

Evidence-Based Software Engineering

Bogdan Vasilescu

11/30/2017

Slides from:

- Thomas Zimmermann, Microsoft Research:
<https://speakerdeck.com/tomzimmermann>
- Greg Wilson, Mozilla
<https://www.slideshare.net/gwilson/presentations>
- Laurie Williams, NC State
<https://www.slideshare.net/laurieannwilliams/writing-good-software-engineering-research-papers-revisited>
- Prem Devanbu, UC Davis
<https://www.slideshare.net/pdevanbu/believevidenceicse>

Once Upon a Time...

Seven Years' War (1754-63)

Britain loses 1,512 sailors to enemy action...

...and almost 100,000 to scurvy

Oh, the Irony

James Lind (1716-94)

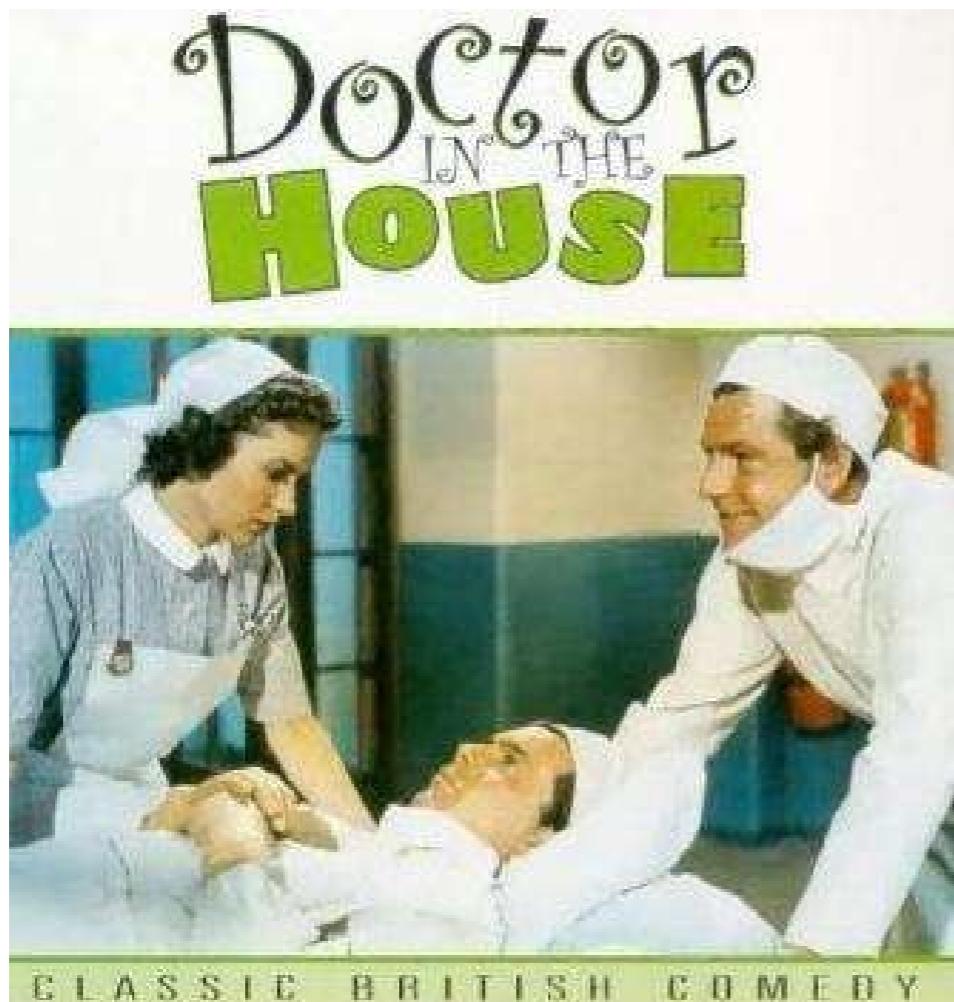
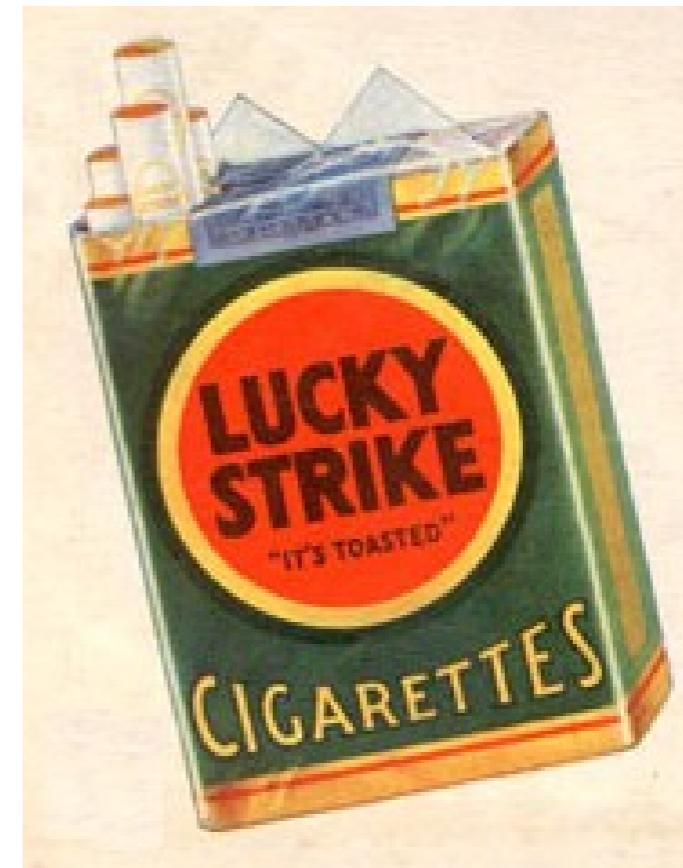
1747: (possibly) the first-ever controlled medical experiment

- ✗ cider
- ✗ sulfuric acid
- ✗ vinegar
- ✗ sea water
- ✓ oranges
- ✗ barley water

No-one paid attention until a proper Englishman repeated the experiment in 1794...

The British Doctors Study

1950: Hill & Doll publish a *case-control study* comparing smokers with non-smokers



1951: start the British Doctors Study (which runs until 2001)

Two Discoveries

#1: Smoking causes lung cancer

#2: Many people would rather fail than change

“...what happens ‘on average’ is of no help when one is faced with a specific patient...”

Like Water on Stone

1992: Sackett coins the term
“evidence-based medicine”

Randomized double-blind
trials are accepted as the
gold standard for medical
research

The Cochrane Collaboration (<http://www.cochrane.org/>)
now archives results from hundreds of medical studies

What about Software
Engineering?

What metrics are the **best predictors of failures**?

What is the **data quality** level used in empirical studies and how much does it actually matter?

How can I tell if a piece of software will have **vulnerabilities**?

Do **cross-cutting concerns** cause defects?

Does **Test Driven Development** (TDD) produce better code in shorter time?

If I increase **test coverage**, will that actually increase software quality?

Are there any **metrics that are indicators of failures** in both Open Source and Commercial domains?

I just submitted a **bug report**. Will it be fixed?

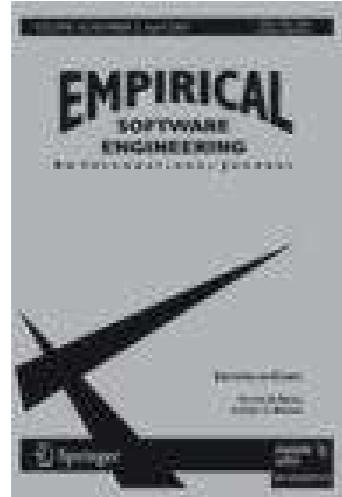
Should I be writing **unit tests** in my software project?

Is strong **code ownership** good or bad for software quality?

Does **Distributed/Global software development** affect quality?

Software Engineering is
becoming more like
modern medicine

The Times They Are A-Changin'



Growing emphasis on empirical studies in software engineering research since the mid-1990s

Papers describing new tools or practices routinely include results from some kind of field study

Yes, many are flawed or incomplete, but standards are constantly improving

Contributions (RQ2)

Types of research contribution in ICSE 2016 submissions and acceptances						
Type of contribution	Submitted (2002)	Submitted (2016)	Accepted (2002)	Accepted (2016)	Ratio (2002)	Ratio (2016)
Procedure or technique	152 (44%)	195 (37%)	28 (51%)	35 (35%)	18%	18%
Qualitative or descriptive model	50 (14%)	22 (4%)	4 (7%)	4 (4%)	8%	18%
Empirical model	4 (1%)	29 (5%)	1 (2%)	5 (5%)	25%	17%
Analytic model	48 (14%)	54 (10%)	7 (13%)	8 (8%)	15%	15%
Tool or notation	49 (14%)	83 (16%)	10 (18%)	16 (16%)	20%	19%
Specific solution	34 (10%)	14 (3%)	5 (9%)	2 (2%)	15%	14%
Empirical Report	11 (3%)	103 (19%)	0 (0%)	31 (31%)	0%	30%

Validation (RQ3)

TYPES OF VALIDATION IN ICSE 2016 SUBMISSIONS AND ACCEPTANCES						
Type of result	Submitted (2002)	Submitted (2016)	Accepted (2002)	Accepted (2016)	Ratio (2002)	Ratio (2016)
Analysis	48 (16%)	72 (14%)	11 (26%)	19 (19%)	23%	26%
Evaluation	21 (7%)	188 (35%)	1 (2%)	65 (64%)	5%	35%
Experience	34 (11%)	19 (4%)	8 (19%)	4 (4%)	24%	21%
Example	82 (27%)	61 (12%)	16 (37%)	1 (1%)	20%	2%
Underspecified	6 (2%)	94 (18%)	1 (2%)	11 (11%)	17%	12%
Persuasion	25 (8%)	37 (7%)	0 (0%)	1 (1%)	0%	3%
No validation	84 (28%)	31 (6%)	6 (14%)	0 (0%)	7%	0%

Analysis/Evaluation/Experience becoming ICSE requirement compared to 2002

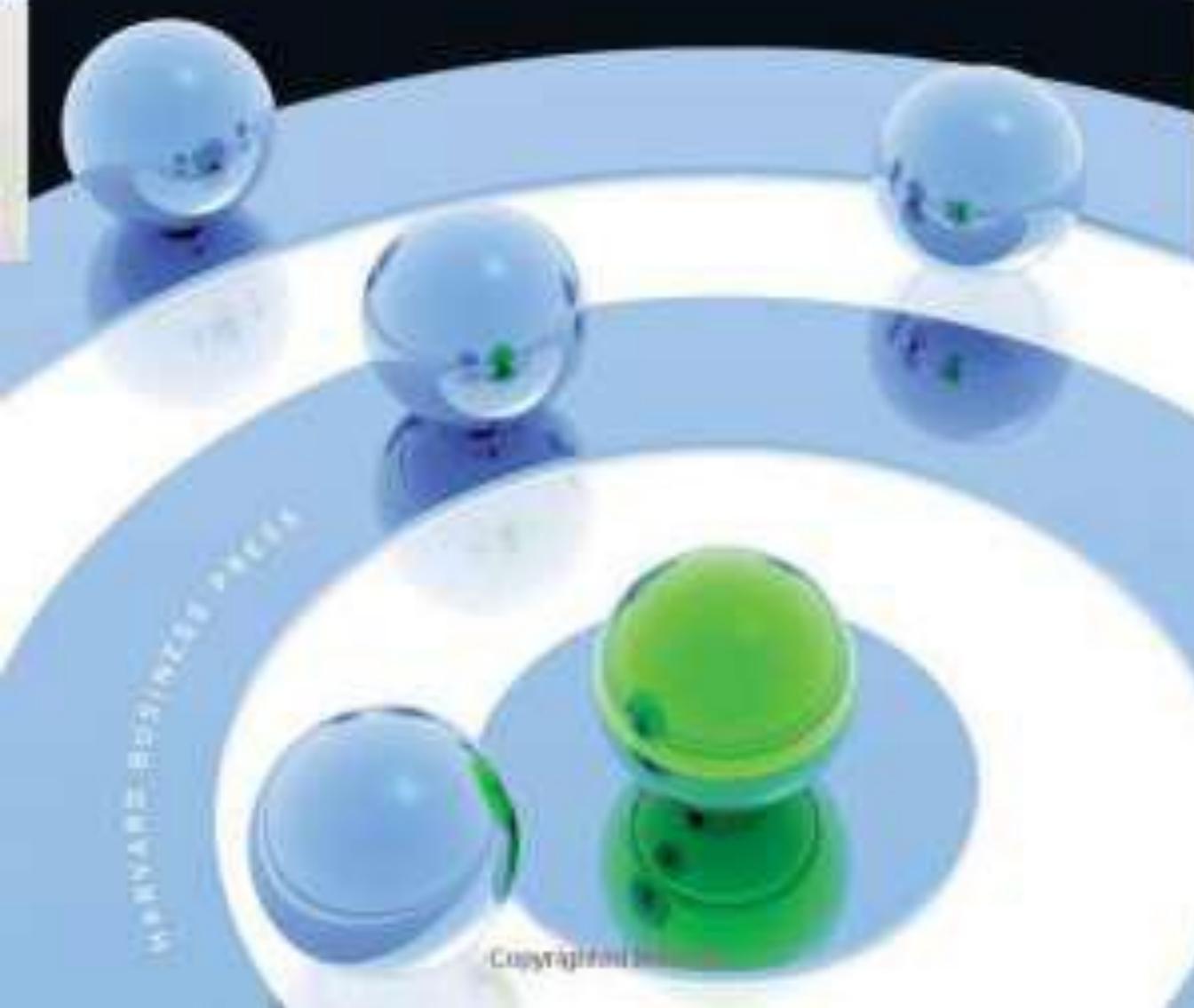
What enabled this?

data science / analytics 101

THOMAS H. DAVENPORT, JEANNE G. HARRIS
Co-authors of *Competing on Analytics*
and ROBERT MORISON

Analytics at Work

Smarter Decisions
Better Results



Use of data, analysis, and systematic reasoning to [inform and] make decisions

history of software analytics

EARLY “GLOBAL” MODELS AND SOFTWARE ANALYTICS

As soon as people started programming, it became apparent that programming was an inherently buggy process. As recalled by Maurice Wilkes,¹ speaking of his programming experiences from the early 1950s: “It was on one of my journeys between the EDSAC room and the punching equipment that ‘hesitating at the angles of stairs’ the realization came over me with full force that a good part of the remainder of my life was going to be spent in finding errors in my own programs.”

It took several decades to gather the experience required to quantify the size/defect relationship. In 1971, Fumio Akiyama² described the first known “size” law, saying the number of defects D was a function of the number of LOC; specifically, $D = 4.86 + 0.018 * i$. In 1976, Thomas McCabe argued that the number of LOC was less important than the complexity of that code.³ He argued

that code is more likely to be defective when his “cyclomatic complexity” measure was over 10.

Not only is programming an inherently buggy process, it’s also inherently difficult. Based on data from 63 projects, Barry Boehm⁴ proposed in 1981 an estimator for development effort that was exponential on program size: $\text{effort} = a * \text{KLOC}^b * \text{EffortMultipliers}$, where $2.4 \leq a \leq 3$ and $1.05 \leq b \leq 1.2$.

References

1. M. Wilkes, *Memoirs of a Computer Pioneer*, MIT Press, 1985.
2. F. Akiyama, “An Example of Software System Debugging,” *Information Processing*, vol. 71, 1971, pp. 353–359.
3. T. McCabe, “A Complexity Measure,” *IEEE Trans. Software Eng.*, vol. 2, no. 4, 1976, pp. 308–320.
4. B. Boehm, *Software Engineering Economics*, Prentice-Hall, 1981.

Tim Menzies, Thomas Zimmermann: Software Analytics: So What?
IEEE Software 30(4): 31-37 (2013)

the many names

software intelligence

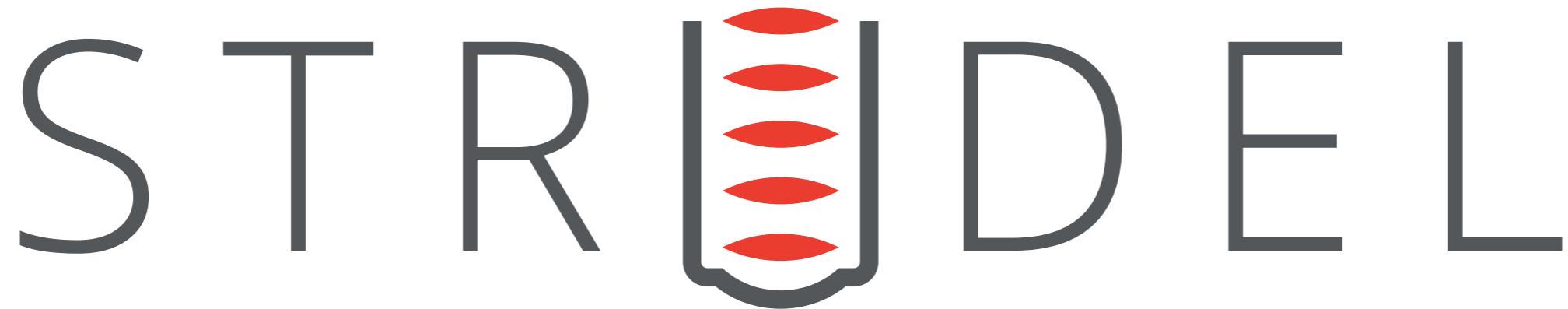
software analytics

software development analytics

analytics for software development

empirical software engineering

mining software repositories



SOCIO-TECHNICAL RESEARCH
USING DATA EXCAVATION LAB

Ahmed E. Hassan, Tao Xie: Software intelligence: the future of mining software engineering data. FoSER 2010: 161-166

[Software Intelligence] offers software practitioners (not just developers) up-to-date and pertinent information to support their daily decision-making processes. [...]

Raymond P. L. Buse, Thomas Zimmermann: Analytics for software development. FoSER 2010: 77-80

The idea of analytics is to leverage potentially large amounts of **data** into real and actionable insights.

Dongmei Zhang, Yingnong Dang, Jian-Guang Lou, Shi Han, Haidong Zhang, and Tao Xie, Software Analytics as a Learning Case in Practice: Approaches and Experiences. MALETS 2011

Software analytics is to enable software practitioners¹ to perform **data exploration and analysis** in order to obtain *insightful* and *actionable* information for data-driven tasks around software and services.

¹ Software practitioners typically include software developers, testers, usability engineers, and managers, etc.

Raymond P. L. Buse, Thomas Zimmermann: Information needs for software development analytics. ICSE 2012: 987-996

Software development analytics [...] empower[s] software development teams to independently gain and share **insight from their data** without relying on a separate entity.

Tim Menzies, Thomas Zimmermann: Software Analytics: So What? IEEE Software 30(4): 31-37 (2013)

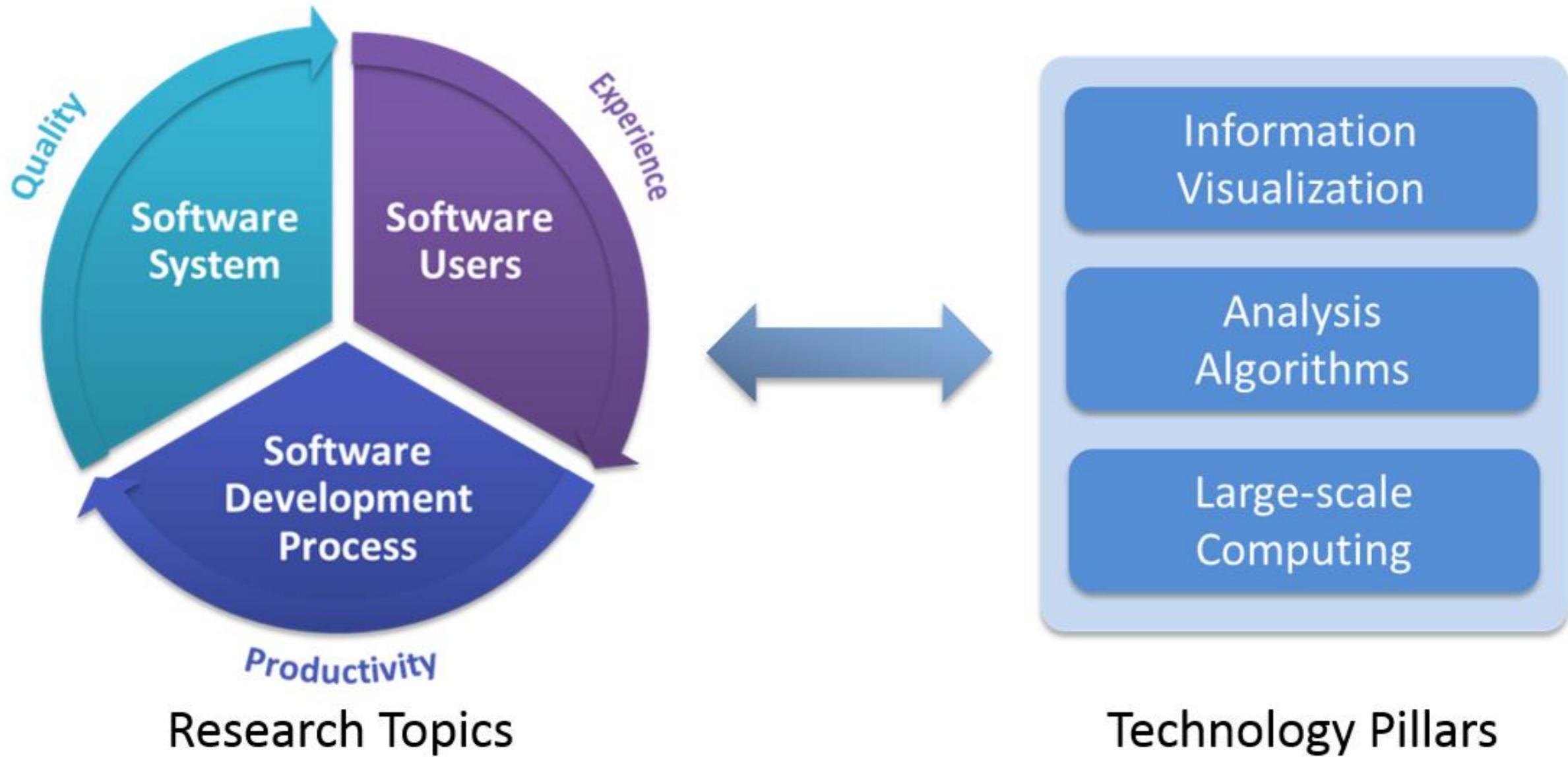
Software analytics is analytics on **software data** for managers and software engineers with the aim of empowering software development individuals and teams to gain and share insight from their data to make better decisions.

