Foundations of
Software Engineering

Lecture 5 — Requirements (1/3)
Claire Le Goues

[]
institute for
1 I S SOFTWARE
RESEARCH

Administrivia

e Canvas OK?
—Vs Piazza?

. . .
institute For
2 I S SOFTWARE
RESEARCH

Learning goals

* Explain with examples the importance of
requirements in software engineering.

* Explain how and why requirements articulate
the relationship between a desired system and
Its environment.

e Distinguish between and give examples of:
functional and non-functional requirements;
informal statements and verifiable
requirements.

* |dentify system stakeholders and develop
approaches on how to interview them.

institute for
3 I S SOFTWARE
RESEARCH

Healthcare.gov

CODE RED_

We have a lot of visitors on the site right now.

BY STEVEN BRILL Image: Healthcare.gov

HealthCare.gov Get Insurance Login

Individuals & Families Small Businesses All Topics v SEARCH

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later.

Please include the reference ID below if you wish to contact us at 1-800-318-2596

Error from: https%3A//www.healthcare.gov/marketplace/global/en_US/registration%
Reference ID: 0.cdc7¢117.1380633115.2739dce8

4 lﬂl SOFTWARE
RESEARCH

Fred Brooks, on requirements.

* The hardest single part of building a software
system is deciding precisely what to build.

* No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements ...

* No other part of the work so cripples the
resulting system if done wrong.

* No other part is as difficult to rectify later.
— Fred Brooks

. . .
institute For
5 I S SOFTWARE
RESEARCH

A problem that stands the test of

time...

A 1994 survey of 8000 projects at 350 companies found: 31% of
projects canceled before completed; 9% of projects delivered on
time, within budget in large companies, 16% in small companies.

— Similar results reported since.

Causes:
1. Incomplete requirements (13.1%)
. Lack of user involvement (12.4%)
. Lack of resources (10.6%)
. Unrealistic expectations (9.9%)
. Lack of executive support (9.3%)
Changing requirements and specifications (8.7%)
. Lack of planning (8.1%)
. System no longer needed (7.5%) .

0NV~ WN

institute for
6 I S SOFTWARE
RESEARCH

Overly simplified definition.

Requirements say what the system
will do (and not how it will do it).

WHY IS THIS HARD?

Communication problem

Goal: figure out
what should be w ’ Q
built. ' '

Express those
ideas so that the
correct thing is
built.

Four Kinds of Denial

e Denial by prior knowledge — we have done this
before, so we know what is required

e Denial by hacking — our fascination with machines
dominates our focus on the how

* Denial by abstraction — we pursue elegant models
which obscure, remove or downplay the real world

* Denial by vagueness — imply (vaguely) that machine
descriptions are actually those of the world

Michael Jackson, “The World and the Machine,” International Conference on Software Engineering,
pp. 283-292, 1995. ©

institute for
I S SOFTWARE
RESEARCH

Less simplified definition.

e Stories: Scenarios and Use Cases

“After the customer submits the purchase information
and the payment has been received, the order is
fulfilled and shipped to the customer’s shipping
address.”

* Optative statements

The system shall notify clients about their shipping
status

* Domain Properties and Assumptions
Every product has a unique product code
Payments will be received after authorization

. . .
institute For
11 I S SOFTWARE
RESEARCH

What is requirements engineering?

 Knowledge acquisition — how to capture
relevant detail about a system?

—Is the knowledge complete and consistent?

e Knowledge representation — once captured,
how do we express it most effectively?

— Express it for whom?
—Is it received consistently by different people?

* You may sometimes see a distinction
between the requirements definition and the
requirements specification.

©
institute for
12 I S SOFTWARE
RESEARCH

Functional Requirements

 What the machine should do
— Input
— Output
— Interface
— Response to events
* Criteria
— Completeness: All requirements are documented
— Consistency: No conflicts between requirements
— Precision: No ambiguity in requirements

institute for
13 I S SOFTWARE
RESEARCH

Quality/Non-functional
requirements

e Specify not the functionality of the
system, but the quality with which it
delivers that functionality.

e Can be more critical than functional
requirements

— Can work around missing functionality
— Low-quality system may be unusable

* Examples?

©
institute for
14 I S SOFTWARE
RESEARCH

Here’s the thing...

* Who is going to ask for a slow, inefficient,
unmaintainable system?

* A better way to think about quality
requirements is as design criteria to help
choose between alternative
implementations.

