
Founda'ons	of		
So,ware	Engineering	

Lecture	5	–	Requirements	(1/3)	
Claire	Le	Goues	

1	



Administrivia	

•  Canvas	OK?	
– Vs	Piazza?	

2	



Learning	goals	
•  Explain	with	examples	the	importance	of	
requirements	in	soHware	engineering.			

•  Explain	how	and	why	requirements	arMculate	
the	relaMonship	between	a	desired	system	and	
its	environment.	

•  DisMnguish	between	and	give	examples	of:	
funcMonal	and	non-funcMonal	requirements;	
informal	statements	and	verifiable	
requirements.	

•  IdenMfy	system	stakeholders	and	develop	
approaches	on	how	to	interview	them.	

3	



Healthcare.gov	

4	



Fred	Brooks,	on	requirements.	
•  The	hardest	single	part	of	building	a	so3ware	
system	is	deciding	precisely	what	to	build.			

•  No	other	part	of	the	conceptual	work	is	as	
difficult	as	establishing	the	detailed	technical	
requirements	...		

•  No	other	part	of	the	work	so	cripples	the	
resul=ng	system	if	done	wrong.			

•  No	other	part	is	as	difficult	to	rec=fy	later.	
	 	—	Fred	Brooks	

5	



A	problem	that	stands	the	test	of	
'me…	
A	1994	survey	of	8000	projects	at	350	companies	found:	31%	of	
projects	canceled	before	completed;	9%	of	projects	delivered	on	
Mme,	within	budget	in	large	companies,	16%	in	small	companies.		

–  Similar	results	reported	since.	
Causes:		

1. Incomplete	requirements	(13.1%)		
2. Lack	of	user	involvement	(12.4%)	
3. Lack	of	resources	(10.6%)	
4. UnrealisMc	expectaMons	(9.9%)		
5. Lack	of	execuMve	support	(9.3%)	
6. Changing	requirements	and	specificaMons	(8.7%)	
7. Lack	of	planning	(8.1%)	
8. System	no	longer	needed	(7.5%)	.	

6	



Overly	simplified	defini'on.	

Requirements	say	what	the	system	
will	do	(and	not	how	it	will	do	it).	

	

7	



WHY	IS	THIS	HARD?	

8	



Communica'on	problem	

Goal:	figure	out	
what	should	be	
built.	
Express	those	
ideas	so	that	the	
correct	thing	is	
built.	

9	



Four	Kinds	of	Denial	
•  Denial	by	prior	knowledge	–	we	have	done	this	
before,	so	we	know	what	is	required	

•  Denial	by	hacking	–	our	fascinaMon	with	machines	
dominates	our	focus	on	the	how	

•  Denial	by	abstracMon	–	we	pursue	elegant	models	
which	obscure,	remove	or	downplay	the	real	world	

•  Denial	by	vagueness	–	imply	(vaguely)	that	machine	
descripMons	are	actually	those	of	the	world	

Michael	Jackson,	“The	World	and	the	Machine,”	Interna=onal	Conference	on	So3ware	Engineering,		
pp.	283-292,	1995.	



Less	simplified	defini'on.	
•  Stories:	Scenarios	and	Use	Cases	

“AHer	the	customer	submits	the	purchase	informaMon	
and	the	payment	has	been	received,	the	order	is	
fulfilled	and	shipped	to	the	customer’s	shipping	
address.”	

•  OptaMve	statements	
The	system	shall	noMfy	clients	about	their	shipping	
status	

•  Domain	ProperMes	and	AssumpMons	
Every	product	has	a	unique	product	code	
Payments	will	be	received	aHer	authorizaMon	

11	



What	is	requirements	engineering?	

•  Knowledge	acquisi'on	–	how	to	capture	
relevant	detail	about	a	system?	
– Is	the	knowledge	complete	and	consistent?	

•  Knowledge	representa'on	–	once	captured,	
how	do	we	express	it	most	effecMvely?	
– Express	it	for	whom?	
– Is	it	received	consistently	by	different	people?	

•  You	may	someMmes	see	a	disMncMon	
between	the	requirements	defini=on	and	the	
requirements	specifica=on.	

12	



Func'onal	Requirements	
•  What	the	machine	should	do		
–  Input		
– Output	
–  Interface	
– Response	to	events		

•  Criteria		
– Completeness:	All	requirements	are	documented		
– Consistency:	No	conflicts	between	requirements		
– Precision:	No	ambiguity	in	requirements		

13	



Quality/Non-func'onal	
requirements	
•  Specify	not	the	funcMonality	of	the	
system,	but	the	quality	with	which	it	
delivers	that	funcMonality.		
•  Can	be	more	criMcal	than	funcMonal	
requirements	
– Can	work	around	missing	funcMonality	
– 	Low-quality	system	may	be	unusable		

•  Examples?	