Dongmei Zhang, Shi Han, Yingnong Dang, Jian-Guang Lou, Haidong Zhang, Tao Xie: Software Analytics in Practice. IEEE Software 30(5): 30-37 (2013)

With software analytics, software practitioners explore and **analyze data** to obtain *insightful*, *actionable* information for tasks regarding software development, systems, and users.

Data Science

trinity of software analytics



Dongmei Zhang, Shi Han, Yingnong Dang, Jian-Guang Lou, Haidong Zhang, Tao Xie:
Software Analytics in Practice. IEEE Software 30(5): 30-37, September/October 2013.

MSR Asia Software Analytics group: <http://research.microsoft.com/en-us/groups/sa/>

ARTWORK: TAMAR COHEN, ANDREW J. BUBOLTZ, 2011, SILK SCREEN ON A PAGE FROM A HIGH SCHOOL YEARBOOK, 8.5" X 12"

DATA

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil

FROM THE OCTOBER 2012 ISSUE

SUMMARY | SAVE | SHARE | COMMENT | TEXT SIZE | PRINT | \$8.95 BUY COPIES

When Jonathan Goldman arrived for work in June 2006 at LinkedIn, the business networking site, the place still felt like a start-up. The company had just under 8 million accounts, and the number was growing quickly as existing members invited their friends and colleagues to join. But users weren't seeking out connections with the people who were already on the site at the rate executives had expected. Something was apparently missing in the social experience. As one LinkedIn manager put it, "It was like arriving at a conference reception and realizing you don't know anyone. So you just stand in the corner sipping your drink—and you probably leave early."

Goldman, a PhD in physics from Stanford, was intrigued by the linking he did see going on and by the richness of the user profiles. It all made for messy data and unwieldy analysis, but as he began exploring people's connections, he started to see possibilities. He began forming theories, testing hunches, and finding patterns that allowed him to predict whose networks a given profile would land in. He could imagine that new features capitalizing on the heuristics he was developing might

WHAT TO READ NEXT

[Big Data: The Management Revolution](#)

[Making Advanced Analytics Work for You](#)

[Google Flu Trends' Failure Shows Good Data >](#)

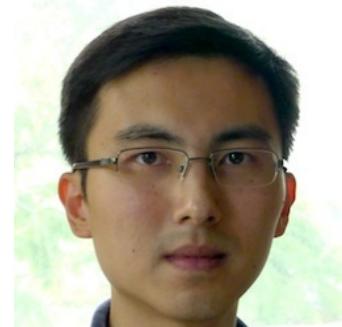
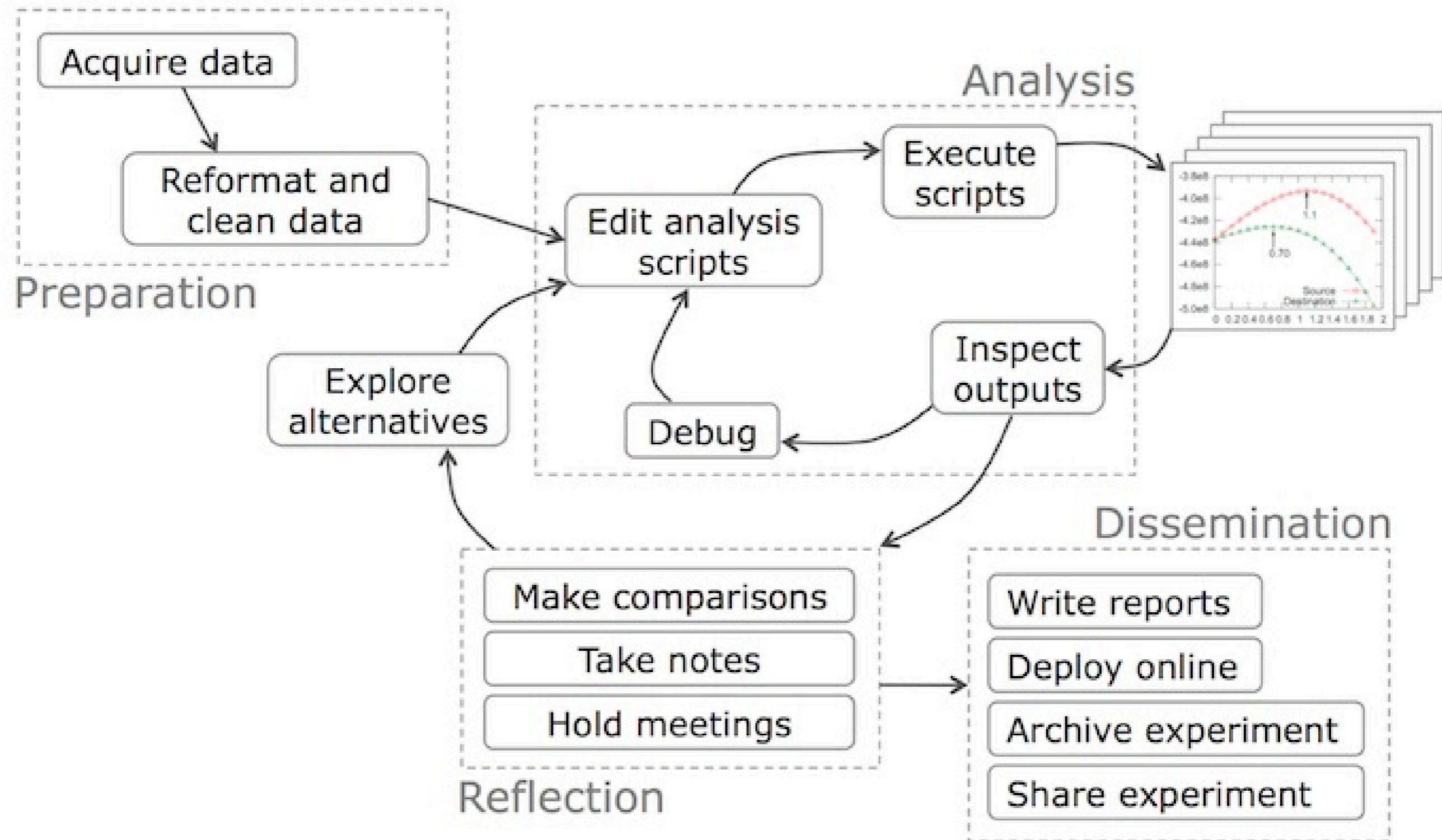
[Big Data](#)

VIEW MORE FROM THE
October 2012 Issue

Obsessing over our customers is everybody's job. I'm looking to the engineering teams to **build the experiences our customers love.** [...] In order to deliver the experiences our customers need for the mobile-first and cloud-first world, we will modernize our engineering processes to be **customer-obsessed, data-driven, speed-oriented and quality-focused.**

Each engineering group will have **Data and Applied Science resources** that will focus on measurable outcomes for our products and predictive analysis of market trends, which will allow us to innovate more effectively.

Typical data science workflow



Background of Data Scientists

Most CS, many interdisciplinary backgrounds

Many have higher education degrees

Strong passion for data

I love data, looking and making sense of the data. [P2]

I've always been a data kind of guy. I love playing with data. I'm very focused on how you can organize and make sense of data and being able to find patterns. I love patterns. [P14]

“Machine learning hackers”. Need to know stats

My people have to know statistics. They need to be able to answer sample size questions, design experiment questions, know standard deviations, p-value, confidence intervals, etc.

Background of Data Scientists

PhD training contributes to working style

It has never been, in my four years, that somebody came and said, “Can you answer this question?” I mostly sit around thinking, “How can I be helpful?” Probably that part of your PhD is you are figuring out what is the most important questions. [P13]

I have a PhD in experimental physics, so pretty much, I am used to designing experiments. [P6]

Doing data science is kind of like doing research. It looks like a good problem and looks like a good idea. You think you may have an approach, but then maybe you end up with a dead end. [P5]

Working Styles of Data Scientists

Insight Provider

Specialists

Platform Builder

Polymath

Team Leader

Types of data scientists

		HARRIS ET AL. 2013
Generalists	<p>Polymath “describes data scientists who ‘do it all’ ”</p>	<p>Data Creatives “data scientists [who] can often tackle the entire soup-to-nuts analytics process on their own”</p>
	<p>Data Preparer</p> <p>Data Shaper</p>	
	<p>Data Analyzer / Insight Provider “main task is to generate insights and to support and guide their managers in decision making”</p>	
Specialists	<p>Platform Builder “build shared data platforms used across several product teams”</p>	<p>Data Developer “people focused on the technical problem of managing data”</p>
	<p>Modelling Specialist “data scientists who act as expert consultants and build predictive models”</p>	
		<p>Data Researcher people with “deep academic training in the use of data to understand complex processes”</p>
Manager	<p>Data Evangelist / Team Leader “senior data scientists who run their own data science teams act as data science ‘evangelists’ ”</p>	<p>Data Businesspeople people who “are most focused on the organization and how data projects yield profit”</p>
	<p>Insight Actor</p>	
Moonlighter	<p>50% Moonlighter</p>	
	<p>20% Moonlighter</p>	

Do we really need
evidence?

“We hold these Truths to be **self-evident**, . . .”

Engineering software is
inherently a human venture

My Favorite Little Result

Aranda & Easterbrook (2005): “Anchoring and Adjustment in Software Estimation”

“How long do you think it will take to make a change to this program?”

Control Group: “*I’d like to give an estimate for this project myself, but I admit I have no experience estimating. We’ll wait for your calculations for an estimate.*”

Group A: “*I admit I have no experience with software projects, but I guess this will take about 2 months to finish.*”

Group B: “*...I guess this will take about 20 months...*”

Results

Group A (lowball)	5.1 months
Control Group	7.8 months
Group B (highball)	15.4 months

The anchor mattered more than experience, how formal the estimation method was, or anything else.

Q: Are agile projects similarly afflicted, just on a shorter and more rapid cycle?

40 percent of major decisions are based not on facts, but on the manager's gut.

Accenture survey among 254 US managers in industry.

http://newsroom.accenture.com/article_display.cfm?article_id=4777

Belief vs evidence

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical software engineering. In *Proceedings of the 38th international conference on software engineering* (pp. 108-119). ACM.

Belief

Evidence

I'm going to
do X to avoid
bugs

Belief

Evidence

I'm going to
do X to avoid
bugs

But..data
says
Otherwise!

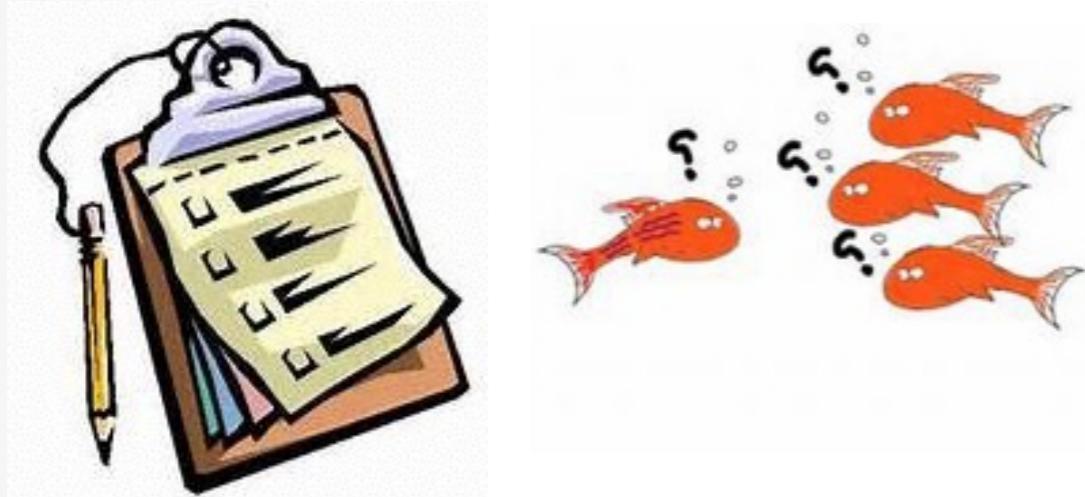
Belief

Evidence

Our Approach

Our Approach

Survey
Programmers

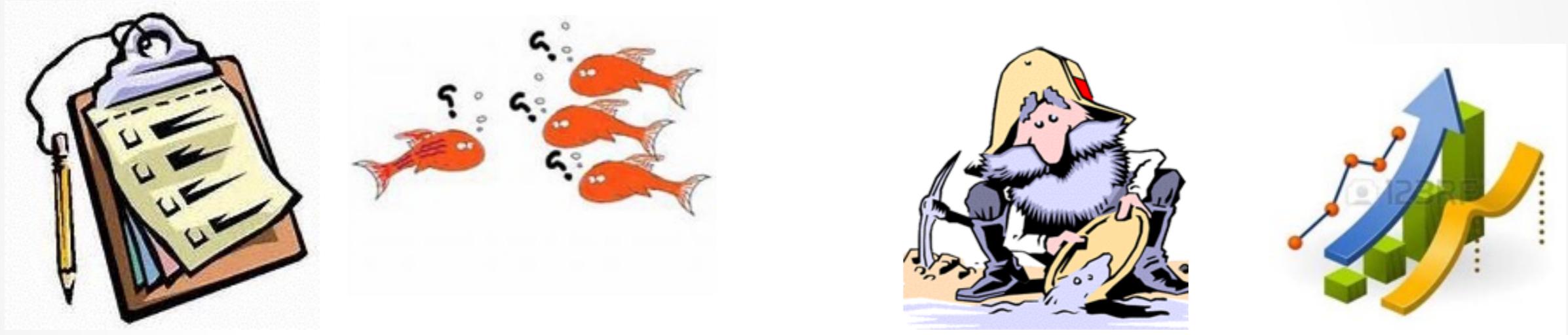


Belief

Our Approach

Survey
Programmers

Mine+Analyze
Repositories



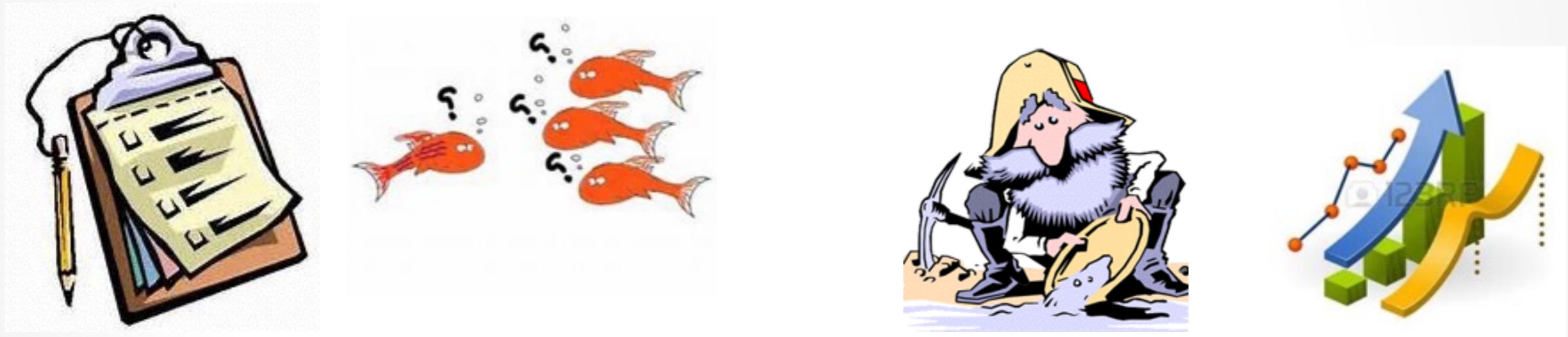
Belief

Evidence

Our Approach

Survey
Programmers

Mine+Analyze
Repositories



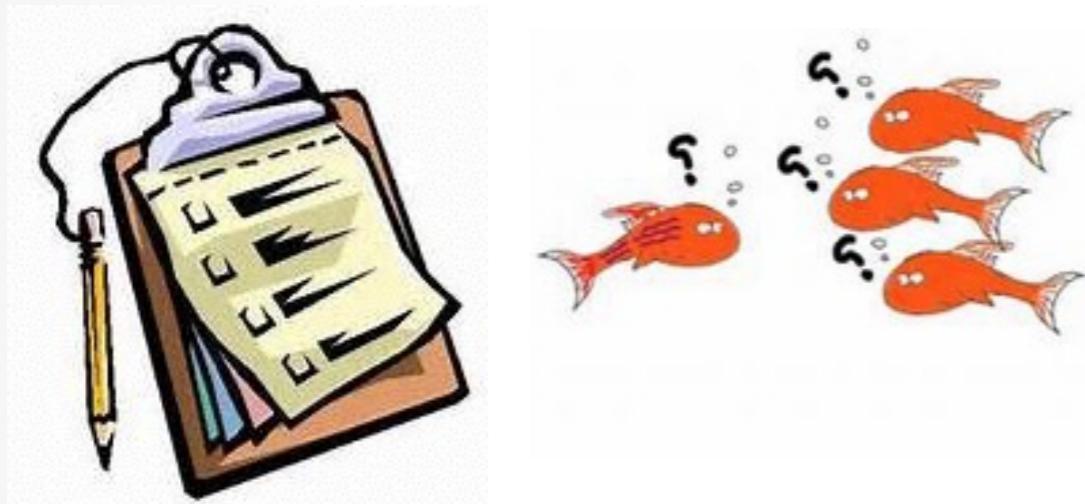
Belief

Evidence

??

Our Approach

Survey
Programmers

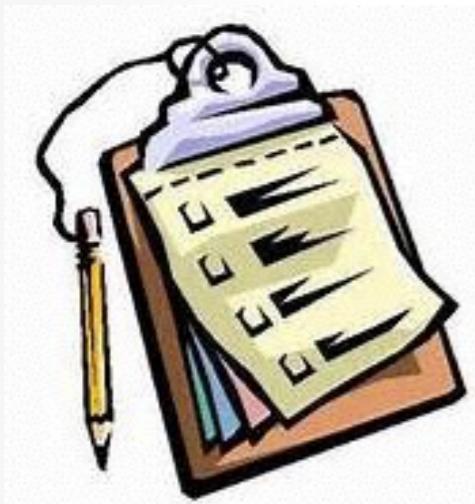
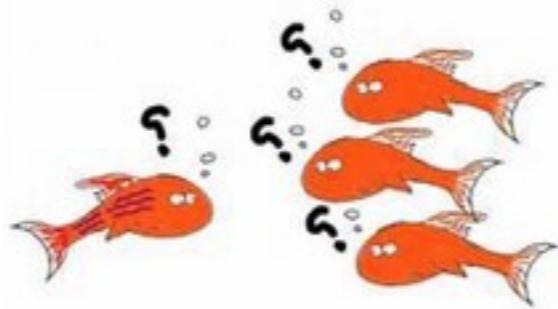
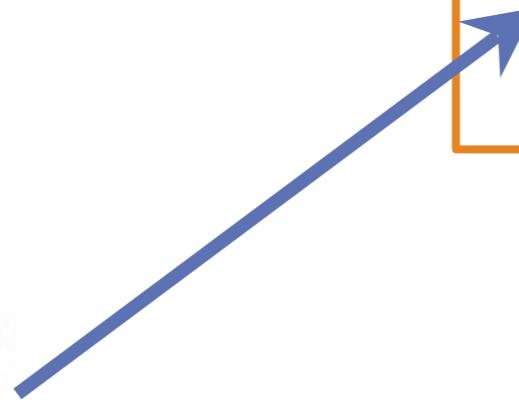


Belief

Our Approach

Survey
Programmers

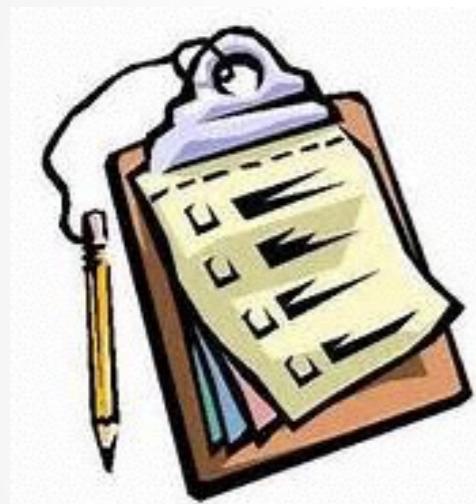
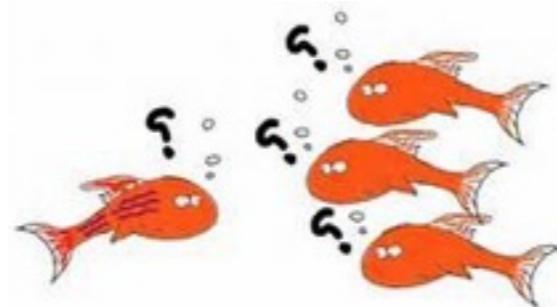
What are the
Beliefs?