* Question becomes: to what extent must a
product satisfy these requirements to be
acceptable?

©
institute for
15 I S SOFTWARE
RESEARCH

Functional requirements and
implementation bias

Requirements say what the system
will do (and not how it will do it).

©
institute for
16 I S SOFTWARE
RESEARCH

Environment and the Machine

Requirements
_ Specifications
Domain Knowledge

Environmental Domain Machine Domain

* The pilot shall decrease airspeed < The plane shall lower the wing
and lower the landing gear prior flaps to 30° for landing
to decision height

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997. ©

institute for

RESEARCH

institute for
r SOFTWARE
RESEARCH

Avoiding implementation bias

 Requirements describe what is observable at the
environment-machine interface.

* Indicative mood describes the environment (as-is)

* Optative mood to describe the environment with the
machine (to-be).

Actions of an ATM customer: Actions of an ATM machine:
withdrawal-request(a, m) withdrawal-payout(a, m)
Properties of the environment: Properties of the machine:
balance(b, p) expected-balance(b, p)

What other models of the world do machines maintain?

institute for
19 I S SOFTWARE
RESEARCH

Domain knowledge

 Refinement is the act of translating requirements
into specifications (bridging the gap!)

 Requirements: desired behavior (effect on the
environment) to be realized by the proposed system.

* Assumptions or domain knowledge: existing
behavior that is unchanged by the proposed system.

— Conditions under which the system is guaranteed to
operate correctly.

— How the environment will behave in response to the
system’s outputs.

©

institute for

20 I S SOFTWARE
RESEARCH

Assumptions?

ssumptions?

institute for
SOFTWARE
RESEARCH

Grounding, or: Reality

Able: Two important basic types are student

and course. There is also a binary relation

enrolled.

Baker: Do only students enroll in courses? |

don’t think that’s true.

Able: But that’s what | mean by student!
Desighation: the meaning of a primitive.
— Will be explained informally, but should still be

precise, recorded, and maintained.

23

institute for
SOFTWARE
RESEARCH

Designhations ground formal
specifications.

e Specifications are logical expressions of
shared actions at the interface of the

machine
Y s V c(enrolled(s, c) = student(s) A course(c))

e This includes linking domain properties
and agent actions as pre- and post-
conditions

. . .
institute For

I S SOFTWARE
RESEARCH

Some gaps must remain...

 Unshared actions cannot be accurately
expressed in the machine

— People can jump over gates (enter without
unlocking)

— People can steal or misplace inventory

* Future requirements are also not directly
implementable

— Phone system: “After all digits have been
dialed, do ring-back, busy-tone or error-tone.”

— ...how do you know the user is done dialing?

©
institute for
25 I S SOFTWARE
RESEARCH

Lufthansa Flight 2904 - 1

* The Airbus A320-200 airplane
has a software-based braking
system that consists of:

— Ground spoilers (wing
plates extended to reduce
lift)

— Reverse thrusters

— Wheel brakes on the main
landing gear

 To engage the braking system,
the wheels of the plane must

be on the ground.
Is this a shared or an unshared

action/condition?

institute for
26 I S SOFTWARE
RESEARCH

Lufthansa Flight 2904 - 2

There are two “on ground” conditions:
1. Either shock absorber bears a load of 6300 kgs
2. Both wheels turn at 72 knots (83 mph) or faster

* Ground spoilers activate for conditions 1 or 2

e Reverse thrust activates for condition 1 on both main
landing gears

 Wheel brake activation depends upon the rotation
gain and condition 2

©
institute for
27 I S SOFTWARE
RESEARCH

Expressing quality requirements

* Requirements serve as contracts: they
should be testable/falsifiable.

* Informal goal: a general intention, such as
ease of use.

— May still be helpful to developers as they
convey the intentions of the system users.

* Verifiable non-functional requirement: A
statement using some measure that can be
objectively tested.

©

institute for

28 I S SOFTWARE
RESEARCH

Examples

* Informal goal: “the system should be easy to
use by experienced controllers, and should be
organized such that user errors are minimized.”

e Verifiable non-functional requirement:
“Experienced controllers shall be able to use all
the system functions after a total of two hours
training. After this training, the average number
of errors made by experienced users shall not
exceed two per day, on average.”

©
institute for
29 I S SOFTWARE
RESEARCH

Web video scenario

* You work for a custom
software developer as a
requirements engineer.

 (Client’s stated
requirement: “We want
to sell videos on the
web.”

