  Some-mes	hard	to	decide	which	!!	

65	

Evolving	Tests	Over	Time	
•  Changes	to	external	interfaces	can	some-mes	cause	
all	tests	to	fail	
– Modern	capture	/	replay	tools	will	not	be	fooled	by	trivial	
changes	like	color,	format,	and	placement	

–  Automated	scripts	can	be	changed	automa-cally	via	global	
changes	in	an	editor	or	by	another	script	

•  Adding	one	test	does	not	cost	much	–	but	over	-me	
the	cost	of	these	small	addi-ons	start	to	pile	up	

66	

Prac'ces	-	Upda'ng	Test	Suites	
•  Which	tests	to	keep	can	be	based	on	several	policies	

–  Add	a	new	test	for	every	problem	report	
–  Ensure	that	a	coverage	criterion	is	always	sa-sfied	

•  Some-mes	harder	to	choose	tests	to	remove	
–  Remove	tests	that	do	not	contribute	to	sa-sfying	coverage	
–  Remove	tests	that	have	never	found	a	fault	(risky	!)	
–  Remove	tests	that	have	found	the	same	fault	as	other	tests	
(also	risky!)	

–  (no	one	ever	got	fired	for	leaving	a	test	suite	in…)	
•  Reordering	strategies	

–  If	a	suite	of	N	tests	sa-sfies	a	coverage	criterion,	the	tests	can	
o8en	be	reordered	so	that	the	first	N-x	tests	sa-sfies	the	
criterion	–	so	the	remaining	tests	can	be	removed	

67	

Prac'ces:	Root	cause	analysis	
•  Iden-fy	the	“root	causes”	of	frequent	defect	types,	

loca-ons	
–  Requirements	and	specifica-ons?	
–  Architecture?		Design?		Coding	style?		Inspec-on?			

•  Try	to	find	all	the	paths	to	a	problem	
–  If	one	path	is	common,	defect	is	higher	priority	
–  Each	path	provides	more	info	on	likely	cause	

•  Try	to	find	related	bugs	
–  Helps	iden-fy	underlying	root	cause	of	the	defect	
–  Can	use	to	get	simpler	path	to	problem	
–  This	can	mean	easier	to	fix	

•  Iden-fy	the	most	serious	consequences	of	a	defect	

68	

Test	Process	Maturity	Levels	
•  Level	0:	There’s	no	difference	between	tes-ng	and	
debugging	

•  Level	1:	The	purpose	of	tes-ng	is	to	show	
correctness	

•  Level	2:	The	purpose	of	tes-ng	is	to	show	that	the	
so8ware	doesn’t	work	

•  Level	3:	The	purpose	of	tes-ng	is	not	to	prove	
anything	specific,	but	to	reduce	the	risk	of	using	the	
so8ware	

•  Level	4:	Tes-ng	is	a	mental	discipline	that	helps	all	IT	
professionals	develop	higher	quality	so8ware.	

69	

Test	plans	
•  What	quality	techniques	are	
used	and	for	what	purpose.		
In	terms	of	tes-ng:	
– What	we	will	test	
–  How	we	will	test	
– When	we	will	do	so,	when	we	
will	stop.	

– Who	will	write	the	tests,	who	
will	run	them.	

– Why	we	know	it’s	a	good	set	
of	tests.	

70	

ANSI/IEEE	829-1983	

•  Test	plan:	“A	document	describing	the	scope,	
approach,	resources,	and	schedule	of	
intended	tes-ng	ac-vi-es.	It	iden-fies	test	
items,	the	features	to	be	tested,	the	tes-ng	
tasks,	who	will	do	each	task,	and	any	risks	
requiring	con-ngency	planning.”	

• Emphasizes	documenta-on,	not	actual	
tes-ng:	a	well	documented	vacuum.	

71	

Why	Produce	a	Plan?	
•  Ensure	the	test	plan	addresses	the	needs	of	stakeholders	
•  Customer:	may	be	a	required	product,	for	opera-ons	and	support	

–  E.g.,	Government	systems	integra-on,	safety-cri-cal	cer-fica-on:	avionics,	health	devices,	etc.	
•  A	separate	test	organiza-on	may	implement	part	of	the	plan	

–  “IV&V”	–	Independent	verifica-on	and	valida-on	
•  May	benefit	development	team		

–  Set	priori-es:	Use	planning	process	to	iden-fy	areas	of	hazard,	risk,	cost	
•  Addi-onal	benefits	–	the	plan	is	a	team	product	

–  Test	quality	
•  Improve	coverage	via	list	of	features	and	quality	aNributes	
•  Analysis	of	program	(e.g.	boundary	values)	
•  Avoid	repe--on	and	check	completeness	

–  Communica-on	
•  Get	feedback	on	strategy	
•  Agree	on	cost,	quality	with	management	

–  Organiza-on	
•  Division	of	labor		
•  Measurement	of	progress	

72	

Managing	Test	Ar'facts	
•  Don’t	fail	because	of	lack	of	organiza-on	
•  Keep	track	of	:	

– Test	design	documents	
– Tests	
– Test	results	
– Automated	support	

•  Use	configura-on	control	
•  Keep	track	of	source	of	tests	–	when	the	
source	changes,	the	tests	must	also	change	

73	

Chaos	monkey/Simian	army	
•  A	Ne�lix	infrastructure	tes-ng	system.	
•  “Malicious”	programs	randomly	trample	on	
components,	network,	datacenters,	AWS	instances…	
–  Chaos	monkey	was	the	first	–	disables	produc-on	
instances	at	random.	

–  Other	monkeys	include	Latency	Monkey,	Doctor	
Monkey,	Conformity	Monkey,	etc…	Fuzz	tes-ng	at	the	
infrastructure	level.	

–  Force	failure	of	components	to	make	sure	that	the	
system	architecture	is	resilient	to	unplanned/random	
outages.	

•  Ne�lix	has	open-sourced	their	chaos	monkey	code.	

74	

QA	throughout	lifecycle	

75	