Belief

Our Approach

Survey
Programmers



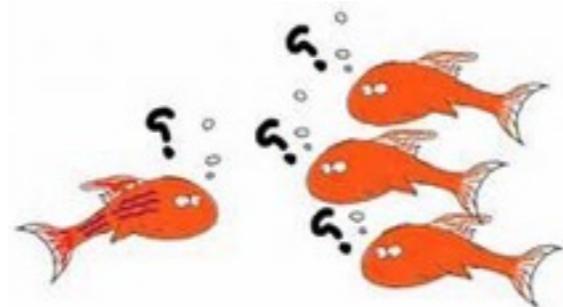
What are the
Beliefs?

How strong?

Belief

Our Approach

Survey
Programmers



Belief

What are the
Beliefs?

How strong?

Where do they
originate?

Sample Question

Sample Question

Geographically distributed teams produce code of as good quality as non-distributed teams.

Sample Question

Geographically distributed teams produce code of as good quality as non-distributed teams.

1. *Strongly Agree*
2. *Agree*
3. *Neutral*
4. *Disagree*

Sample Question

Geographically distributed teams produce code of as good quality as non-distributed teams.

1. *Strongly Agree*
2. *Agree*
3. *Neutral*
4. *Disagree*
5. *Strongly Disagree*

Responses

- 2500 surveyed, 564 Responses (22%)
- 497 Male, 53 Female
- 267 Bachelors, 211 Masters, 29 PhD
- 386 US, 66 EU, 48 IN, 39 CN, 25 (Other).

Least Controversial

Least Controversial

1. Code Reviews improve Code Quality

Least Controversial

1. Code Reviews improve Code Quality
2. Coding Standards improve code quality

Least Controversial

1. Code Reviews improve Code Quality
2. Coding Standards improve code quality
3. Static Analysis tools improve code quality

Most Controversial

Most Controversial

1. Code Quality depends on programming language

Most Controversial

1. Code Quality depends on programming language
2. Fixing Defects is riskier than adding new features

Most Controversial

1. Code Quality depends on programming language
2. Fixing Defects is riskier than adding new features
3. Geographically distributed teams produce code of as good quality as non-distributed teams.

Opinion Source

Opinion Source

Code quality (defect occurrence) depends on which programming language is used.

1. *Strongly Agree*
2. *Agree*
3. *Neutral*
4. *Disagree*
5. *Strongly Disagree*

Opinion Source

Code quality (defect occurrence) depends on which programming language is used.

1. *Strongly Agree*
2. Agree
3. Neutral
4. Disagree
5. *Strongly Disagree*

Opinion Source

Code quality (defect occurrence) depends on which programming language is used.

1. Strongly Agree

2. Agree

3. Neutral

4. Disagree

5. Strongly Disagree

Where do they originate?

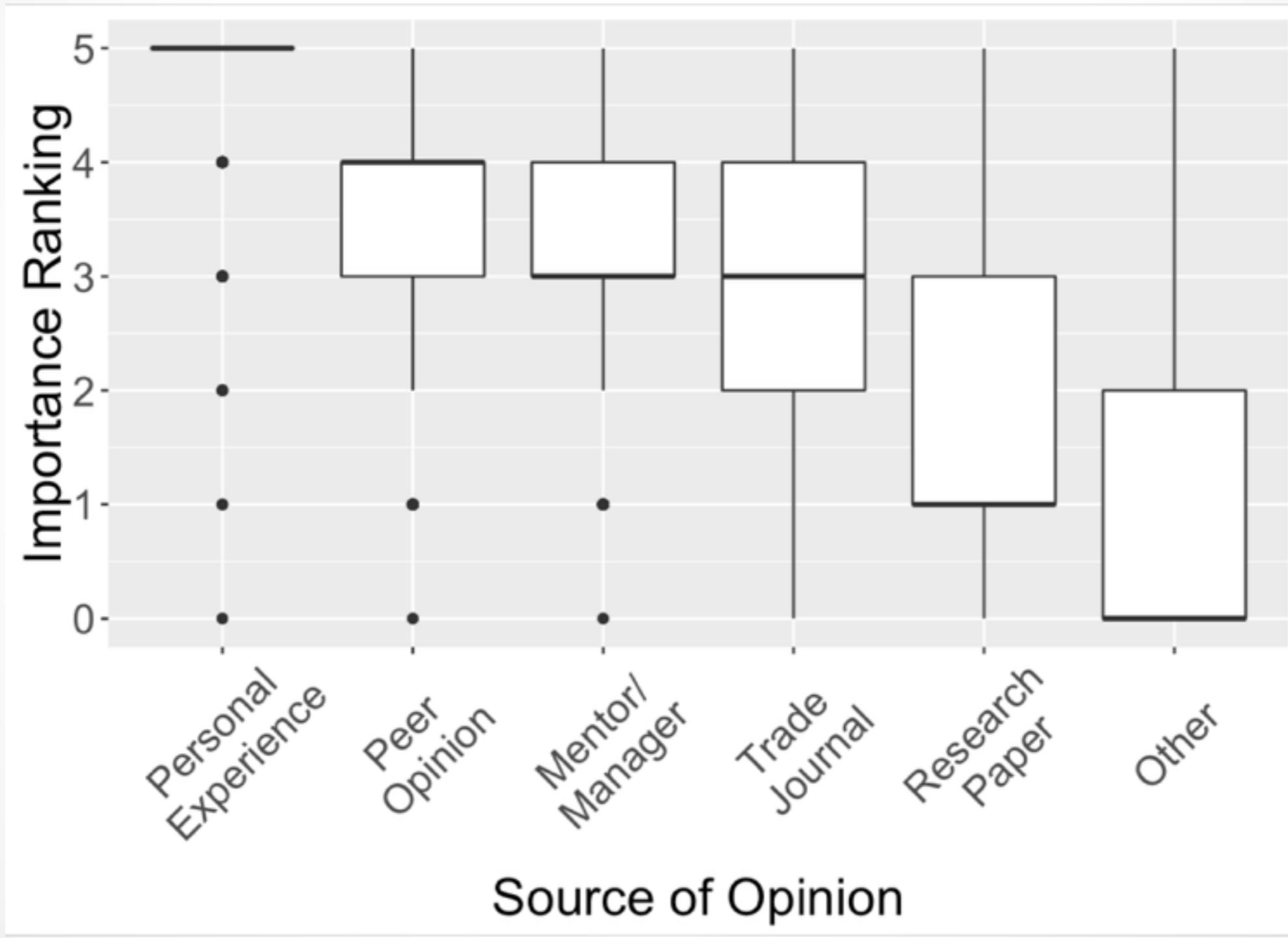
Opinion Source

Opinion Source

What factors played a role in your previous answer? Please choose the relevant factors, and rank them:

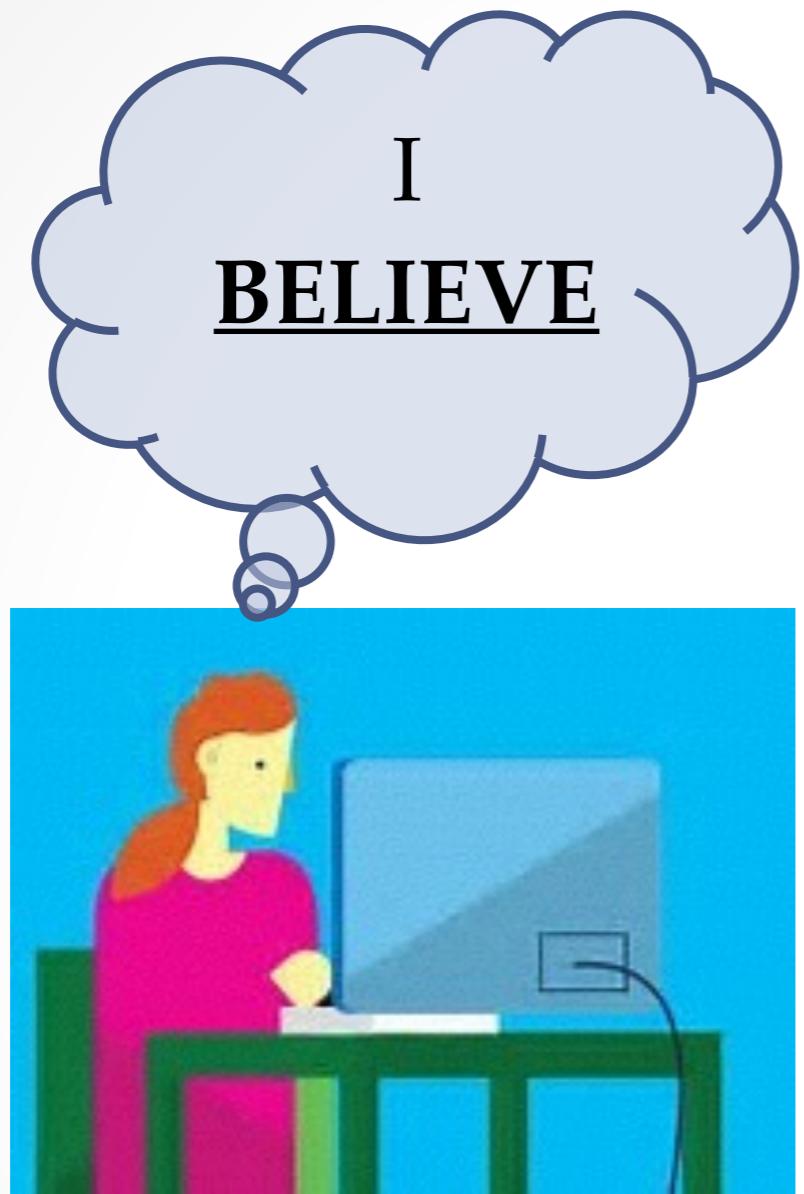
1. Research Papers
2. Articles in Industry Magazines
3. What I hear from my mentors/managers
4. What I hear from my peers
5. Personal Experience
6. Other

Opinion Formation



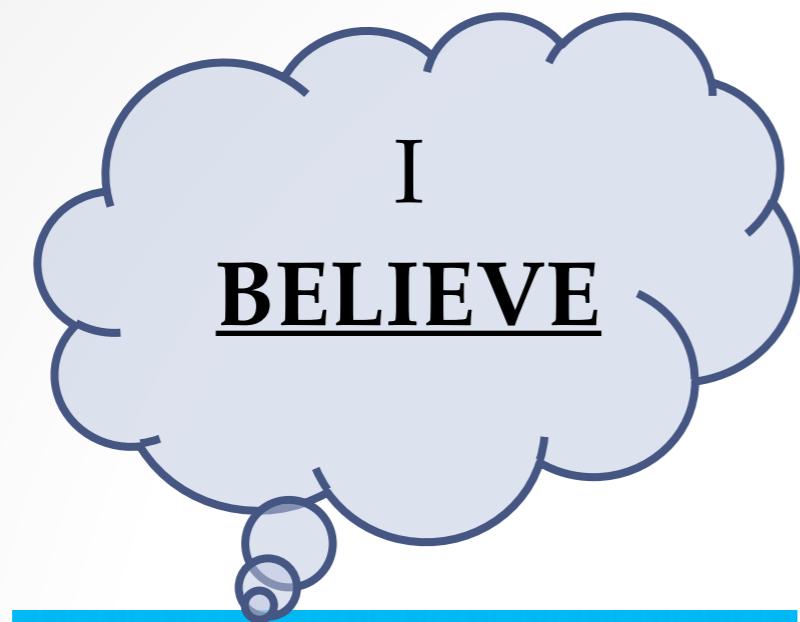
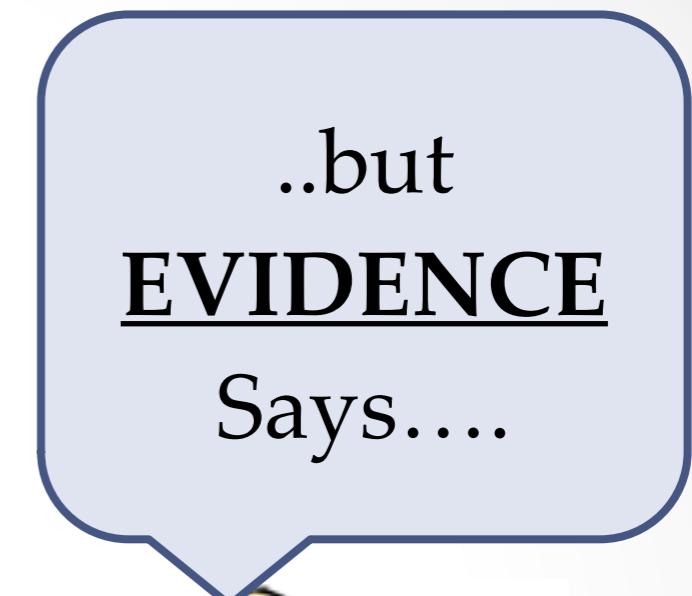
Belief

Evidence



Belief

Evidence



Belief

Evidence



Belief

Evidence

Same? Different?

A Tale of Two Projects

- *Project-A*: Operating System; 400,000 files, 150 Million SLOC, began in the Puget Sound area.
- *Project-B*: Web Service, 430,000 files, 85 Million SLOC, always distributed.
- Both practice distributed (many buildings, cities, regions, and countries) development.
- *Project-B* is a bit **more** distributed than *Project-A*.

A Tale of Two Projects

- Project-A: Operating System; 400,000 files, 150 Million SLOC, 1000+ authors
- Project-B: Database system; 100,000 files, 100,000 SLOC, 1000+ authors
- Both projects were geographically distributed
- Project-A members tended to DISAGREE
- Project-B members tended to AGREE
- $p < 0.001$

A Tale of Two Projects

- *Project-A*: Operating System; 400,000 files, 150 Million SLOC, began in the Puget Sound area.
- *Project-B*: Web Service, 430,000 files, 85 Million SLOC, always distributed.
- Both practice distributed (many buildings, cities, regions, and countries) development.
- *Project-B* is a bit **more** distributed than *Project-A*.

A Tale of Two Projects

- *Project-A* is a monolithic, 150,000,000 SLOC, always centralized.
- *Project-B* is a distributed, 150 Million SLOC, always distributed.
- Both practice distributed (many buildings, cities, regions, and countries) development.
- *Project-B* is a bit **more** distributed than *Project-A*.

Evidence?

A Tale of Two Projects

Another example:

Perl - low entry barrier

The Biggest Challenge

<http://tinyurl.com/nwit-randomo>

Stefik et al: “An Empirical Comparison of the Accuracy Rates of Novices using the Quorum, Perl, and Randomo Programming Languages.” *PLATEAU'11*

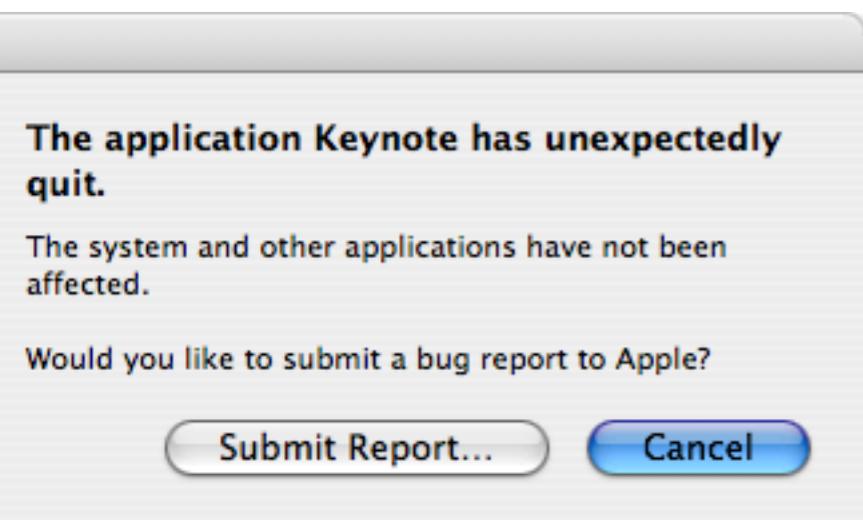
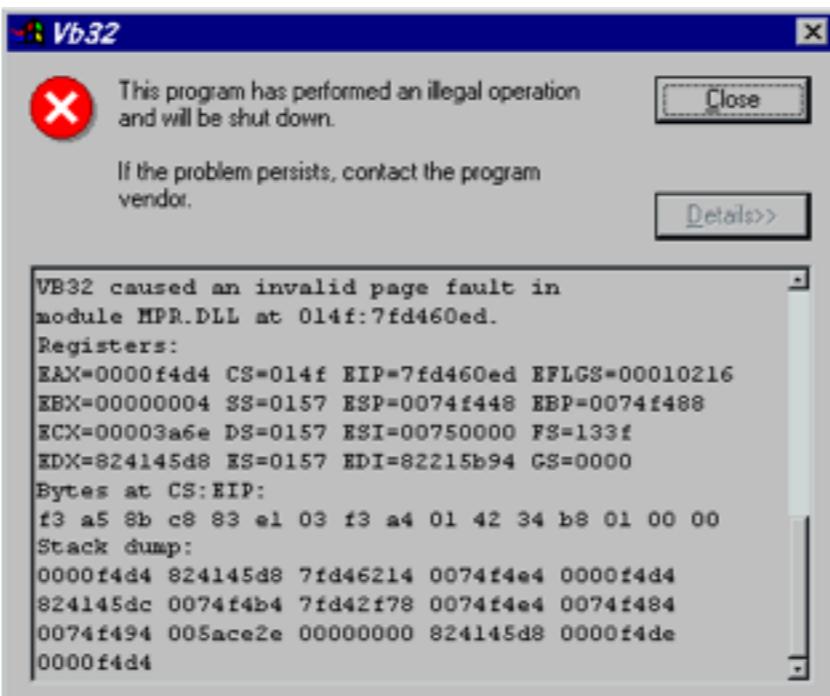
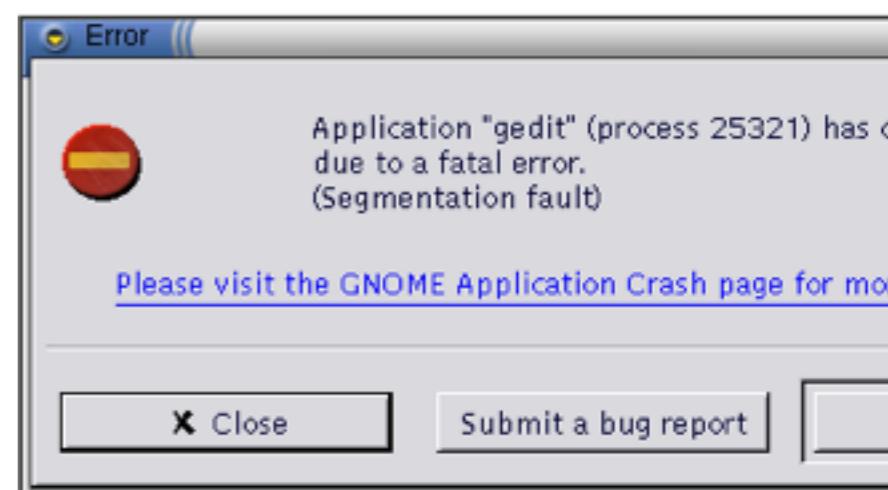
We present here an empirical study comparing the accuracy rates of novices writing software in three programming languages: Quorum, Perl, and Randomo. The first language, Quorum, we call an evidence-based programming language, where the syntax, semantics, and API designs change in correspondence to the latest academic research and literature on programming language usability. Second, while Perl is well known, we call Randomo a Placebo-language, where some of the syntax was chosen with a random number generator and the ASCII table. We compared novices that were programming for the first time using each of these languages, testing how accurately they could write simple programs using common program constructs (e.g., loops, conditionals, functions, variables, parameters). Results showed that while Quorum users were afforded significantly greater accuracy compared to those using Perl and Randomo, Perl users were unable to write programs more accurately than those using a language designed by chance.

A few success stories

DEFECT PREDICTION

Bugs are everywhere

Bugs are everywhere



Quality assurance is limited...

...by time...

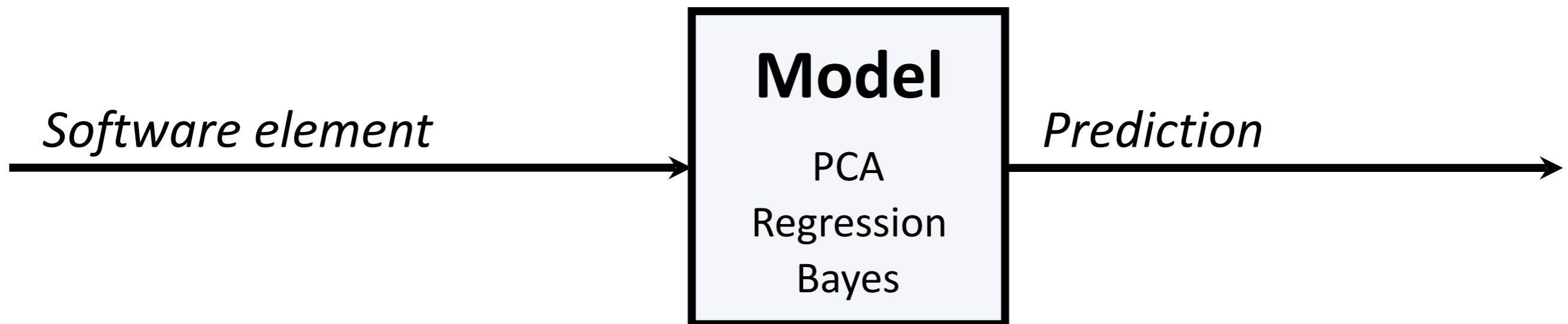
Quality assurance is limited...

