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Administrivia	

•  Canvas	OK?	
– Vs	Piazza?	
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Learning	goals	
•  Explain	with	examples	the	importance	of	
requirements	in	soHware	engineering.			

•  Explain	how	and	why	requirements	arMculate	
the	relaMonship	between	a	desired	system	and	
its	environment.	

•  DisMnguish	between	and	give	examples	of:	
funcMonal	and	non-funcMonal	requirements;	
informal	statements	and	verifiable	
requirements.	

•  IdenMfy	system	stakeholders	and	develop	
approaches	on	how	to	interview	them.	
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Healthcare.gov	
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Fred	Brooks,	on	requirements.	
•  The	hardest	single	part	of	building	a	so3ware	
system	is	deciding	precisely	what	to	build.			

•  No	other	part	of	the	conceptual	work	is	as	
difficult	as	establishing	the	detailed	technical	
requirements	...		

•  No	other	part	of	the	work	so	cripples	the	
resul=ng	system	if	done	wrong.			

•  No	other	part	is	as	difficult	to	rec=fy	later.	
	 	—	Fred	Brooks	
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A	problem	that	stands	the	test	of	
'me…	
A	1994	survey	of	8000	projects	at	350	companies	found:	31%	of	
projects	canceled	before	completed;	9%	of	projects	delivered	on	
Mme,	within	budget	in	large	companies,	16%	in	small	companies.		

–  Similar	results	reported	since.	
Causes:		

1. Incomplete	requirements	(13.1%)		
2. Lack	of	user	involvement	(12.4%)	
3. Lack	of	resources	(10.6%)	
4. UnrealisMc	expectaMons	(9.9%)		
5. Lack	of	execuMve	support	(9.3%)	
6. Changing	requirements	and	specificaMons	(8.7%)	
7. Lack	of	planning	(8.1%)	
8. System	no	longer	needed	(7.5%)	.	
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Overly	simplified	defini'on.	

Requirements	say	what	the	system	
will	do	(and	not	how	it	will	do	it).	
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WHY	IS	THIS	HARD?	
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Communica'on	problem	

Goal:	figure	out	
what	should	be	
built.	
Express	those	
ideas	so	that	the	
correct	thing	is	
built.	
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Four	Kinds	of	Denial	
•  Denial	by	prior	knowledge	–	we	have	done	this	
before,	so	we	know	what	is	required	

•  Denial	by	hacking	–	our	fascinaMon	with	machines	
dominates	our	focus	on	the	how	

•  Denial	by	abstracMon	–	we	pursue	elegant	models	
which	obscure,	remove	or	downplay	the	real	world	

•  Denial	by	vagueness	–	imply	(vaguely)	that	machine	
descripMons	are	actually	those	of	the	world	

Michael	Jackson,	“The	World	and	the	Machine,”	Interna=onal	Conference	on	So3ware	Engineering,		
pp.	283-292,	1995.	



Less	simplified	defini'on.	
•  Stories:	Scenarios	and	Use	Cases	

“AHer	the	customer	submits	the	purchase	informaMon	
and	the	payment	has	been	received,	the	order	is	
fulfilled	and	shipped	to	the	customer’s	shipping	
address.”	

•  OptaMve	statements	
The	system	shall	noMfy	clients	about	their	shipping	
status	

•  Domain	ProperMes	and	AssumpMons	
Every	product	has	a	unique	product	code	
Payments	will	be	received	aHer	authorizaMon	
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What	is	requirements	engineering?	

•  Knowledge	acquisi'on	–	how	to	capture	
relevant	detail	about	a	system?	
– Is	the	knowledge	complete	and	consistent?	

•  Knowledge	representa'on	–	once	captured,	
how	do	we	express	it	most	effecMvely?	
– Express	it	for	whom?	
– Is	it	received	consistently	by	different	people?	

•  You	may	someMmes	see	a	disMncMon	
between	the	requirements	defini=on	and	the	
requirements	specifica=on.	
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Func'onal	Requirements	
•  What	the	machine	should	do		
–  Input		
– Output	
–  Interface	
– Response	to	events		

•  Criteria		
– Completeness:	All	requirements	are	documented		
– Consistency:	No	conflicts	between	requirements		
– Precision:	No	ambiguity	in	requirements		
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Quality/Non-func'onal	
requirements	
•  Specify	not	the	funcMonality	of	the	
system,	but	the	quality	with	which	it	
delivers	that	funcMonality.		
•  Can	be	more	criMcal	than	funcMonal	
requirements	
– Can	work	around	missing	funcMonality	
– 	Low-quality	system	may	be	unusable		

•  Examples?	
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Here’s	the	thing…	
•  Who	is	going	to	ask	for	a	slow,	inefficient,	
unmaintainable	system?	