14	



Here’s	the	thing…	
•  Who	is	going	to	ask	for	a	slow,	inefficient,	
unmaintainable	system?	

•  A	beqer	way	to	think	about	quality	
requirements	is	as	design	criteria	to	help	
choose	between	alterna=ve	
implementa=ons.		

•  QuesMon	becomes:	to	what	extent	must	a	
product	saMsfy	these	requirements	to	be	
acceptable?		

15	



Func'onal	requirements	and	
implementa'on	bias	

Requirements	say	what	the	system	
will	do	(and	not	how	it	will	do	it).	

	

16	



Environment	and	the	Machine	

•  The	pilot	shall	decrease	airspeed	
and	lower	the	landing	gear	prior	
to	decision	height	

•  The	plane	shall	lower	the	wing	
flaps	to	30°	for	landing	

Machine	Domain	Environmental	Domain	

Requirements	
Domain	Knowledge	

Computers	
SoHware	Programs	

SpecificaMons	

Pamela	Zave	&	Michael	Jackson,	“Four	Dark	Corners	of	Requirements	Engineering,”	
ACM	Transac=ons	on	So3ware	Engineering	and	Methodology,	6(1):	1-30,	1997.	

17	



18	



Avoiding	implementa'on	bias	
•  Requirements	describe	what	is	observable	at	the	

environment-machine	interface.	
•  Indica=ve	mood	describes	the	environment	(as-is)	
•  Opta=ve	mood	to	describe	the	environment	with	the	

machine	(to-be).	

	
What	other	models	of	the	world	do	machines	maintain?	

Ac'ons	of	an	ATM	customer:	
withdrawal-request(a,	m)	
Proper'es	of	the	environment:	
balance(b,	p)	

Ac'ons	of	an	ATM	machine:	
withdrawal-payout(a,	m)	
Proper'es	of	the	machine:	

expected-balance(b,	p)	

19	



Domain	knowledge	
•  Refinement	is	the	act	of	translaMng	requirements	
into	specifica=ons	(bridging	the	gap!)		

•  Requirements:	desired	behavior	(effect	on	the	
environment)	to	be	realized	by	the	proposed	system.	

•  AssumpMons	or	domain	knowledge:	exisMng	
behavior	that	is	unchanged	by	the	proposed	system.		
–  CondiMons	under	which	the	system	is	guaranteed	to	
operate	correctly.		

–  How	the	environment	will	behave	in	response	to	the	
system’s	outputs.		

20	



Assump'ons?	

21	



Assump'ons?	

22	



Grounding,	or:	Reality	
•  Able:	Two	important	basic	types	are	student	
and	course.	There	is	also	a	binary	relaMon	
enrolled.	

•  Baker:	Do	only	students	enroll	in	courses?	I	
don’t	think	that’s	true.	

•  Able:	But	that’s	what	I	mean	by	student!	
•  DesignaMon:	the	meaning	of	a	primiMve.	
– Will	be	explained	informally,	but	should	sMll	be	
precise,	recorded,	and	maintained.	

23	



Designa'ons	ground	formal	
specifica'ons.	
•  SpecificaMons	are	logical	expressions	of	
shared	acMons	at	the	interface	of	the	
machine	

•  This	includes	linking	domain	properMes	
and	agent	acMons	as	pre-	and	post-
condiMons	

∀	s	∀	c(enrolled(s,	c)	⇒	student(s)	∧	course(c))	



Some	gaps	must	remain…	
•  Unshared	acMons	cannot	be	accurately	
expressed	in	the	machine	
– People	can	jump	over	gates	(enter	without	
unlocking)	
– People	can	steal	or	misplace	inventory	

•  Future	requirements	are	also	not	directly	
implementable	
– Phone	system:	“AHer	all	digits	have	been	
dialed,	do	ring-back,	busy-tone	or	error-tone.”	
– …how	do	you	know	the	user	is	done	dialing?	

25	



Lu,hansa	Flight	2904	-	1	
•  The	Airbus	A320-200	airplane	

has	a	soHware-based	braking	
system	that	consists	of:	
–  Ground	spoilers	(wing	

plates	extended	to	reduce	
liH)	

–  Reverse	thrusters	
–  Wheel	brakes	on	the	main	

landing	gear	
•  To	engage	the	braking	system,		

the	wheels	of	the	plane	must	
be	on	the	ground.	

26	

Is	this	a	shared	or	an	unshared	
acMon/condiMon?	