...by time...

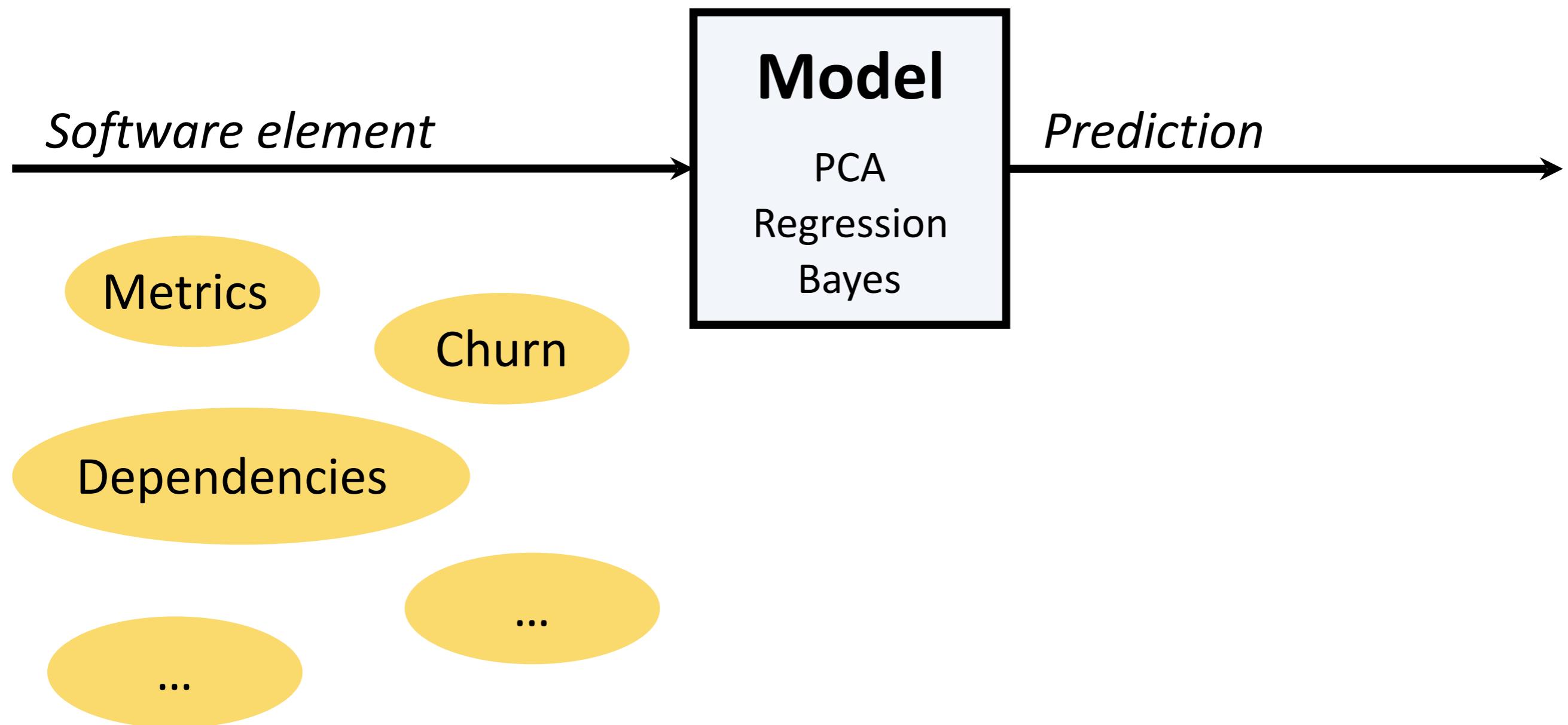
...and by money.

Spent QA resources on the components/files that need it most, i.e., are most likely to fail.

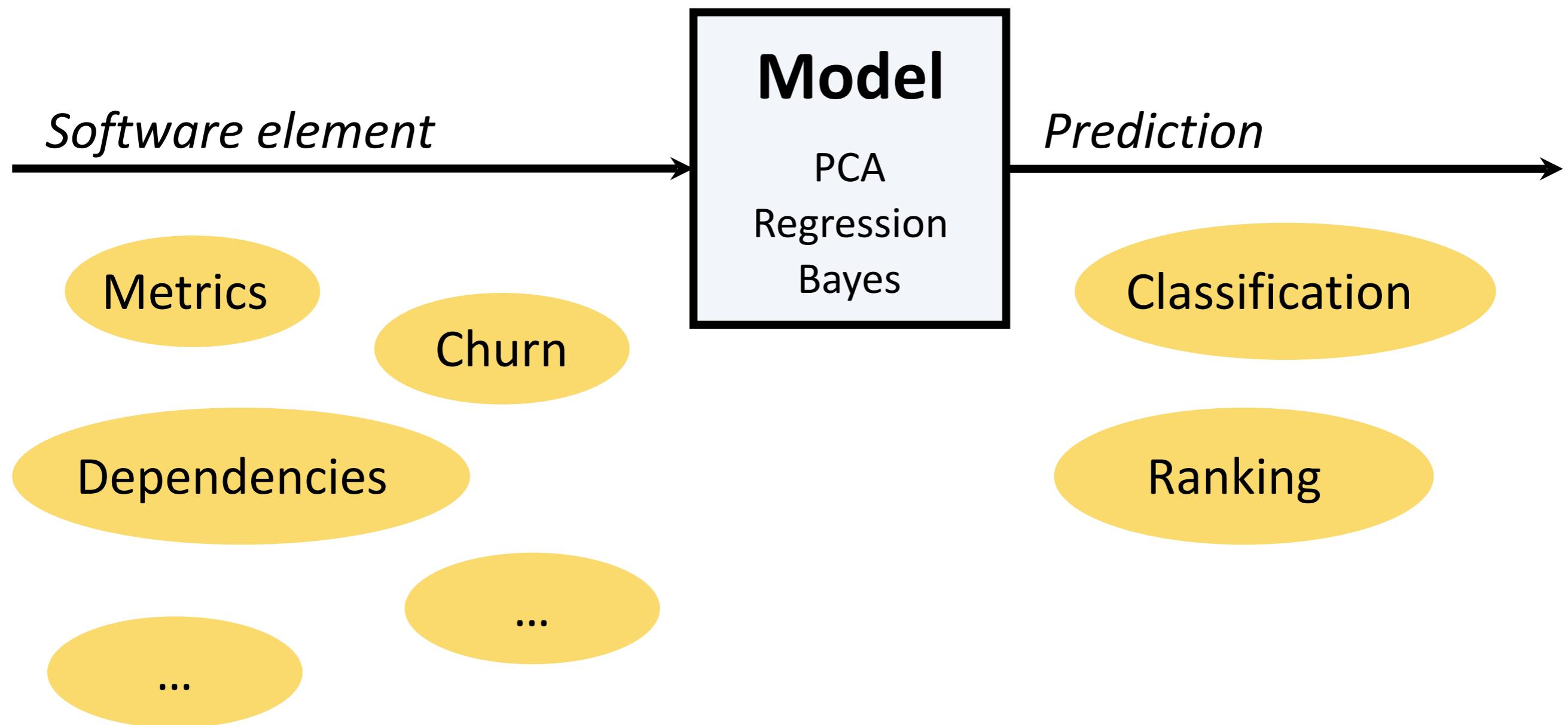
Defect prediction



Defect prediction



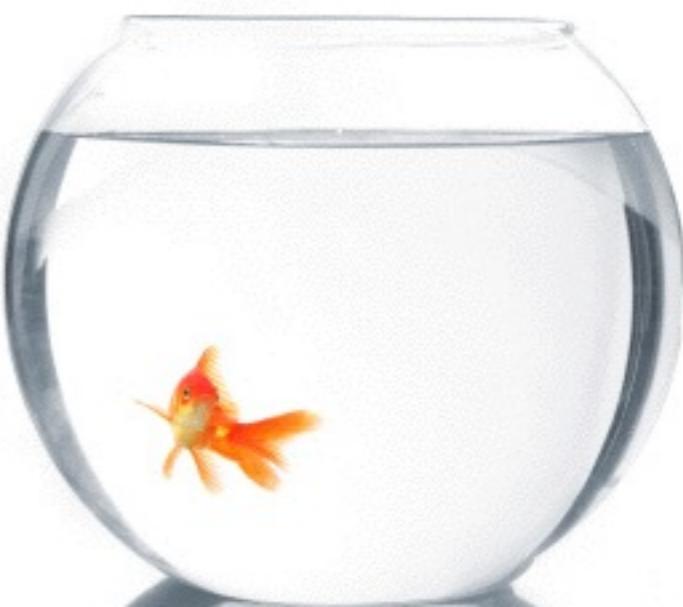
Defect prediction



Classification

Has a binary a defect or not?

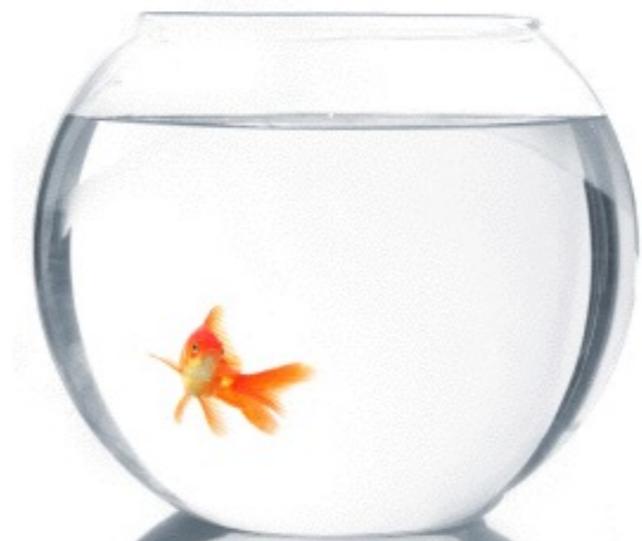
or



Ranking

Which binaries have the most defects?

or



or ... or



Defect prediction

- Learn a prediction model from **historic data**
- Predict defects for the **same project**
- Hundreds of prediction models exist
- Models work fairly well with precision and recall of up to 80%.

Defect prediction

- Learn a prediction model from **historic data**
- Predict defects for the **same project**
- Hundreds of prediction models exist
- Models work fairly well with precision and recall of up to 80%.

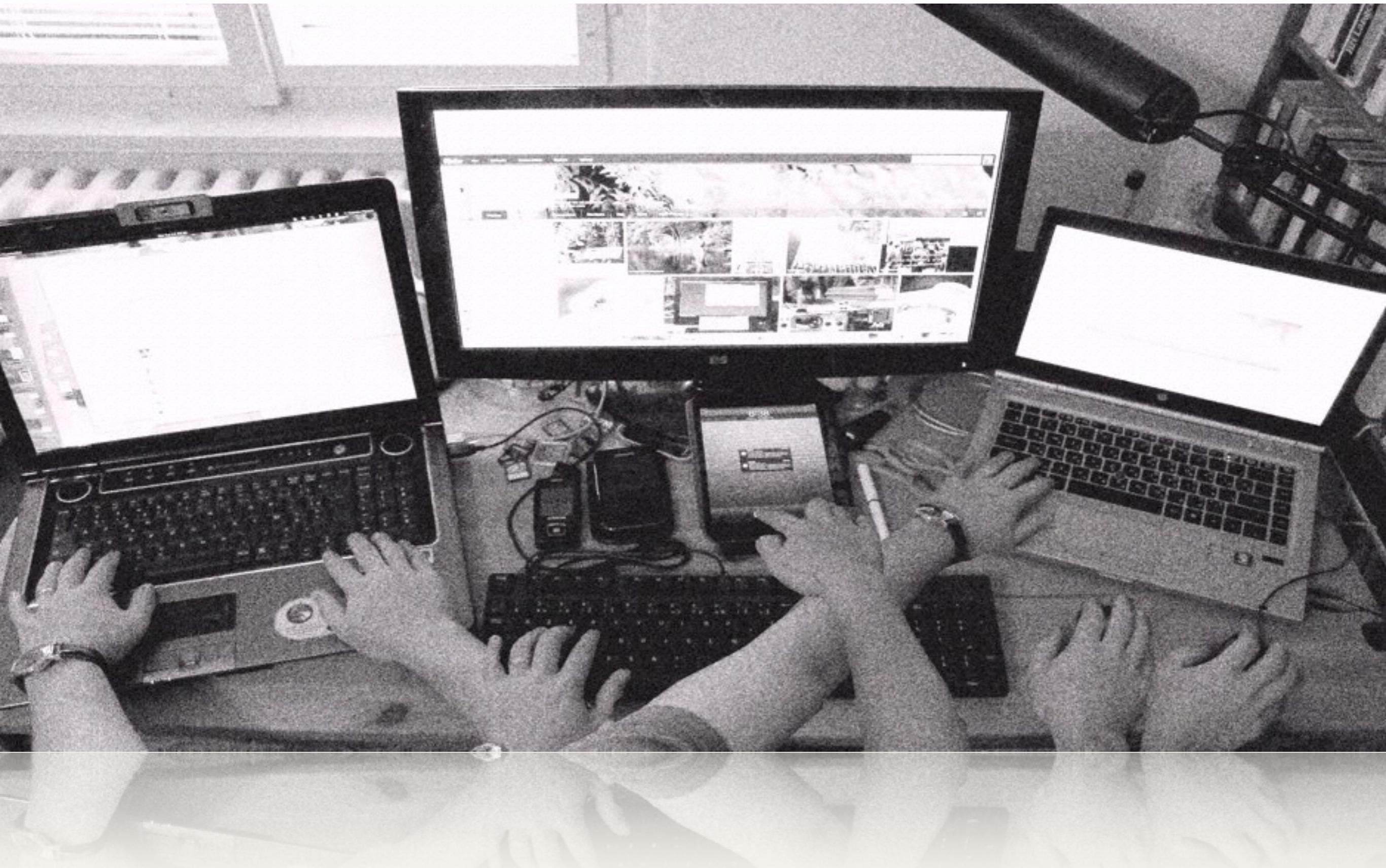
Predictor	Precision	Recall
Pre-Release Bugs	73.80%	62.90%
Test Coverage	83.80%	54.40%
Dependencies	74.40%	69.90%
Code Complexity	79.30%	66.00%
Code Churn	78.60%	79.90%
Org. Structure	86.20%	84.00%

From: N. Nagappan, B. Murphy, and V. Basili. The influence of organizational structure on software quality. ICSE 2008.

How many projects to work on at the same time?

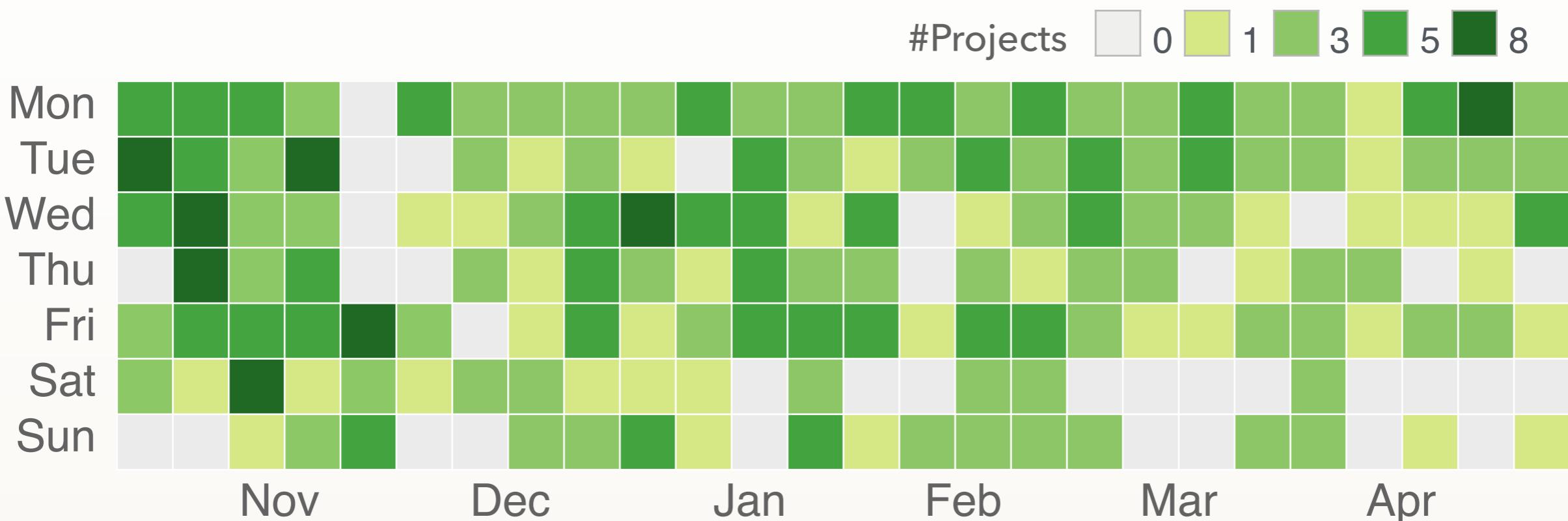
Vasilescu, B., Blincoe, K., Xuan, Q., Casalnuovo, C., Damian, D., Devanbu, P., & Filkov, V. (2016, May). The sky is not the limit: multitasking across GitHub projects. In *Proceedings of the 38th International Conference on Software Engineering* (pp. 994-1005). ACM.

Multitasking is common



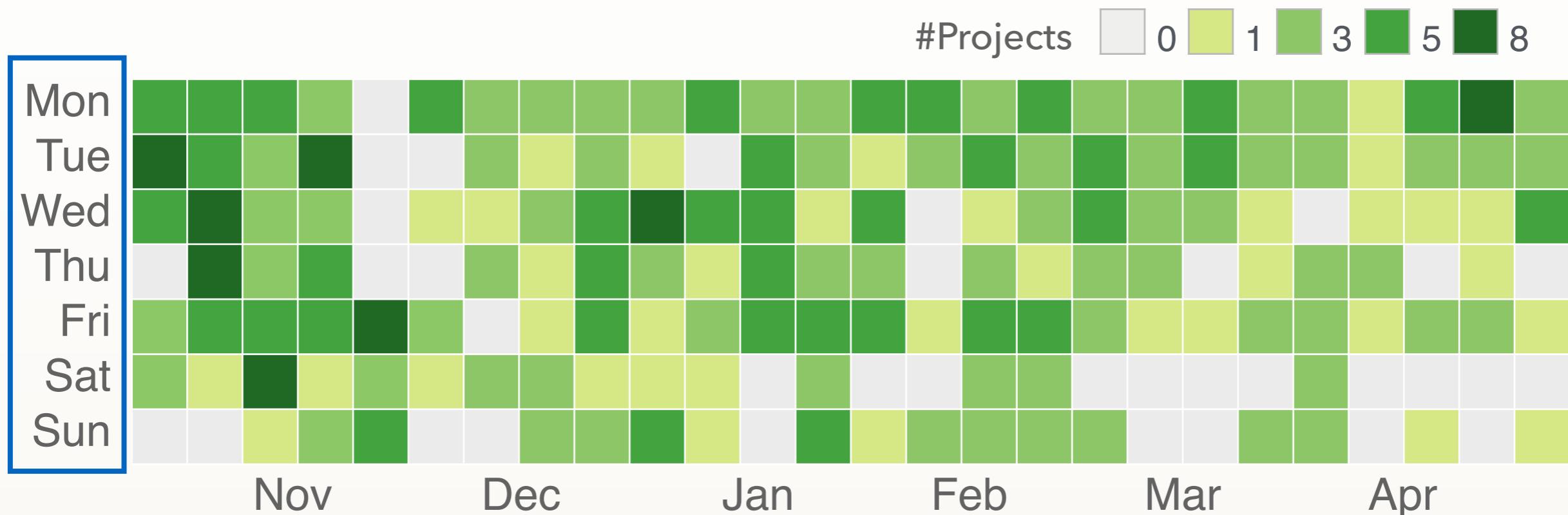
Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)