•  A	beqer	way	to	think	about	quality	
requirements	is	as	design	criteria	to	help	
choose	between	alterna=ve	
implementa=ons.		

•  QuesMon	becomes:	to	what	extent	must	a	
product	saMsfy	these	requirements	to	be	
acceptable?		
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Func'onal	requirements	and	
implementa'on	bias	

Requirements	say	what	the	system	
will	do	(and	not	how	it	will	do	it).	
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Environment	and	the	Machine	

•  The	pilot	shall	decrease	airspeed	
and	lower	the	landing	gear	prior	
to	decision	height	

•  The	plane	shall	lower	the	wing	
flaps	to	30°	for	landing	

Machine	Domain	Environmental	Domain	

Requirements	
Domain	Knowledge	

Computers	
SoHware	Programs	

SpecificaMons	

Pamela	Zave	&	Michael	Jackson,	“Four	Dark	Corners	of	Requirements	Engineering,”	
ACM	Transac=ons	on	So3ware	Engineering	and	Methodology,	6(1):	1-30,	1997.	
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Avoiding	implementa'on	bias	
•  Requirements	describe	what	is	observable	at	the	

environment-machine	interface.	
•  Indica=ve	mood	describes	the	environment	(as-is)	
•  Opta=ve	mood	to	describe	the	environment	with	the	

machine	(to-be).	

	
What	other	models	of	the	world	do	machines	maintain?	

Ac'ons	of	an	ATM	customer:	
withdrawal-request(a,	m)	
Proper'es	of	the	environment:	
balance(b,	p)	

Ac'ons	of	an	ATM	machine:	
withdrawal-payout(a,	m)	
Proper'es	of	the	machine:	

expected-balance(b,	p)	
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Domain	knowledge	
•  Refinement	is	the	act	of	translaMng	requirements	
into	specifica=ons	(bridging	the	gap!)		

•  Requirements:	desired	behavior	(effect	on	the	
environment)	to	be	realized	by	the	proposed	system.	

•  AssumpMons	or	domain	knowledge:	exisMng	
behavior	that	is	unchanged	by	the	proposed	system.		
–  CondiMons	under	which	the	system	is	guaranteed	to	
operate	correctly.		

–  How	the	environment	will	behave	in	response	to	the	
system’s	outputs.		

20	



Assump'ons?	
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Assump'ons?	
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Grounding,	or:	Reality	
•  Able:	Two	important	basic	types	are	student	
and	course.	There	is	also	a	binary	relaMon	
enrolled.	

•  Baker:	Do	only	students	enroll	in	courses?	I	
don’t	think	that’s	true.	

•  Able:	But	that’s	what	I	mean	by	student!	
•  DesignaMon:	the	meaning	of	a	primiMve.	
– Will	be	explained	informally,	but	should	sMll	be	
precise,	recorded,	and	maintained.	
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Designa'ons	ground	formal	
specifica'ons.	
•  SpecificaMons	are	logical	expressions	of	
shared	acMons	at	the	interface	of	the	
machine	

•  This	includes	linking	domain	properMes	
and	agent	acMons	as	pre-	and	post-
condiMons	

∀	s	∀	c(enrolled(s,	c)	⇒	student(s)	∧	course(c))	



Some	gaps	must	remain…	
•  Unshared	acMons	cannot	be	accurately	
expressed	in	the	machine	
– People	can	jump	over	gates	(enter	without	
unlocking)	
– People	can	steal	or	misplace	inventory	

•  Future	requirements	are	also	not	directly	
implementable	
– Phone	system:	“AHer	all	digits	have	been	
dialed,	do	ring-back,	busy-tone	or	error-tone.”	
– …how	do	you	know	the	user	is	done	dialing?	
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Lu,hansa	Flight	2904	-	1	
•  The	Airbus	A320-200	airplane	

has	a	soHware-based	braking	
system	that	consists	of:	
–  Ground	spoilers	(wing	

plates	extended	to	reduce	
liH)	

–  Reverse	thrusters	
–  Wheel	brakes	on	the	main	

landing	gear	
•  To	engage	the	braking	system,		

the	wheels	of	the	plane	must	
be	on	the	ground.	
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Is	this	a	shared	or	an	unshared	
acMon/condiMon?	