Lu,hansa	Flight	2904	-	2	
There	are	two	“on	ground”	condiMons:	
1.  Either	shock	absorber	bears	a	load	of	6300	kgs	
2.  Both	wheels	turn	at	72	knots	(83	mph)	or	faster	

•  Ground	spoilers	acMvate	for	condiMons	1	or	2	
•  Reverse	thrust	acMvates	for	condiMon	1	on	both	main	
landing	gears	

•  Wheel	brake	acMvaMon	depends	upon	the	rotaMon	
gain	and	condiMon	2	

27	



Expressing	quality	requirements	

•  Requirements	serve	as	contracts:	they	
should	be	testable/falsifiable.	

•  Informal	goal:	a	general	intenMon,	such	as	
ease	of	use.		
– May	sMll	be	helpful	to	developers	as	they	
convey	the	intenMons	of	the	system	users.		

•  Verifiable	non-funcMonal	requirement:	A	
statement	using	some	measure	that	can	be	
objecMvely	tested.		

28	



Examples	
•  Informal	goal:	“the	system	should	be	easy	to	
use	by	experienced	controllers,	and	should	be	
organized	such	that	user	errors	are	minimized.”	

•  Verifiable	non-func'onal	requirement:	
“Experienced	controllers	shall	be	able	to	use	all	
the	system	funcMons	aHer	a	total	of	two	hours	
training.	AHer	this	training,	the	average	number	
of	errors	made	by	experienced	users	shall	not	
exceed	two	per	day,	on	average.”	

29	



Web	video	scenario	
•  You	work	for	a	custom	

soHware	developer	as	a	
requirements	engineer.	

•  Client’s	stated	
requirement:	“We	want	
to	sell	videos	on	the	
web.”	

•  You	must	now	engage	the	
client	to	elaborate	the	
stated	requirement		
–  How	will	you	proceed?	
–  How	shall	we	express	what	
we	learn?	

30	



Requirements	metrics	
Property	 Measure	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

31	



Web	video	scenario	
•  You	work	for	a	custom	

soHware	developer	as	a	
requirements	engineer.	

•  Client’s	stated	requirement:	
“We	want	to	sell	videos	on	
the	web.”	

•  You	must	now	engage	the	
client	to	elaborate	the	
stated	requirement		
–  How	will	you	proceed?	
–  How	shall	we	express	what	

we	learn?	
•  Step	1:	talk	to	the	relevant	

stakeholders	

32	



Ques'on	

• Who	is	the	system	for?	
•  Stakeholders:	
– End	users		
– System	administrators		
– Engineers	maintaining	the	system		
– Business	managers		
– …who	else?	

33	



Stakeholder	

•  Any	person	or	group	who	will	be	affected	
by	the	system,	directly	or	indirectly.	
•  Stakeholders	may	disagree.	
•  Requirements	process	should	trigger	
negoMaMon	to	resolve	conflicts.	
– (We	will	return	to	conflicts).	

34	



Defining	actors/agents	

•  An	actor	is	an	enMty	that	interacts	with	
the	system	for	the	purpose	of	compleMng	
an	event	[Jacobson,	1992].	
– Not	as	broad	as	stakeholders.	

•  Actors	can	be	a	user,	an	organizaMon,	a	
device,	or	an	external	system.	

35	

Sales		
Specialist	

MarkeMng	 GPS		
Receiver	

Inventory	
System	



Stakeholder	analysis:	criteria	for	
iden'fying	relevant	stakeholders	
•  Relevant	posiMons	in	the	organizaMon	
•  EffecMve	role	in	making	decisions	about	the	
system	

•  Level	of	domain	experMse	

•  Exposure	to	perceived	problems	

•  Influence	in	system	acceptance	

•  Personal	objecMves	and	conflicts	of	interest	
36	



CHALLENGES?	

37	



Stakeholders,	a	NASA	example	

From HSI NAP 11893 



Interviews	
•  Goal:	understand	funcMonal	

requirements,	idenMfy	and	learn	
domain-specific	concepts,	prioriMze	
quality	aqributes.	

•  EffecMve	interviewers:	
–  Begin	concretely	with	specific	quesMons,	

proposals,	or	working	through	a	prototype.	
–  Are	open-minded	and	willing	to	explore	

addiMonal	issues	that	arise	naturally,	but	
stay	focused	on	the	system.	

•  Stories,	scenarios,	use	cases	(informal),	
hypothe'cals,	examples.	

•  Understand/contrast	with	current	
system	(if	applicable).	

39	



Interview	benefits	vs	drawbacks	

•  Strengths	
– What	stakeholders	do	
– How	they	interact	with	the	system		
– Challenges	with	current	systems		

•  Weaknesses	
– Capturing	domain	knowledge		
–  Familiarity		
– Technical	subtlety		
– OrganizaMonal	issues,	such	as	poliMcs	
– Completeness	

40	



•  Yai:	non-profit;	most	employees	in	social	
work	field	
•  Currently	sells	training	DVDs	for	
companies	on	issues	related	to	
individuals	with	developmental	
disabiliMes.	
•  “Do	you	know	how	we	can	sell	course	
materials	online?”	