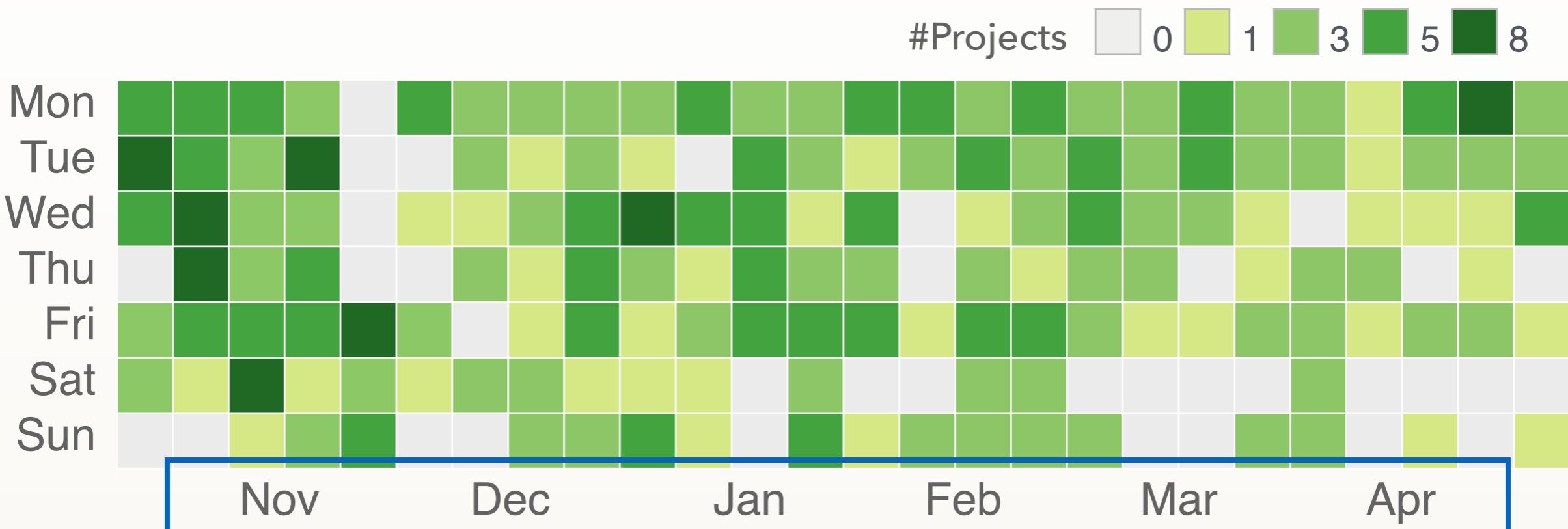
Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)



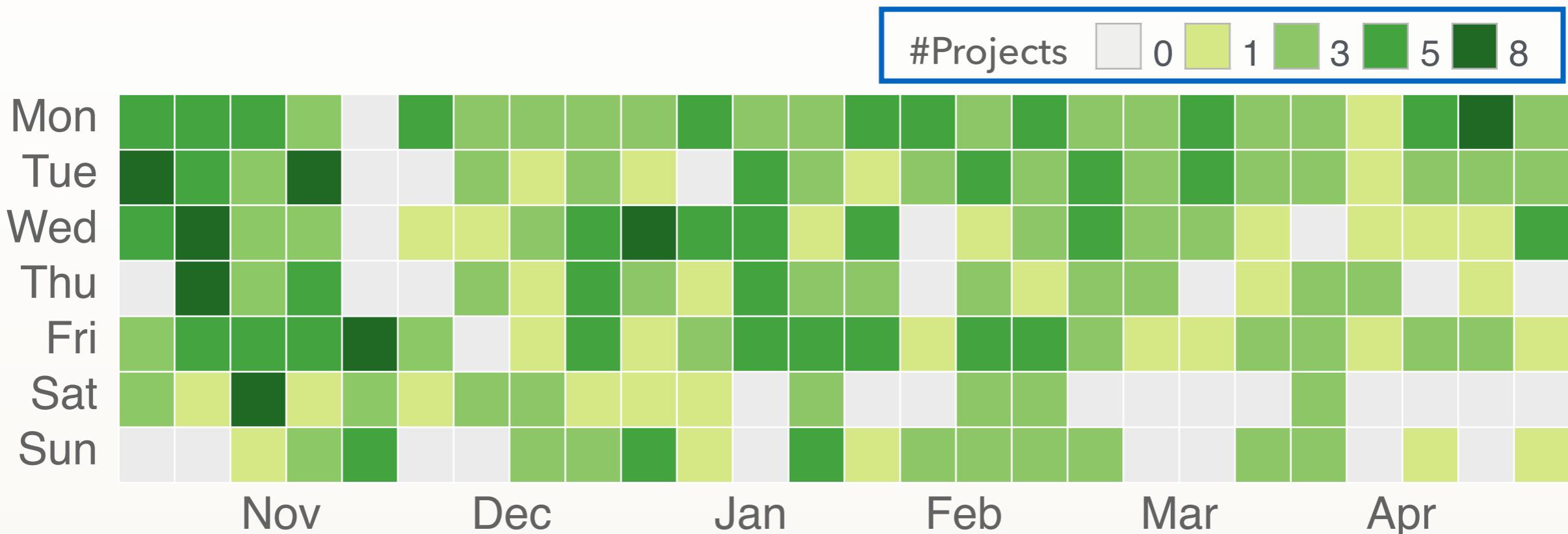
Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)



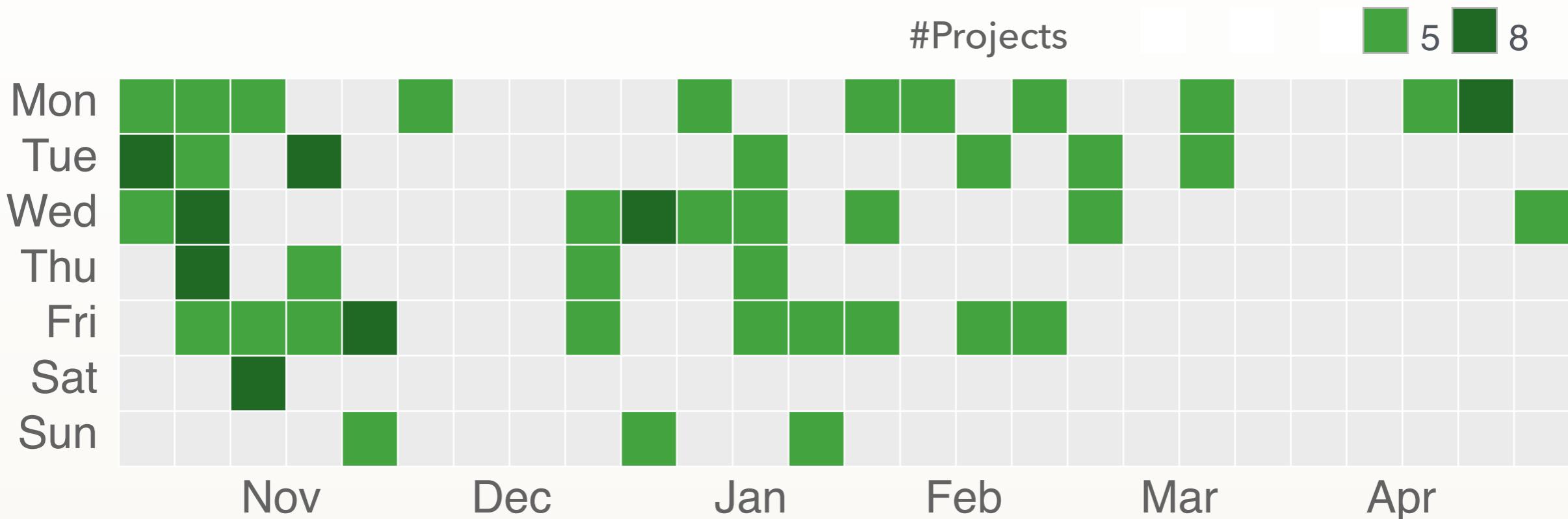
Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)



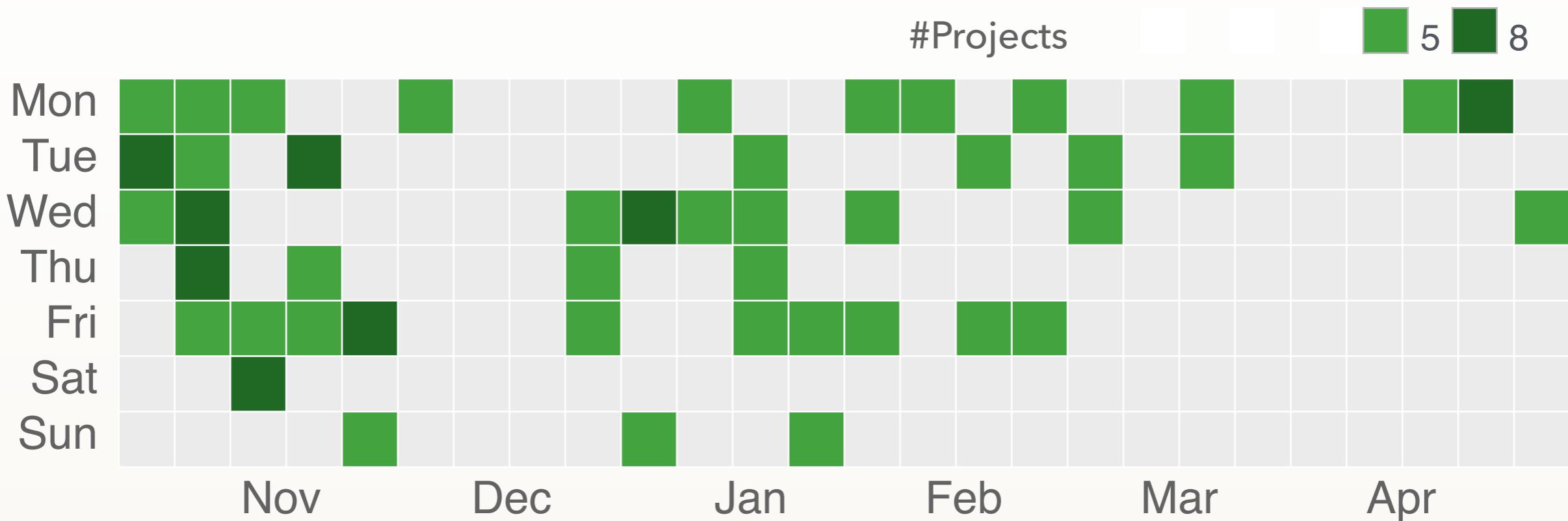
Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)



Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

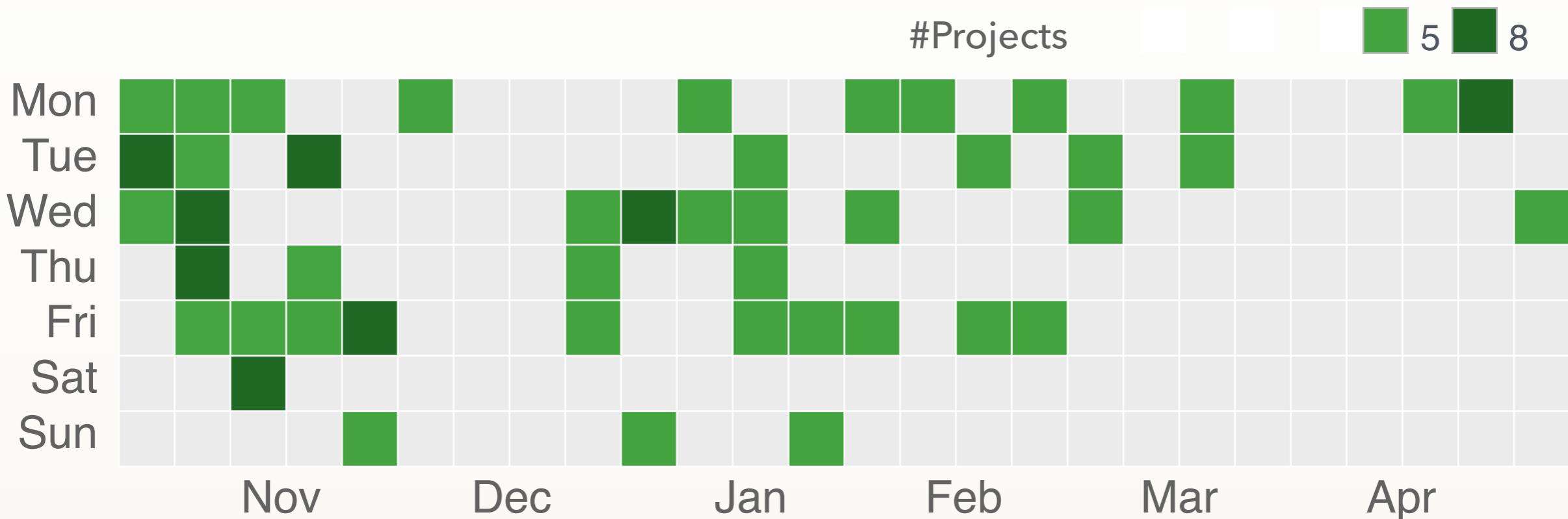


WHY?

- ▶ Request from other dev's / management

Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

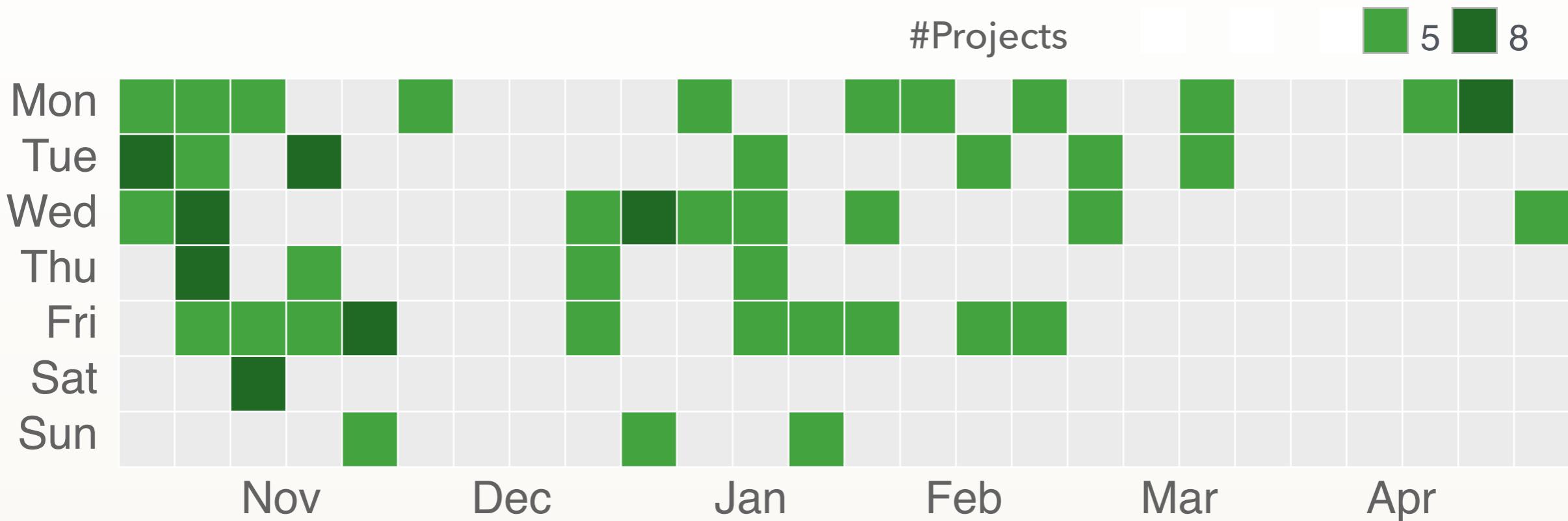


WHY?

- ▶ Request from other dev's / management
- ▶ Dependencies

Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

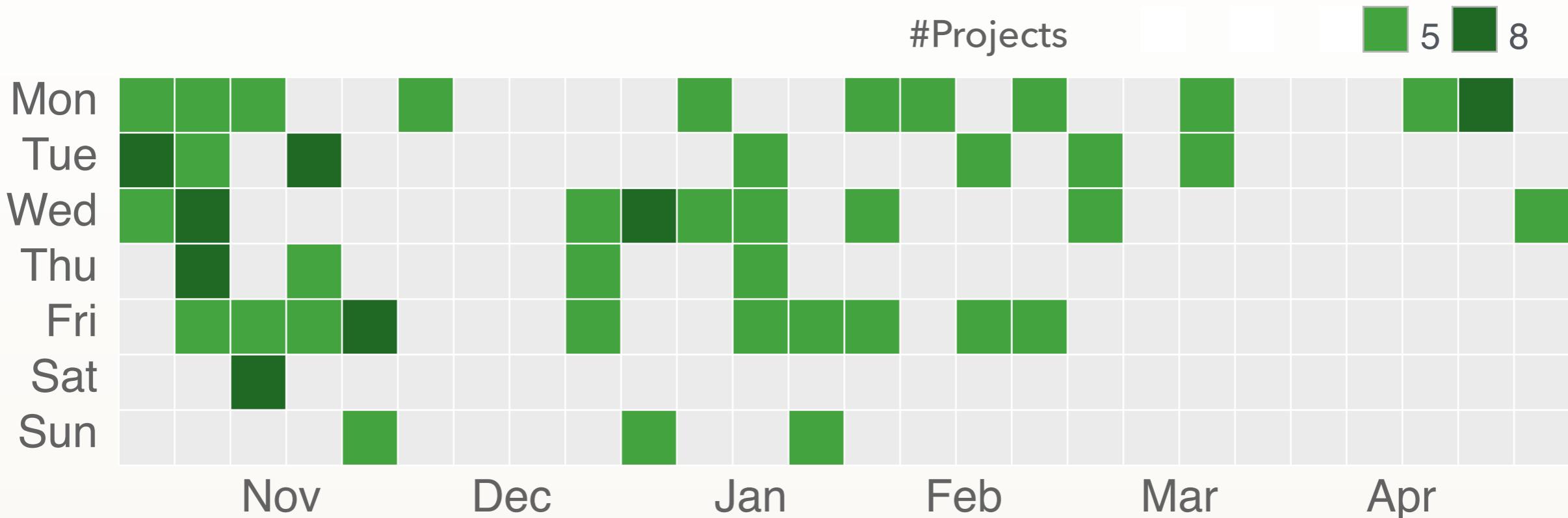


WHY?

- ▶ Request from other dev's / management
- ▶ Dependencies
- ▶ Being "stuck"
- ▶ Downtime

Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

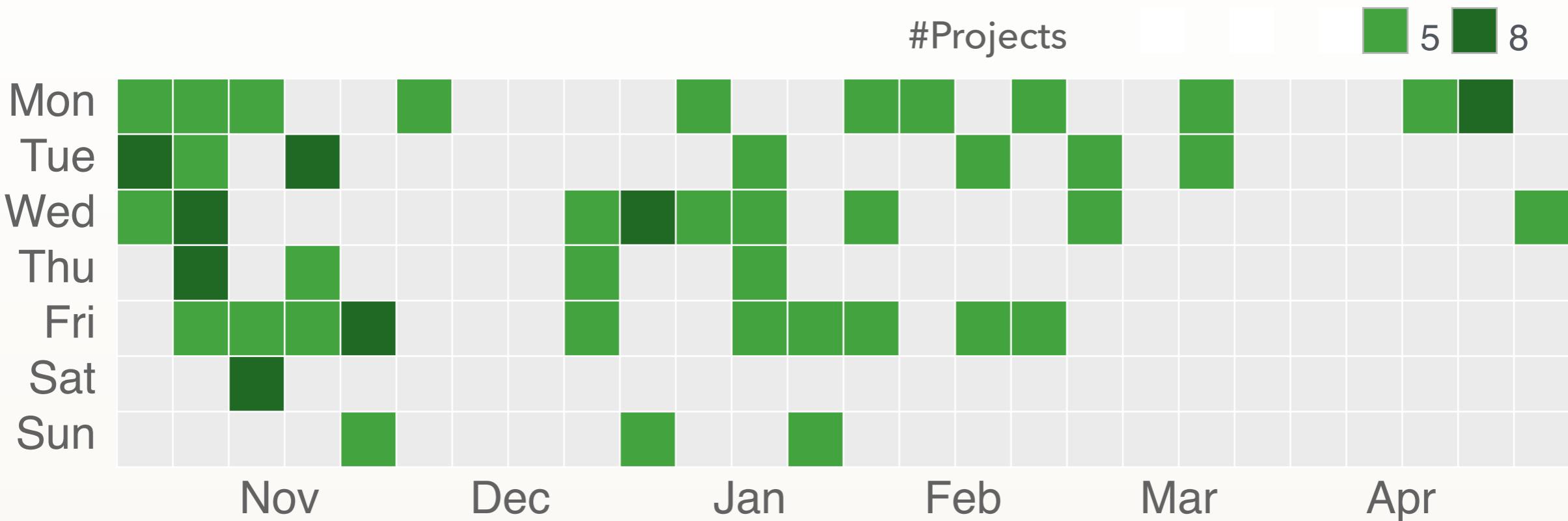


WHY?