* You must now engage the
client to elaborate the
stated requirement

— How will you proceed?

— How shall we express what
we learn?

institute for
30 I S SOFTWARE
RESEARCH

Requirements metrics

Property Measwe

31 lﬂl SOFTWARE
RESEARCH

Web video scenario

* You work for a custom
software developer as a
requirements engineer.

e C(Client’s stated requirement:
“We want to sell videos on
the web.”

* You must now engage the
client to elaborate the
stated requirement

— How will you proceed?
— How shall we express what
we learn?

e Step 1: talk to the relevant
stakeholders

institute for
32 I S SOFTWARE
RESEARCH

Question

* Who is the system for?

* Stakeholders:
—End users
— System administrators
—Engineers maintaining the system
— Business managers
—...who else?

©
institute for
33 I S SOFTWARE
RESEARCH

Stakeholder

* Any person or group who will be affected
by the system, directly or indirectly.

* Stakeholders may disagree.

* Requirements process should trigger
negotiation to resolve conflicts.

—(We will return to conflicts).

©
institute for
34 I S SOFTWARE
RESEARCH

Defining actors/agents

* An actor is an entity that interacts with
the system for the purpose of completing
an event [Jacobson, 1992].

—Not as broad as stakeholders.

* Actors can be a user, an organization, a
device, or an external system.

D SO

Sales Marketing GPS Inventory,
Specialist Receiver Sgstem - SOtFtTVtVARE

RESEARCH

Stakeholder analysis: criteria for
identifying relevant stakeholders

Relevant positions in the organization

Effective role in making decisions about the
system

Level of domain expertise
Exposure to perceived problems
Influence in system acceptance

Personal objectives and conflicts of interest

©
institute for
36 I S SOFTWARE
RESEARCH

CHALLENGES?

°
institute for
37 I S SOFTWARE
RESEARCH

Stakeholders, a NASA example

Vo Verical
E— Egual
¢ — Cross deparymant
Q- Outside
N — Nerbuman
G — Goal of varanos control
A — ABend 1o emvrcerment
I — inlerporsonal
L} m] development e o "
T — Trning suppon - — ¢ "
M Mechanized support \hﬁ w ‘\H. Scwme
_ Descovery ALEY VLEAL J -
Program -
\hng_c\\. {
s ViaAL - YiGAL |
p— e bl ‘ ﬁcm Tm
“§LmAaln -
/&i-ile s { e Andy F. Tom B Coughls ‘ o - S
[C s Cheng " > Project Manager [VIGAL .,
\M Pm,eu Scientist \ '0_ TRE Gold %,
’! R . Pay o .
\\) AL \ “"w“ _."\tuA
WIGAL \ -—<" "
H e)
. Lead Engineers

) \V!..A

T Missson Y
IT VGA Operatson Lead I/ “*\

| APL | Sub-system 7 I
QY \Lmibmien
LB — From HSI NAP 11893

institute for
L&(SOFTWARE
FIGURE 6-3 Role network for National Acronautics and Space Administration (NASA's) Near Fgr- dsRendezvous

T el

Interviews

Goal: understand functional
requirements, identify and learn
domain-specific concepts, prioritize
quality attributes.

Effective interviewers:

— Begin concretely with specific questions,
proposals, or working through a prototype.

— Are open-minded and willing to explore
additional issues that arise naturally, but
stay focused on the system.

Stories, scenarios, use cases (informal),
hypotheticals, examples.

Understand/contrast with current
system (if applicable).

institute for
39 I S SOFTWARE
RESEARCH

Interview benefits vs drawbacks

e Strengths
— What stakeholders do
— How they interact with the system
— Challenges with current systems
* Weaknesses
— Capturing domain knowledge
— Familiarity
— Technical subtlety
— Organizational issues, such as politics
— Completeness

©
institute for
40 I S SOFTWARE
RESEARCH

* Yai: non-profit; most employees in social

work field

* Currently sells training
companies on issues re
individuals with develo
disabilities.

DVDs for
ated to

omental

* “Do you know how we can sell course

materials online?”

©
institute for
a1 I S SOFTWARE
RESEARCH

* Humans: better at recognizing whether a
solution is correct than solving the problem
from a blank page.

* Mock-ups/prototypes help explore
uncertainty in the requirements.

— Validate that we have the right requirements.

— Elicit requirements at the “borders” of the
system.

— Assert feasibility of solution space.
— Get feedback on a candidate solution.
— Also good for questions about Ul.