Lu,hansa	Flight	2904	-	2	
There	are	two	“on	ground”	condiMons:	
1.  Either	shock	absorber	bears	a	load	of	6300	kgs	
2.  Both	wheels	turn	at	72	knots	(83	mph)	or	faster	

•  Ground	spoilers	acMvate	for	condiMons	1	or	2	
•  Reverse	thrust	acMvates	for	condiMon	1	on	both	main	
landing	gears	

•  Wheel	brake	acMvaMon	depends	upon	the	rotaMon	
gain	and	condiMon	2	
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Expressing	quality	requirements	

•  Requirements	serve	as	contracts:	they	
should	be	testable/falsifiable.	

•  Informal	goal:	a	general	intenMon,	such	as	
ease	of	use.		
– May	sMll	be	helpful	to	developers	as	they	
convey	the	intenMons	of	the	system	users.		

•  Verifiable	non-funcMonal	requirement:	A	
statement	using	some	measure	that	can	be	
objecMvely	tested.		
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Examples	
•  Informal	goal:	“the	system	should	be	easy	to	
use	by	experienced	controllers,	and	should	be	
organized	such	that	user	errors	are	minimized.”	

•  Verifiable	non-func'onal	requirement:	
“Experienced	controllers	shall	be	able	to	use	all	
the	system	funcMons	aHer	a	total	of	two	hours	
training.	AHer	this	training,	the	average	number	
of	errors	made	by	experienced	users	shall	not	
exceed	two	per	day,	on	average.”	
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Web	video	scenario	
•  You	work	for	a	custom	

soHware	developer	as	a	
requirements	engineer.	

•  Client’s	stated	
requirement:	“We	want	
to	sell	videos	on	the	
web.”	

•  You	must	now	engage	the	
client	to	elaborate	the	
stated	requirement		
–  How	will	you	proceed?	
–  How	shall	we	express	what	
we	learn?	
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Requirements	metrics	
Property	 Measure	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

31	



Web	video	scenario	
•  You	work	for	a	custom	

soHware	developer	as	a	
requirements	engineer.	

•  Client’s	stated	requirement:	
“We	want	to	sell	videos	on	
the	web.”	

•  You	must	now	engage	the	
client	to	elaborate	the	
stated	requirement		
–  How	will	you	proceed?	
–  How	shall	we	express	what	

we	learn?	
•  Step	1:	talk	to	the	relevant	

stakeholders	
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Ques'on	

• Who	is	the	system	for?	
•  Stakeholders:	
– End	users		
– System	administrators		
– Engineers	maintaining	the	system		
– Business	managers		
– …who	else?	
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Stakeholder	

•  Any	person	or	group	who	will	be	affected	
by	the	system,	directly	or	indirectly.	
•  Stakeholders	may	disagree.	
•  Requirements	process	should	trigger	
negoMaMon	to	resolve	conflicts.	
– (We	will	return	to	conflicts).	
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Defining	actors/agents	

•  An	actor	is	an	enMty	that	interacts	with	
the	system	for	the	purpose	of	compleMng	
an	event	[Jacobson,	1992].	
– Not	as	broad	as	stakeholders.	

•  Actors	can	be	a	user,	an	organizaMon,	a	
device,	or	an	external	system.	

35	

Sales		
Specialist	

MarkeMng	 GPS		
Receiver	

Inventory	
System	



Stakeholder	analysis:	criteria	for	
iden'fying	relevant	stakeholders	
•  Relevant	posiMons	in	the	organizaMon	
•  EffecMve	role	in	making	decisions	about	the	
system	

•  Level	of	domain	experMse	

•  Exposure	to	perceived	problems	

•  Influence	in	system	acceptance	

•  Personal	objecMves	and	conflicts	of	interest	
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CHALLENGES?	
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Stakeholders,	a	NASA	example	

From HSI NAP 11893 



Interviews	
•  Goal:	understand	funcMonal	

requirements,	idenMfy	and	learn	
domain-specific	concepts,	prioriMze	
quality	aqributes.	

•  EffecMve	interviewers:	
–  Begin	concretely	with	specific	quesMons,	

proposals,	or	working	through	a	prototype.	
–  Are	open-minded	and	willing	to	explore	

addiMonal	issues	that	arise	naturally,	but	
stay	focused	on	the	system.	

•  Stories,	scenarios,	use	cases	(informal),	
hypothe'cals,	examples.	

•  Understand/contrast	with	current	
system	(if	applicable).	
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Interview	benefits	vs	drawbacks	

•  Strengths	
– What	stakeholders	do	
– How	they	interact	with	the	system		
– Challenges	with	current	systems		

•  Weaknesses	
– Capturing	domain	knowledge		
–  Familiarity		
– Technical	subtlety		
– OrganizaMonal	issues,	such	as	poliMcs	
– Completeness	
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•  Yai:	non-profit;	most	employees	in	social	
work	field	
•  Currently	sells	training	DVDs	for	
companies	on	issues	related	to	
individuals	with	developmental	
disabiliMes.	
•  “Do	you	know	how	we	can	sell	course	
materials	online?”	
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•  Humans:	beqer	at	recognizing	whether	a	
soluMon	is	correct	than	solving	the	problem	
from	a	blank	page.	