- ▶ Request from other dev's / management
- ▶ Dependencies
- ▶ Being "stuck"
- ▶ Downtime
- ▶ Personal interest

Software developers multitask too

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

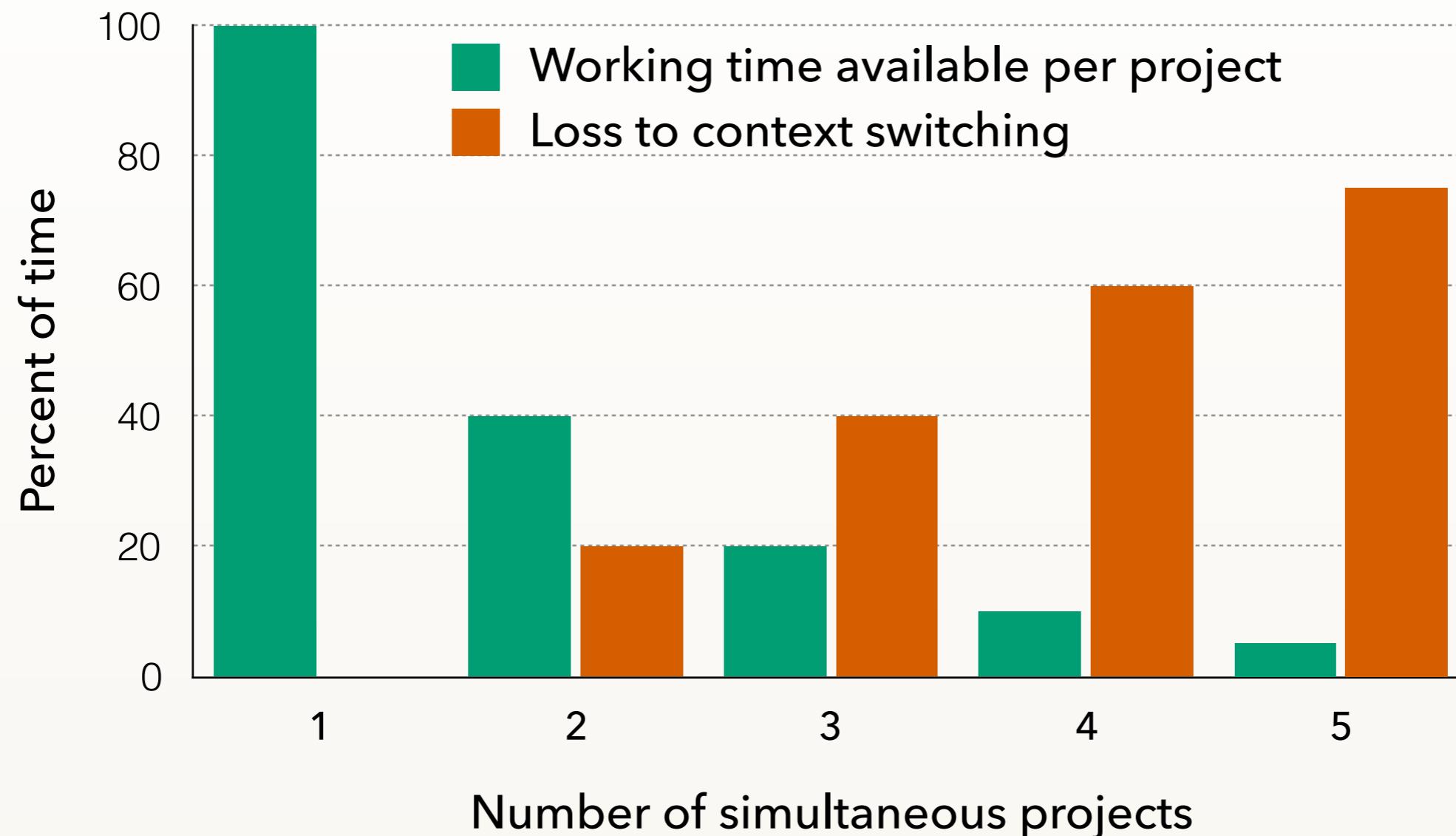


WHY?

- ▶ Request from other dev's / management
- ▶ Dependencies
- ▶ Being "stuck"
- ▶ Downtime
- ▶ Personal interest
- ▶ Signaling

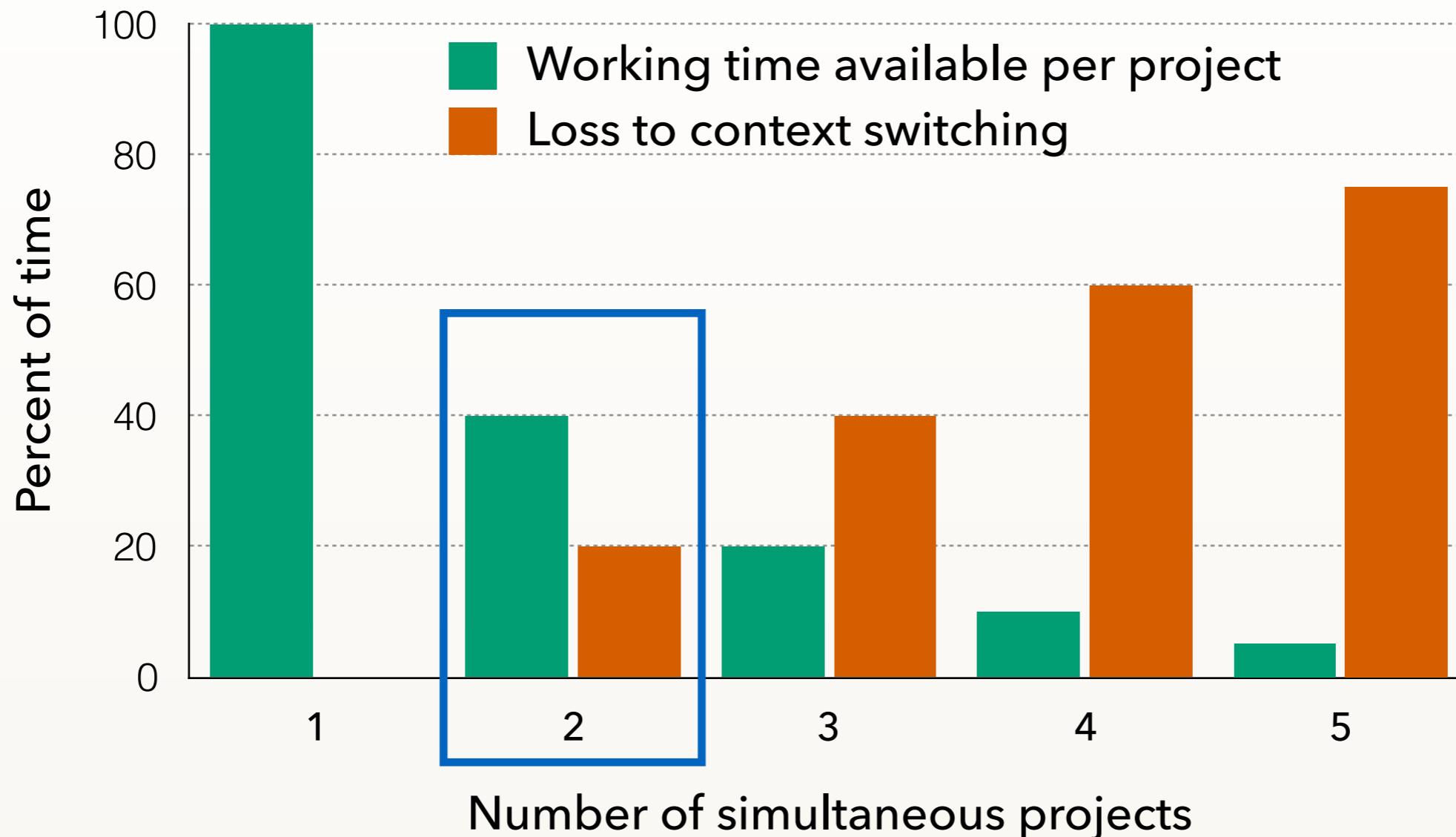
Hardly any empirical evidence

Rule of thumb (Weinberg, 1992) - not based on data



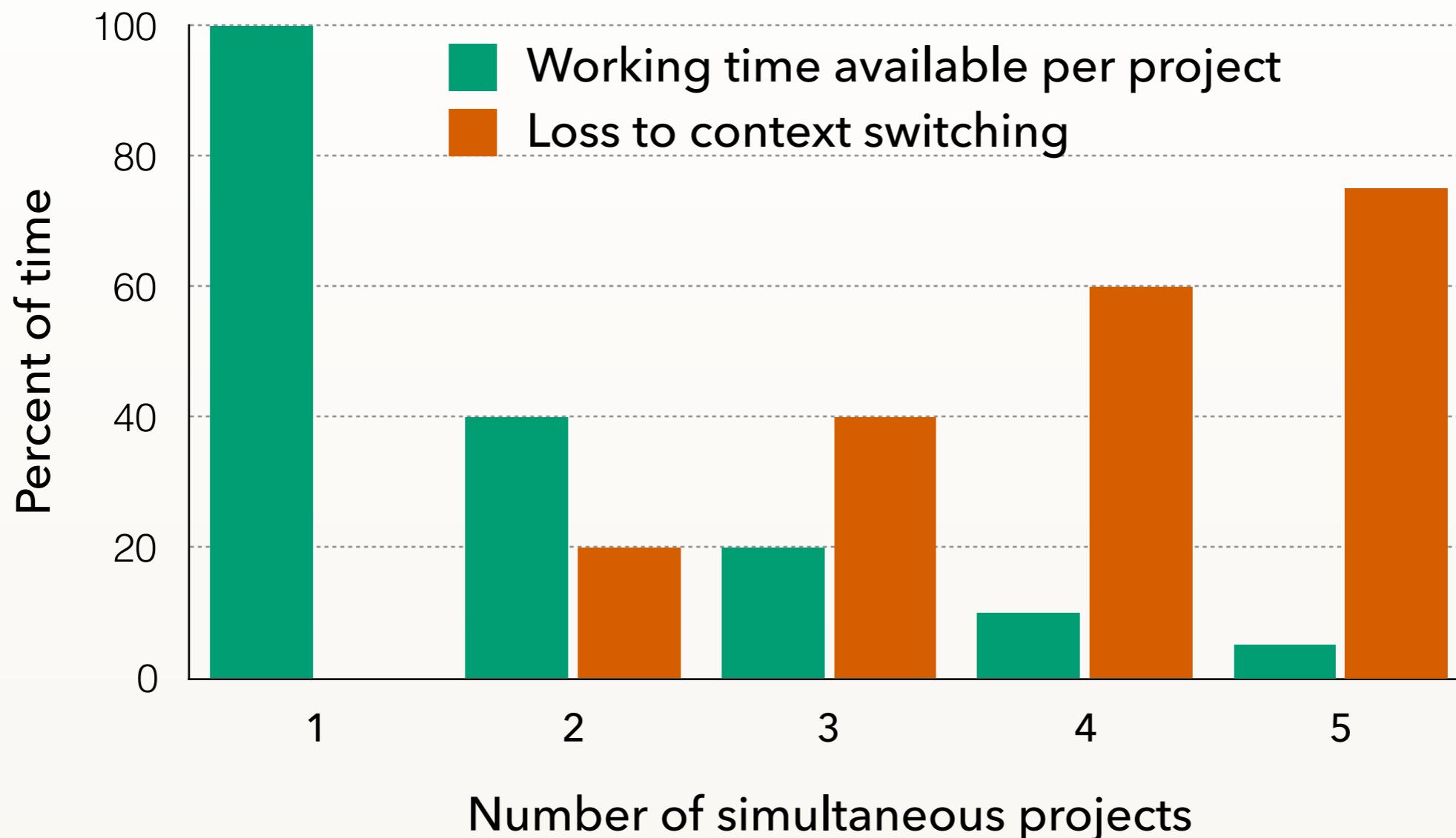
Hardly any empirical evidence

Rule of thumb (Weinberg, 1992) - not based on data



Hardly any empirical evidence

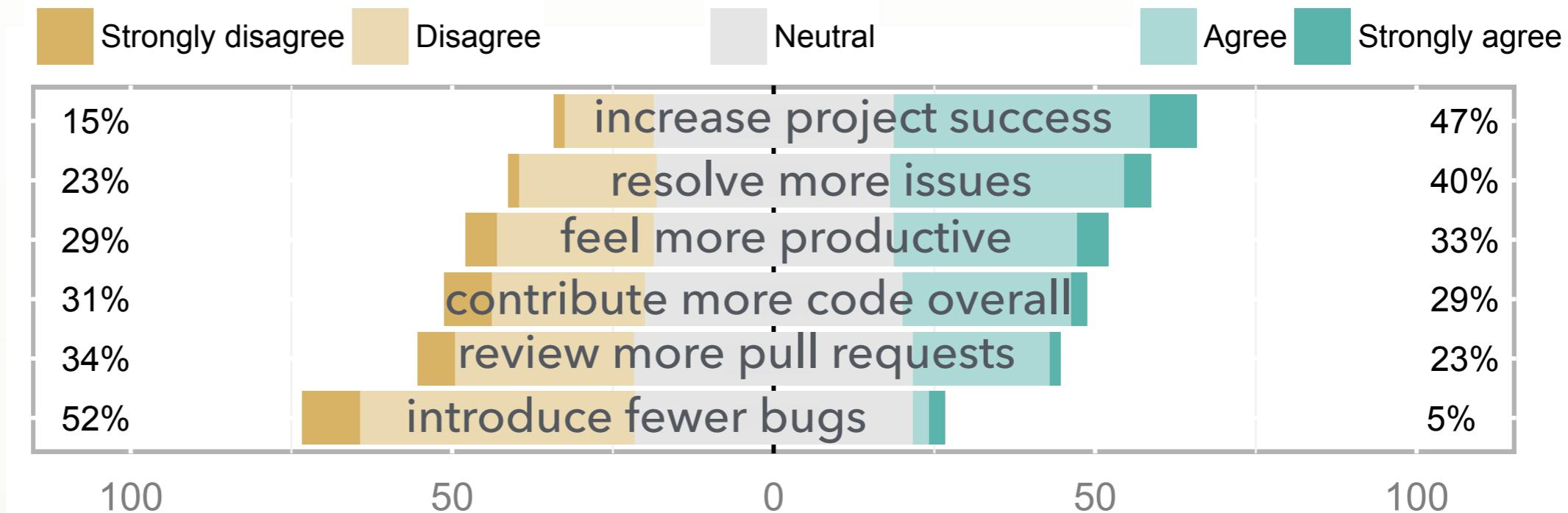
Rule of thumb (Weinberg, 1992) - not based on data



Effects: perception vs. data

PERCEPTION

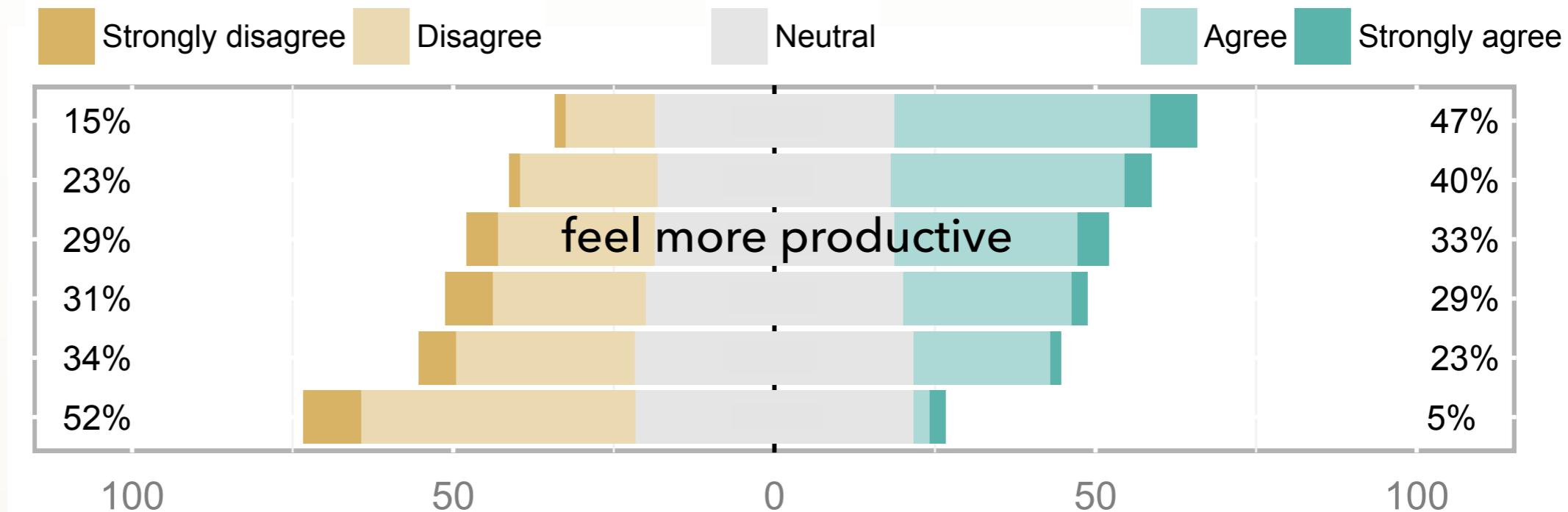
"When contributing to multiple projects in parallel, I:"



Effects: perception vs. data

PERCEPTION

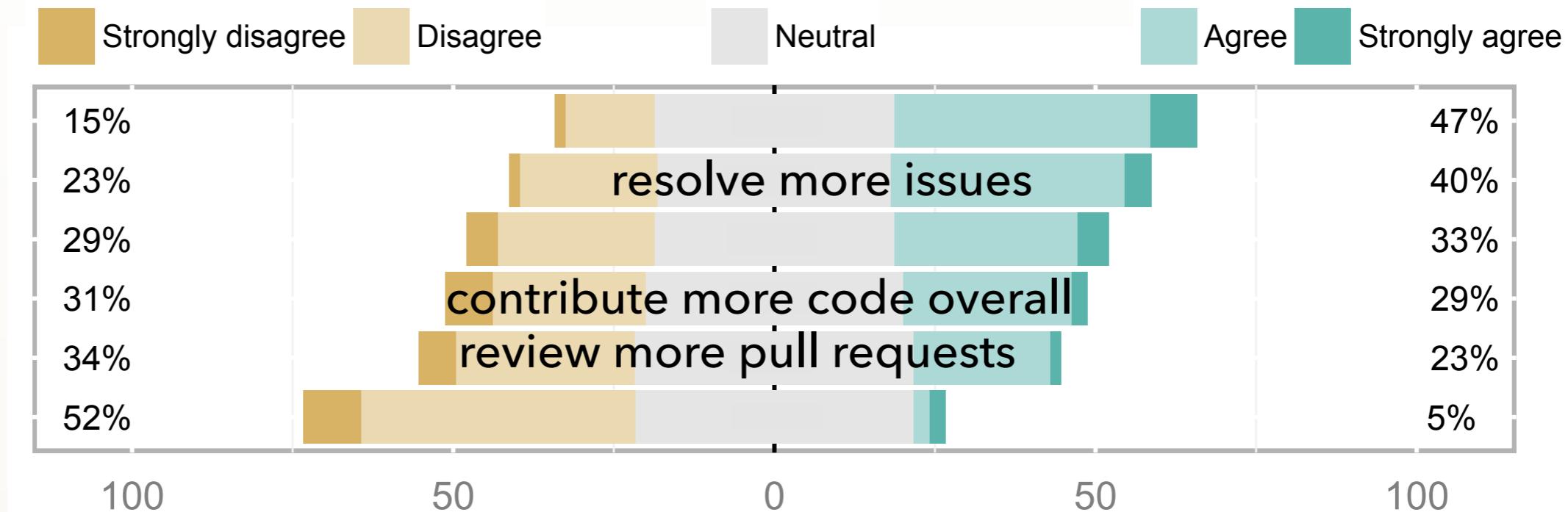
"When contributing to multiple projects in parallel, I:"



Effects: perception vs. data

PERCEPTION

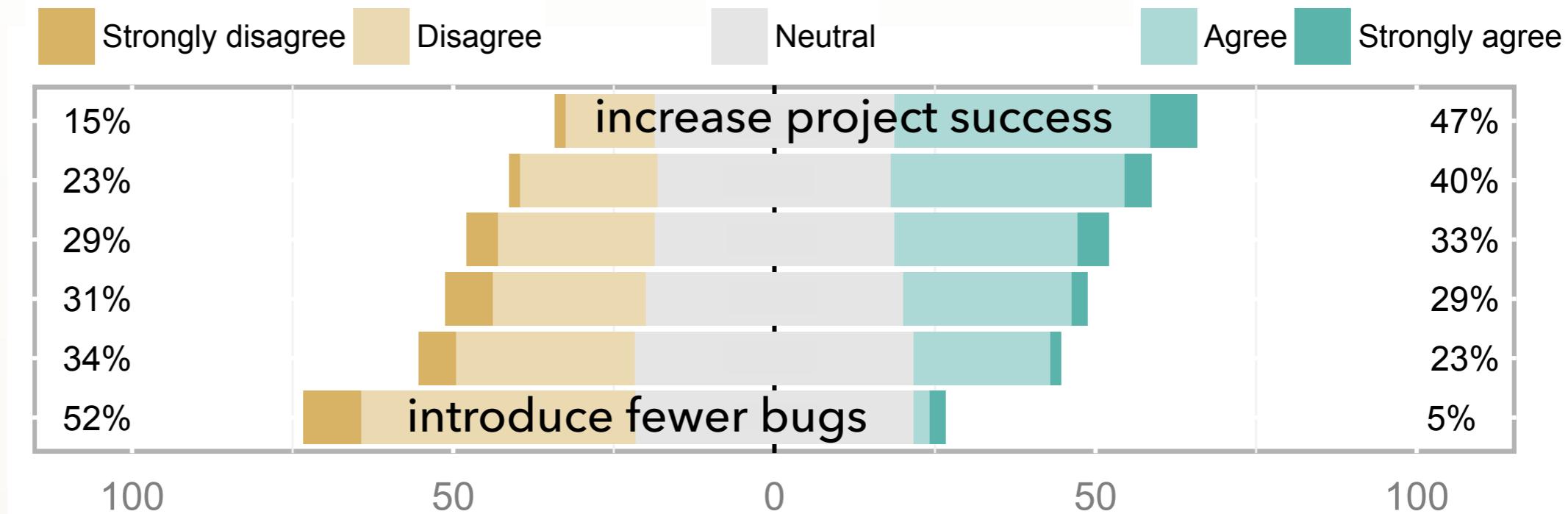
"When contributing to multiple projects in parallel, I:"