41	



•  Humans:	beqer	at	recognizing	whether	a	
soluMon	is	correct	than	solving	the	problem	
from	a	blank	page.	

•  Mock-ups/prototypes	help	explore	
uncertainty	in	the	requirements.	
– Validate	that	we	have	the	right	requirements.	
– Elicit	requirements	at	the	“borders”	of	the	
system.	
– Assert	feasibility	of	soluMon	space.	
– Get	feedback	on	a	candidate	soluMon.	
– Also	good	for	quesMons	about	UI.	

•  “I’ll	know	it	when	I	see	it”	ßscary.	

42	



High-	vs	low-	fidelity	mockups	

43	



Rapid	prototyping	

•  Throw-away:	developed	to	learn	more	
about	a	problem,	not	intended	for	actual	
use.		

		
•  EvoluMonary:	intended	to	be	
incorporated	into	the	final	product.		

44	



Storyboarding	and	scenarios	

45	



Story	

• Who	the	players	are	
• What	happens	to	them	
•  How	it	happens	through	specific	episode	
• Why	this	happens	
• What	if	such	and	such	an	event	occurs	
• What	could	go	wrong	as	a	consequence	

46	



•  Storyboards	illustrate	scenarios:	a	typical	sequence	of	
interacMon	among	system	components	that	meets	an	
implicit	objecMve.	
–  Storyboards	explicitly	cover	at	least	who,	what,	and	how.	

•  Different	types:	
–  PosiMve	vs	negaMve	(should	and	should	not	happen)	
–  Normal	vs	abnormal	

•  As	part	of	elicitaMon:	
–  Learn	about	current	or	proposed	system	by	walking	through	
real-life	or	hypotheMcal	sequences	

–  Can	ask	specific	quesMons	
–  Elicit	the	underlying	objecMves,	generalize	into	models	of	
desired	behaviors.	

–  IdenMfy	and	resolve	conflicts	
•  Pluses:	Concrete,	support	narraMve	descripMon	
•  Minuses:	inherently	parMal.			

47	



48	



Scenarios	
•  QuesMons	to	consider	

–  What	tasks	does	the	actor	perform?	
–  What	informaMon	is	accessed	and	modified,	and	where	does	it	
come	from?	

–  What	are	obligaMons	on	the	actor	to	inform	the	system?	
–  What	are	obligaMons	of	the	system	to	inform	the	actor?	

•  HeurisMcs	
–  VerMcal	–	one	worked-out	specific	scenario,	to	understand	how	
to	engage	the	user/stakeholder	

–  Horizontal	–	mulMple,	less-detailed	scenarios,	to	assess	scope	
and	context	

–  Mock-ups	
–  AlternaMves	
–  Can	be	passive	or	ac've.	

Test	cases	

49	



Where	do	we	find	scenarios?	

•  ReflecMve	
– Elicit	scenarios	from	stakeholders	
– Analyze	reports	and	case	studies	of	similar	
systems	

•  ProspecMve	–	InstanMate	the	use	case	
	

Don’t	only	focus	on	the	posiMve		
–	include	failures,	too	

50	



Use	cases	
•  We	talk	about	many	types,	at	different	granulariMes:	
–  Full	use	case	model	(whole-system,	higher-level)	
–  “Agile”	use	case:	small,	concrete	pieces	of	system	
funcMonality	to	be	implemented	(someMmes	conflated	
with	“user	stories”)	

•  Used	at	mulMple	stages:	
–  Requirements	elicitaMon	(illustrated,	validate,	
requirements;	highlight	conflicts,	prioriMze	
requirements,	etc).	

–  Requirements	documentaMon.	
–  Concrete	design:	UML	diagrams.	

51	



Use	cases	

•  Text	stories	of	an	actor	using	a	system	to	
meet	goals.	
•  Use	cases	are	not	diagrams,	they	are	
text.	
•  Primarily	serve	as	funcMonal	
requirements	(by	contrast/in	conjuncMon	
with	“the	system	shall”	statements.)	

52	



Learning	goals	
•  Explain	with	examples	the	importance	of	
requirements	in	soHware	engineering.			

•  Explain	how	and	why	requirements	arMculate	
the	relaMonship	between	a	desired	system	and	
its	environment.	

•  DisMnguish	between	and	give	examples	of:	
funcMonal	and	non-funcMonal	requirements;	
informal	statements	and	verifiable	
requirements.	

•  IdenMfy	system	stakeholders	and	develop	
approaches	on	how	to	interview	them.	

53	