•  Mock-ups/prototypes	help	explore	
uncertainty	in	the	requirements.	
– Validate	that	we	have	the	right	requirements.	
– Elicit	requirements	at	the	“borders”	of	the	
system.	
– Assert	feasibility	of	soluMon	space.	
– Get	feedback	on	a	candidate	soluMon.	
– Also	good	for	quesMons	about	UI.	

•  “I’ll	know	it	when	I	see	it”	ßscary.	
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High-	vs	low-	fidelity	mockups	
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Rapid	prototyping	

•  Throw-away:	developed	to	learn	more	
about	a	problem,	not	intended	for	actual	
use.		

		
•  EvoluMonary:	intended	to	be	
incorporated	into	the	final	product.		
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Storyboarding	and	scenarios	
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Story	

• Who	the	players	are	
• What	happens	to	them	
•  How	it	happens	through	specific	episode	
• Why	this	happens	
• What	if	such	and	such	an	event	occurs	
• What	could	go	wrong	as	a	consequence	
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•  Storyboards	illustrate	scenarios:	a	typical	sequence	of	
interacMon	among	system	components	that	meets	an	
implicit	objecMve.	
–  Storyboards	explicitly	cover	at	least	who,	what,	and	how.	

•  Different	types:	
–  PosiMve	vs	negaMve	(should	and	should	not	happen)	
–  Normal	vs	abnormal	

•  As	part	of	elicitaMon:	
–  Learn	about	current	or	proposed	system	by	walking	through	
real-life	or	hypotheMcal	sequences	

–  Can	ask	specific	quesMons	
–  Elicit	the	underlying	objecMves,	generalize	into	models	of	
desired	behaviors.	

–  IdenMfy	and	resolve	conflicts	
•  Pluses:	Concrete,	support	narraMve	descripMon	
•  Minuses:	inherently	parMal.			
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Scenarios	
•  QuesMons	to	consider	

–  What	tasks	does	the	actor	perform?	
–  What	informaMon	is	accessed	and	modified,	and	where	does	it	
come	from?	

–  What	are	obligaMons	on	the	actor	to	inform	the	system?	
–  What	are	obligaMons	of	the	system	to	inform	the	actor?	

•  HeurisMcs	
–  VerMcal	–	one	worked-out	specific	scenario,	to	understand	how	
to	engage	the	user/stakeholder	

–  Horizontal	–	mulMple,	less-detailed	scenarios,	to	assess	scope	
and	context	

–  Mock-ups	
–  AlternaMves	
–  Can	be	passive	or	ac've.	

Test	cases	
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Where	do	we	find	scenarios?	

•  ReflecMve	
– Elicit	scenarios	from	stakeholders	
– Analyze	reports	and	case	studies	of	similar	
systems	

•  ProspecMve	–	InstanMate	the	use	case	
	

Don’t	only	focus	on	the	posiMve		
–	include	failures,	too	
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Use	cases	
•  We	talk	about	many	types,	at	different	granulariMes:	
–  Full	use	case	model	(whole-system,	higher-level)	
–  “Agile”	use	case:	small,	concrete	pieces	of	system	
funcMonality	to	be	implemented	(someMmes	conflated	
with	“user	stories”)	

•  Used	at	mulMple	stages:	
–  Requirements	elicitaMon	(illustrated,	validate,	
requirements;	highlight	conflicts,	prioriMze	
requirements,	etc).	

–  Requirements	documentaMon.	
–  Concrete	design:	UML	diagrams.	
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Use	cases	

•  Text	stories	of	an	actor	using	a	system	to	
meet	goals.	
•  Use	cases	are	not	diagrams,	they	are	
text.	
•  Primarily	serve	as	funcMonal	
requirements	(by	contrast/in	conjuncMon	
with	“the	system	shall”	statements.)	
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Learning	goals	
•  Explain	with	examples	the	importance	of	
requirements	in	soHware	engineering.			

•  Explain	how	and	why	requirements	arMculate	
the	relaMonship	between	a	desired	system	and	
its	environment.	

•  DisMnguish	between	and	give	examples	of:	
funcMonal	and	non-funcMonal	requirements;	
informal	statements	and	verifiable	
requirements.	

•  IdenMfy	system	stakeholders	and	develop	
approaches	on	how	to	interview	them.	
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