Effects: perception vs. data

PERCEPTION

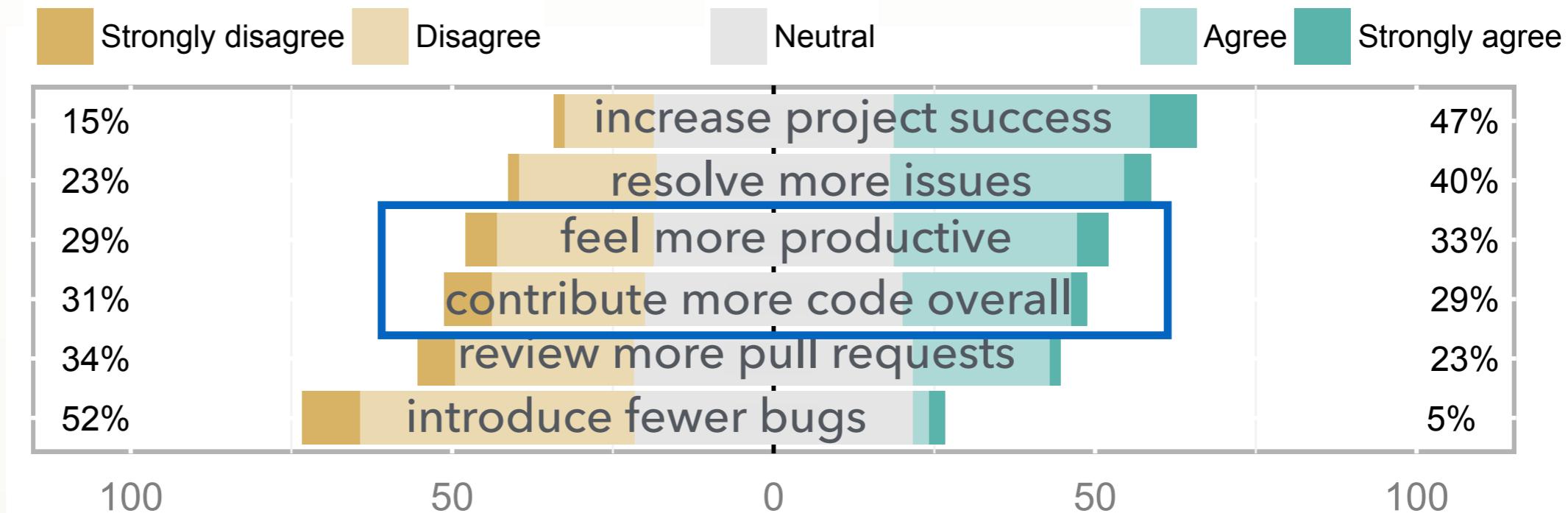
"When contributing to multiple projects in parallel, I:"



Effects: perception vs. data

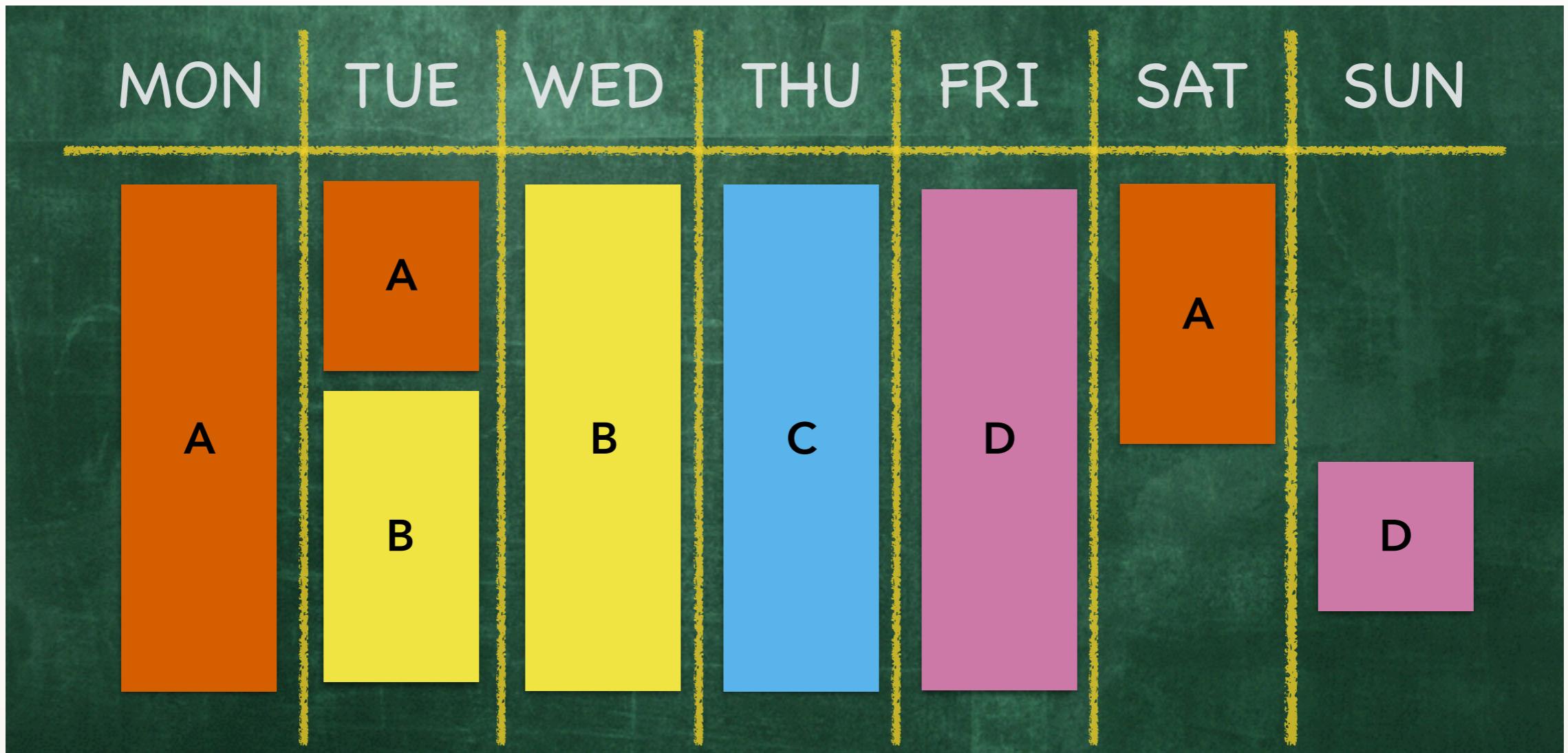
PERCEPTION

"When contributing to multiple projects in parallel, I:"



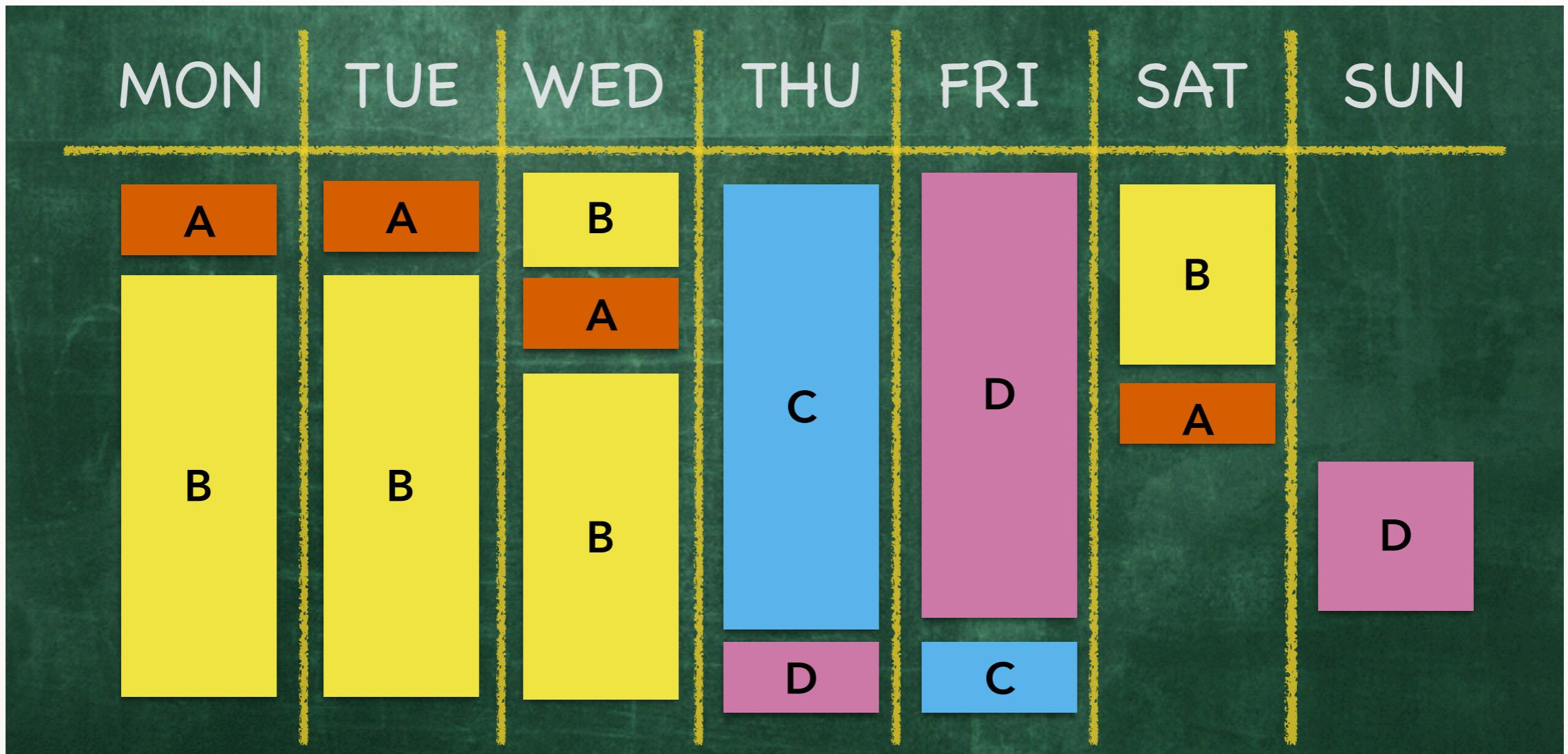
Modeling multitasking

- ▶ Period matters



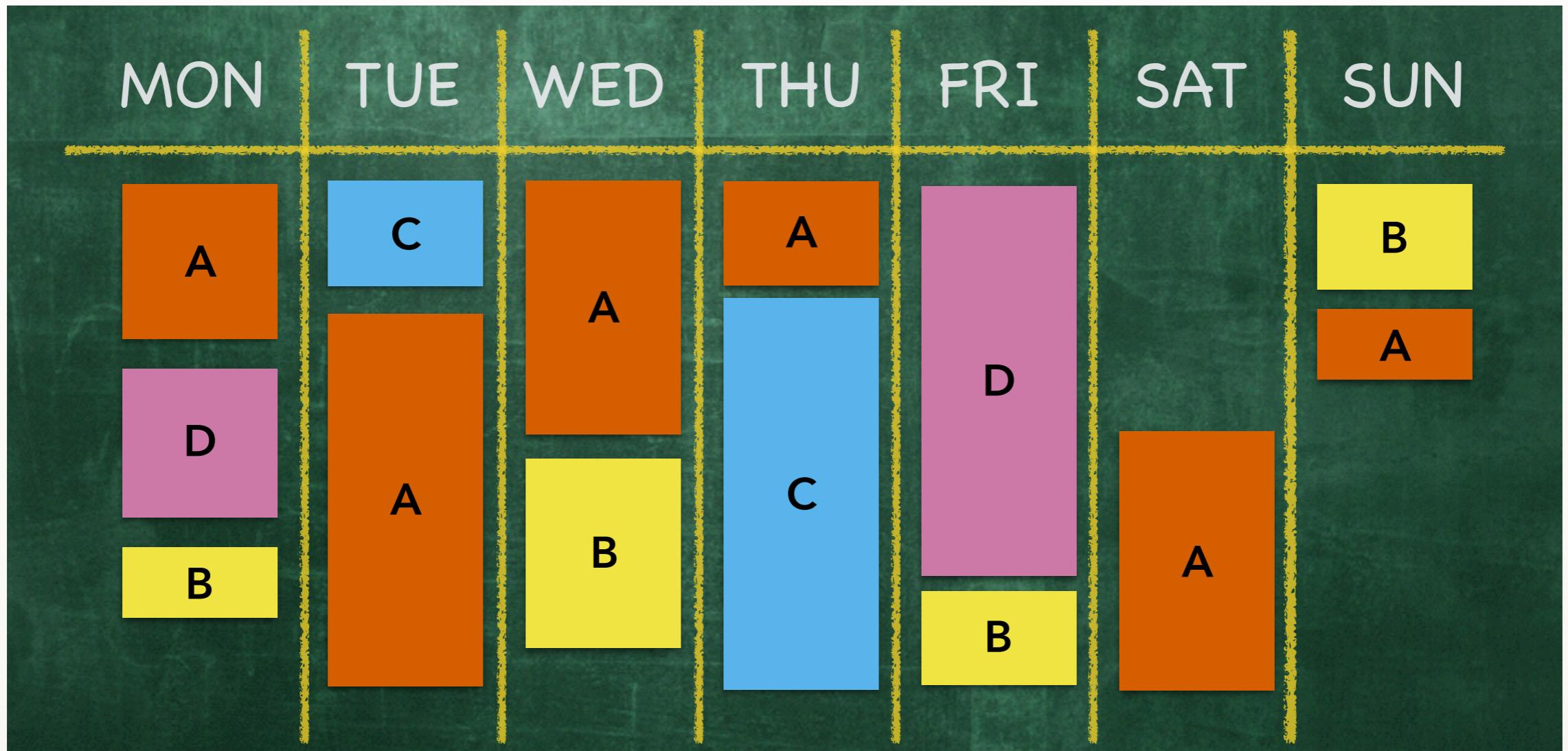
Modeling multitasking

- ▶ Period matters
- ▶ Effort matters
(A vs. B)



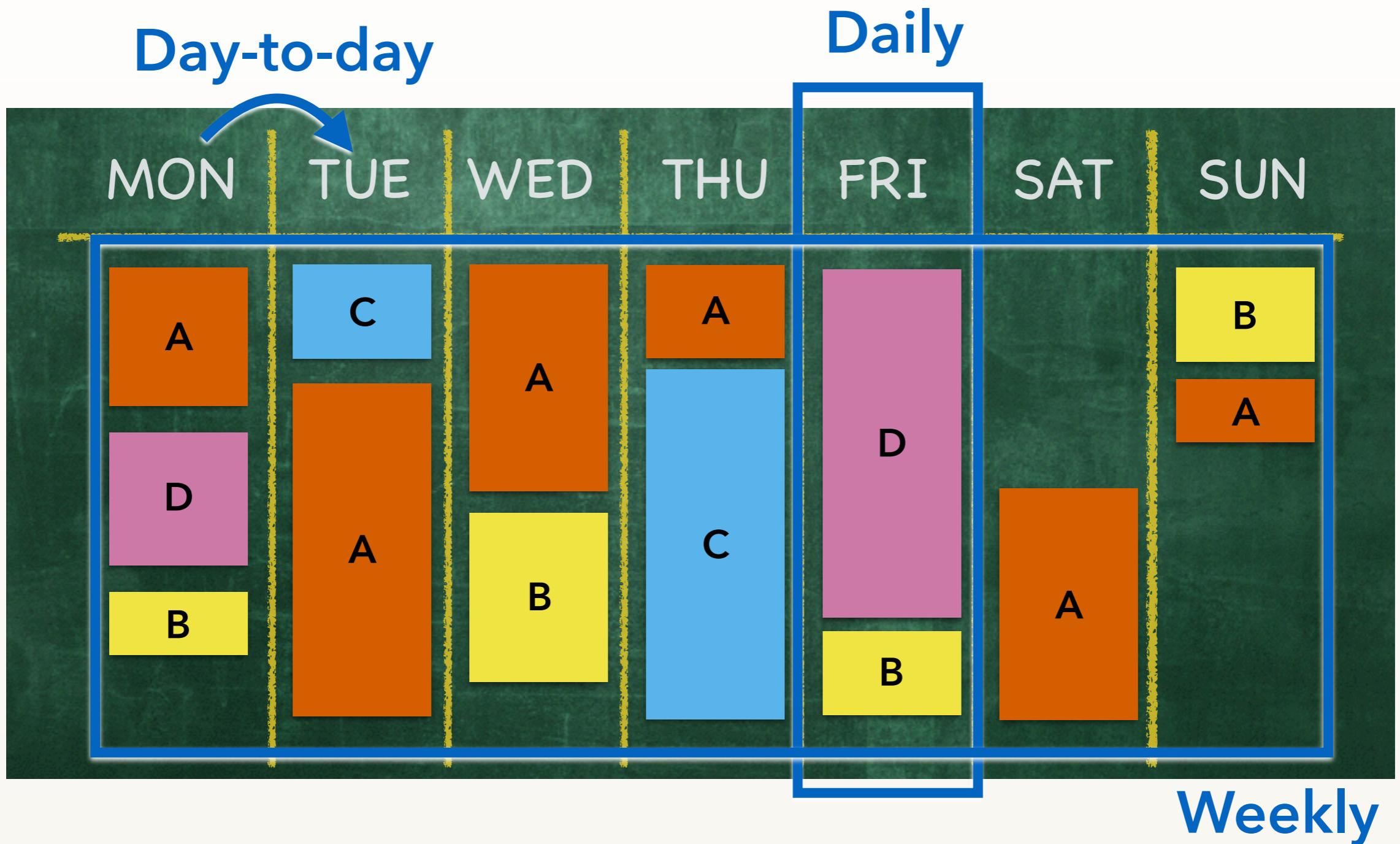
Modeling multitasking

- ▶ Period matters
- ▶ Effort matters
- ▶ Break matters
(A vs. D)
- ▶ ...



Modeling multitasking

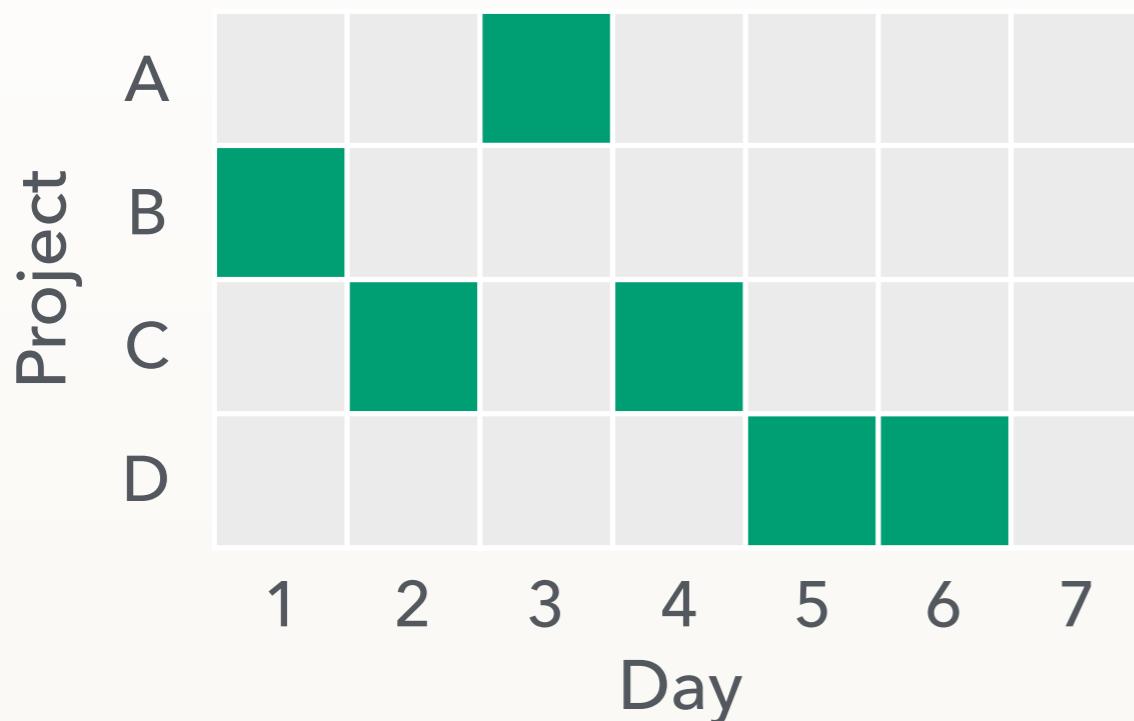
- ▶ Period matters
- ▶ Effort matters
- ▶ Break matters
- ▶ ...