* “I'lll know it when | see it” <scary.

©
institute for
42 I S SOFTWARE
RESEARCH

High- vs low- fidelity mockups

20,000

Jan 1

Daily Visits

My Dashboard

Jan15

Ja

Traffic Types

Time on Site by Country

Avg.

, J0% feed
Country/Territory Visits Time on ©
Site 90% organic
United States 67445 00.01:54 [p05% referral
.85% direct
United Kingdom 18,948 00:01:37
3 5% email
India 8,882 00:00:58
Canada 6,371 00:01:02
Germany 5,845 00:00:32
France 5,243 00:0038
. . .
Institute For
43 I S SOFTWARE
RESEARCH

Rapid prototyping

* Throw-away: developed to learn more
about a problem, not intended for actual
use.

e Evolutionary: intended to be
incorporated into the final product.

o .
Institute ror

I S r SOFTWARE
RESEARCH

Storyboarding and scenarios

o
institute for
45 SOFTWARE
RESEARCH

Story

* Who the players are

* What happens to them

 How it happens through specific episode
 Why this happens

* What if such and such an event occurs
 What could go wrong as a consequence

©
institute for
46 I S SOFTWARE
RESEARCH

Storyboards illustrate scenarios: a typical sequence of
interaction among system components that meets an
implicit objective.

— Storyboards explicitly cover at least who, what, and how.
Different types:

— Positive vs negative (should and should not happen)

— Normal vs abnormal
As part of elicitation:

— Learn about current or proposed system by walking through
real-life or hypothetical sequences

— Can ask specific questions

— Elicit the underlying objectives, generalize into models of
desired behaviors.

— ldentify and resolve conflicts
Pluses: Concrete, support narrative description
Minuses: inherently partial.

institute for
47 I S SOFTWARE
RESEARCH

Sky Crane Detail
_ Altitude: ~66 feet (~20 meters)
Cruise Stage Separation < Velocity: ~1.7 mph (~0.75 meter/sec)
~ Time: Entry + ~400 sec

Cruise Balance Devices Separation

, =
& .

Entry Interface Altitude: 0
Velocity: ~1.7 mph
(~0.75 meter/sec)
Time: Entry + ~416 sec

&
(|

Heat Shield
E Separation
‘\ Peak Heating itude: ~5 Ir
a4 Peak
Deceleration

~ (~80 meters/sec)
Time: Entry + ~364 sec

Altitude: ~7 miles (~11 km)
Velocity: ~900 mph

(~405 meters/sec)

Time: Entry + ~254 sec

SOFTWARE
RESEARCH

Scenarios

Test cases
e Questions to consider
— What tasks does the actor perform?

— What information is accessed and modified, and where does it
come from?

— What are obligations on the actor to inform the system?
— What are obligations of the system to inform the actor?
* Heuristics

— Vertical — one worked-out specific scenario, to understand how
to engage the user/stakeholder

— Horizontal — multiple, less-detailed scenarios, to assess scope
and context

— Mock-ups
— Alternatives
— Can be passive or active.

institute for
49 I S SOFTWARE
RESEARCH

Where do we find scenarios?

e Reflective
— Elicit scenarios from stakeholders

— Analyze reports and case studies of similar
systems

* Prospective — Instantiate the use case

Don’t only focus on the positive
—include failures, too

©
institute for
50 I S SOFTWARE
RESEARCH

Use cases

 We talk about many types, at different granularities:
— Full use case model (whole-system, higher-level)

— “Agile” use case: small, concrete pieces of system
functionality to be implemented (sometimes conflated
with “user stories”)

e Used at multiple stages:

— Requirements elicitation (illustrated, validate,
requirements; highlight conflicts, prioritize
requirements, etc).

— Requirements documentation.
— Concrete design: UML diagrames.

institute for
51 I S SOFTWARE
RESEARCH

Use cases

e Text stories of an actor using a system to
meet goals.

* Use cases are not diagrams, they are
text.

* Primarily serve as functional
requirements (by contrast/in conjunction
with “the system shall” statements.)

©
institute for
52 I S SOFTWARE
RESEARCH

Learning goals

* Explain with examples the importance of
requirements in software engineering.

* Explain how and why requirements articulate
the relationship between a desired system and
Its environment.

e Distinguish between and give examples of:
functional and non-functional requirements;
informal statements and verifiable
requirements.

* |dentify system stakeholders and develop
approaches on how to interview them.

institute for
53 I S SOFTWARE
RESEARCH