Multitasking dimensions

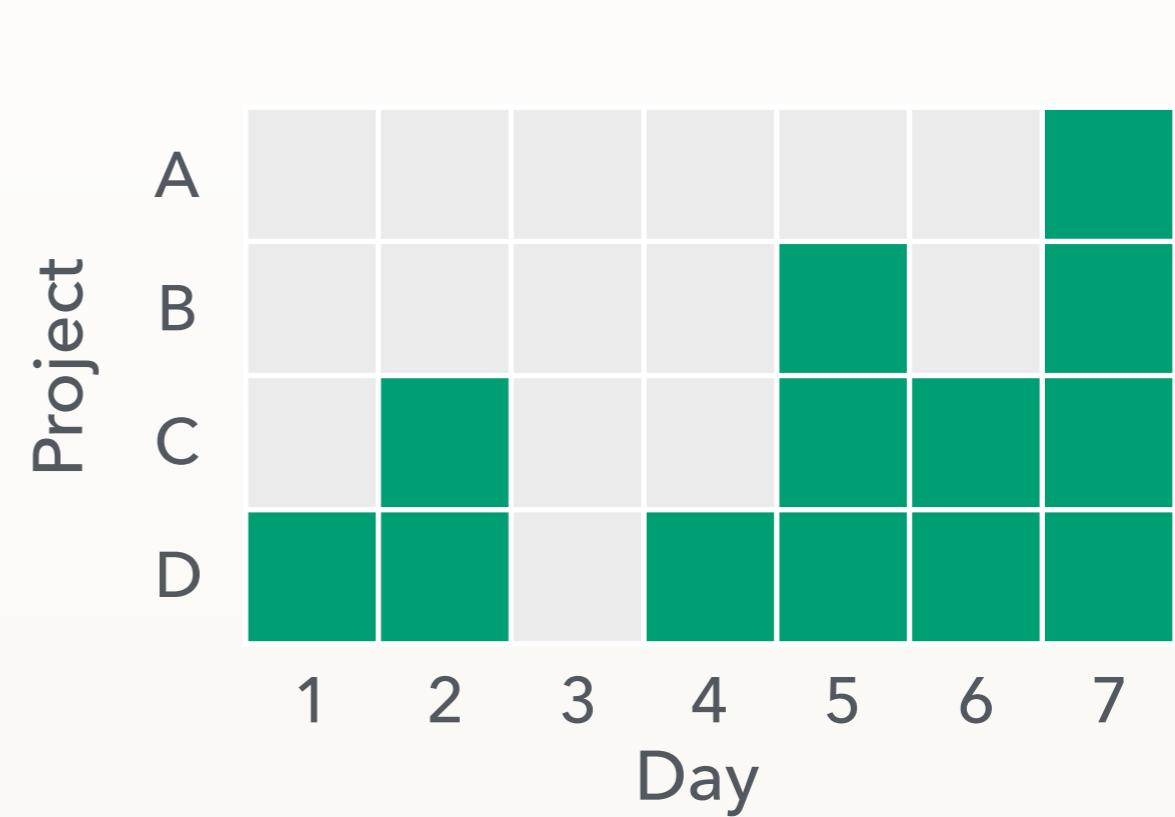
1. PROJECTS PER DAY

Working sequentially



vs.

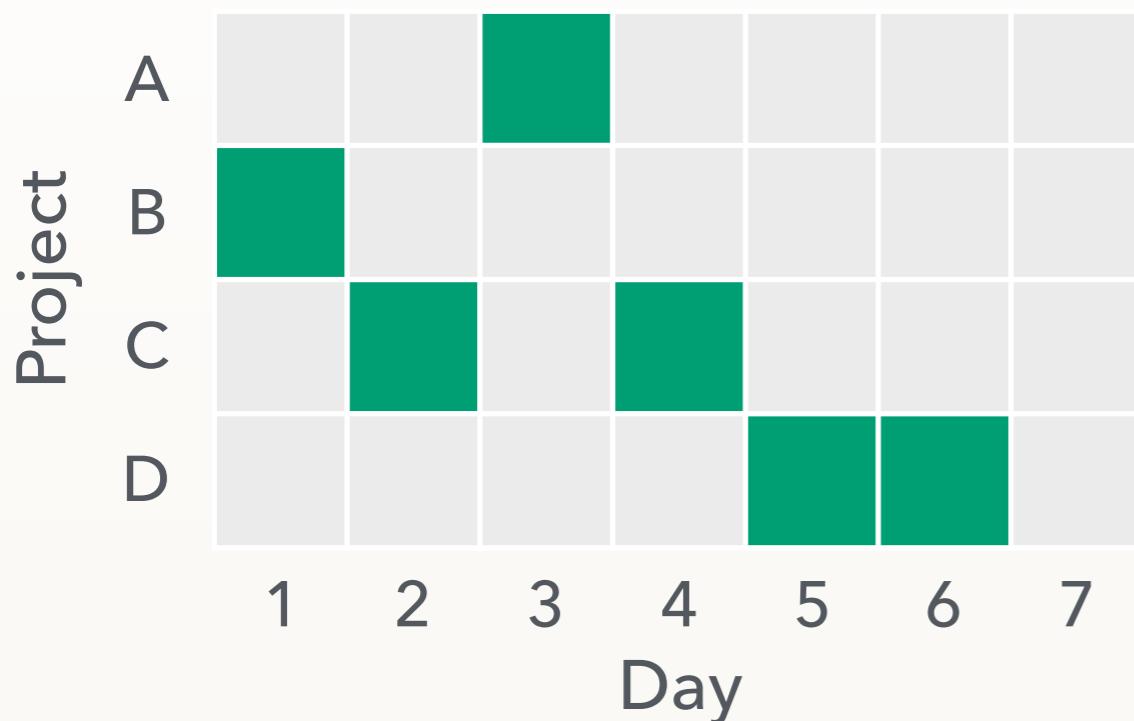
Within-day multitasking



Multitasking dimensions

1. PROJECTS PER DAY

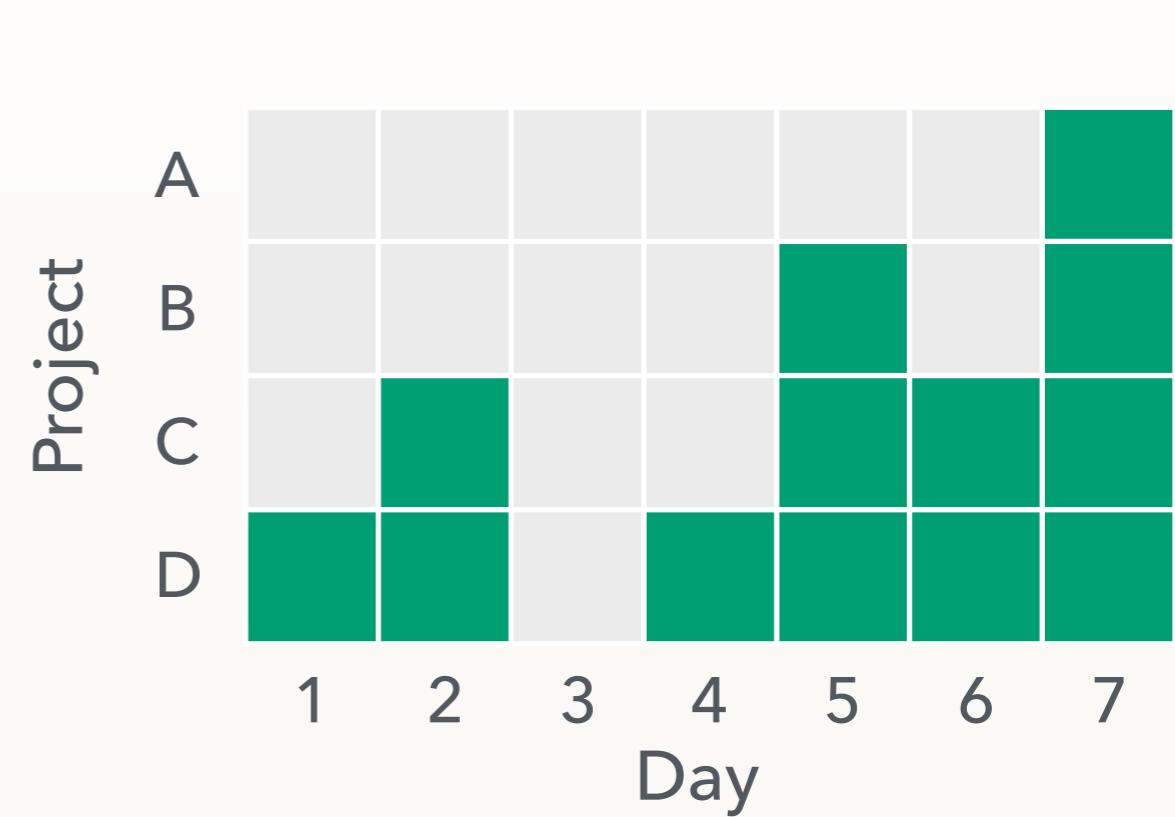
Working sequentially



$$\text{AvgProjectsPerDay} = 1$$

vs.

Within-day multitasking



$$\text{AvgProjectsPerDay} = 2.2$$

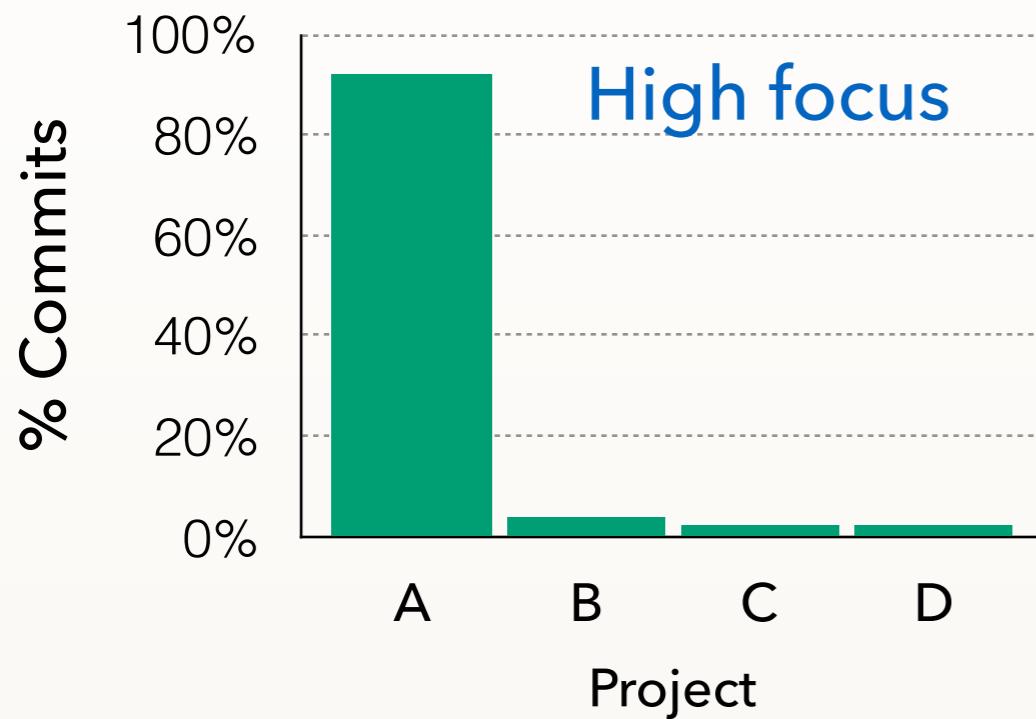
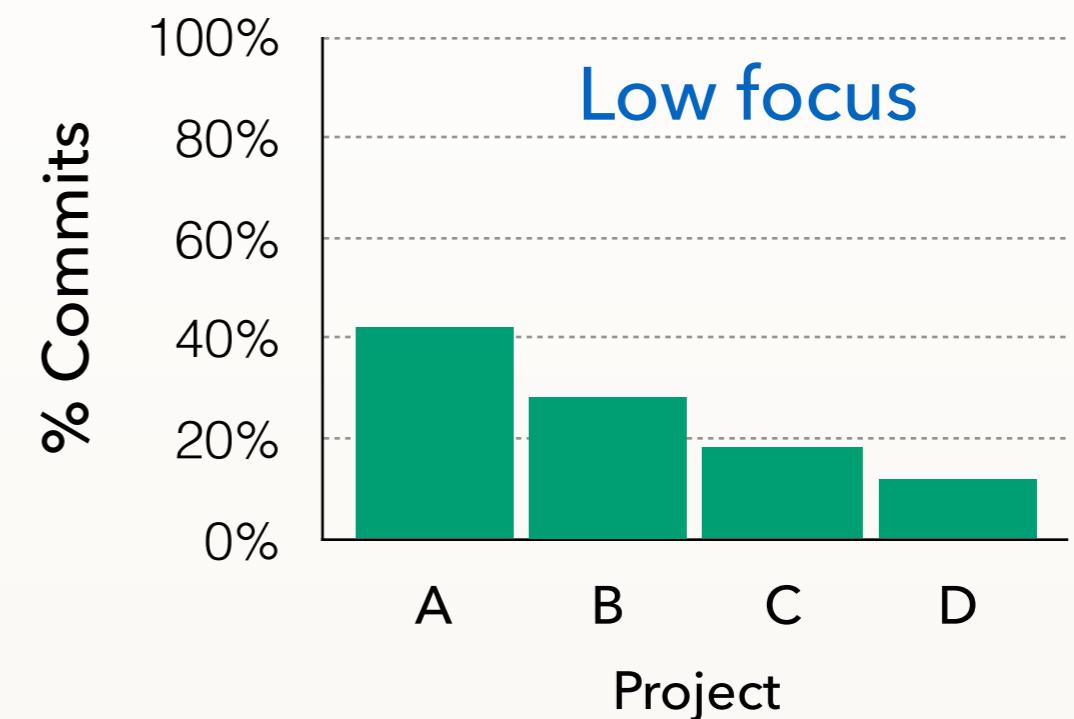
Multitasking dimensions

2. WEEKLY FOCUS

Focusing on one project

vs.

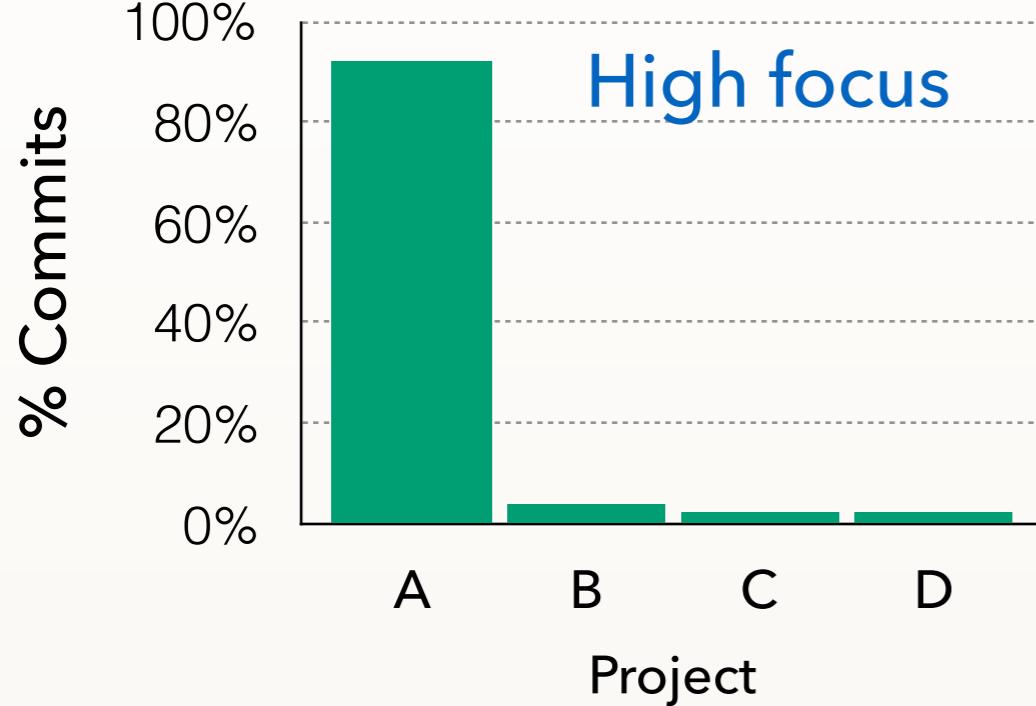
Contributing evenly to all



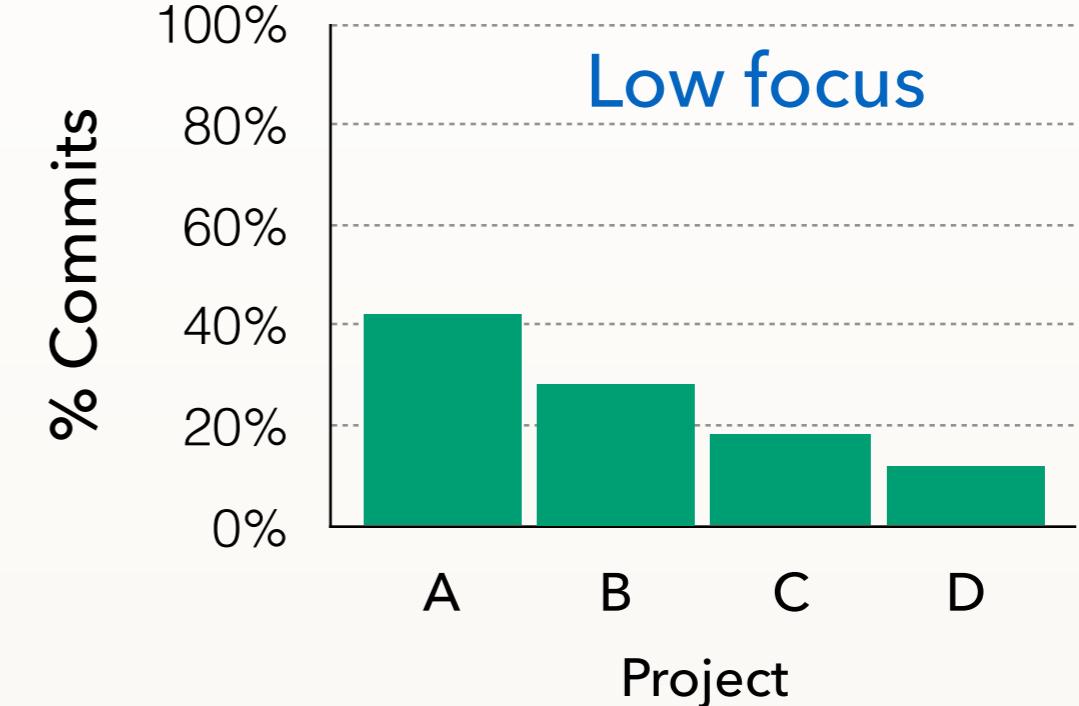
Focusing on one project

vs.

Contributing evenly to all



$$S_{\text{Focus}} = 0.25$$



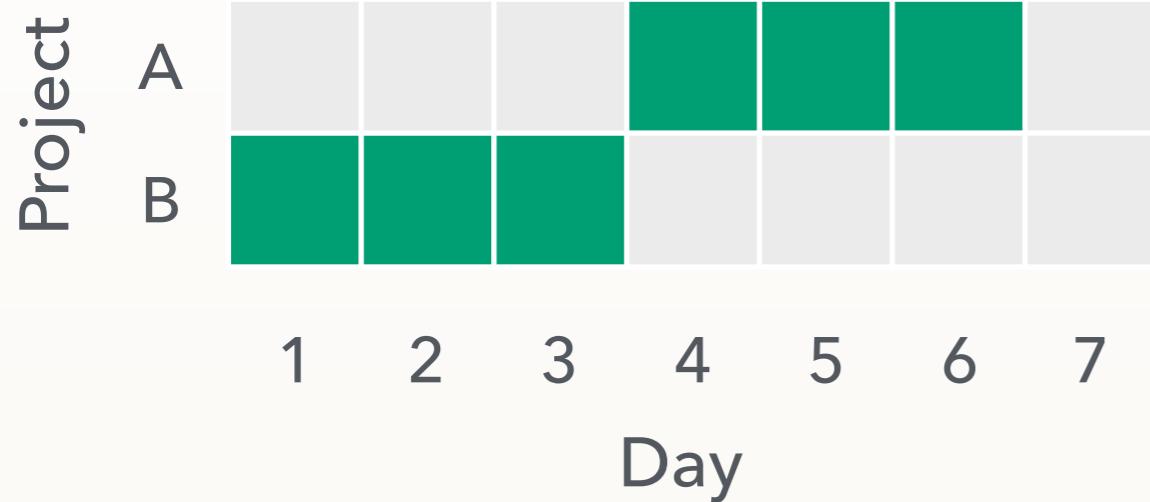
$$S_{\text{Focus}} = 1.85$$

Shannon entropy:

$$S_{\text{Focus}} = - \sum_{i=1}^N p_i \log_2 p_i$$

Fraction commits in project i

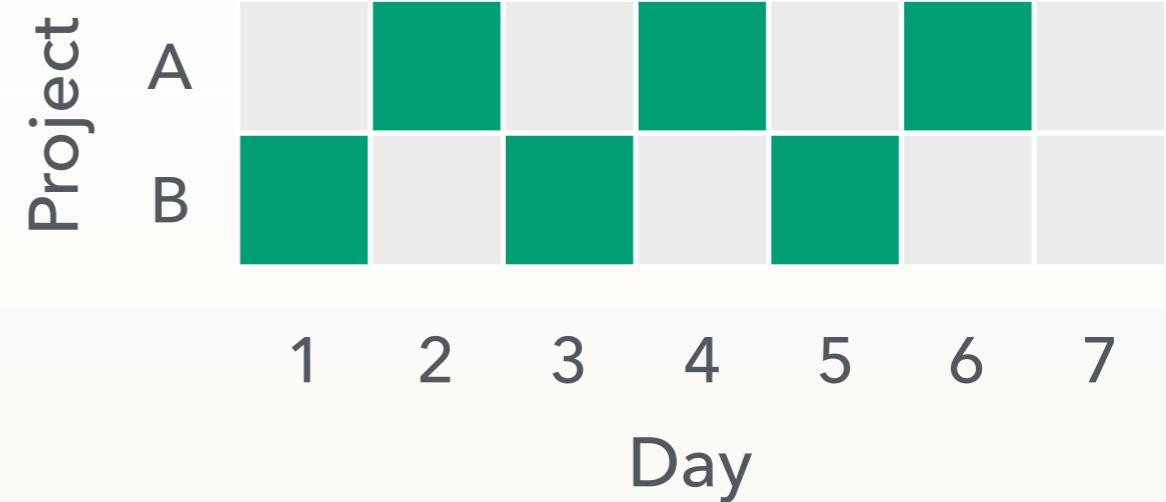
Repetitive day-to-day



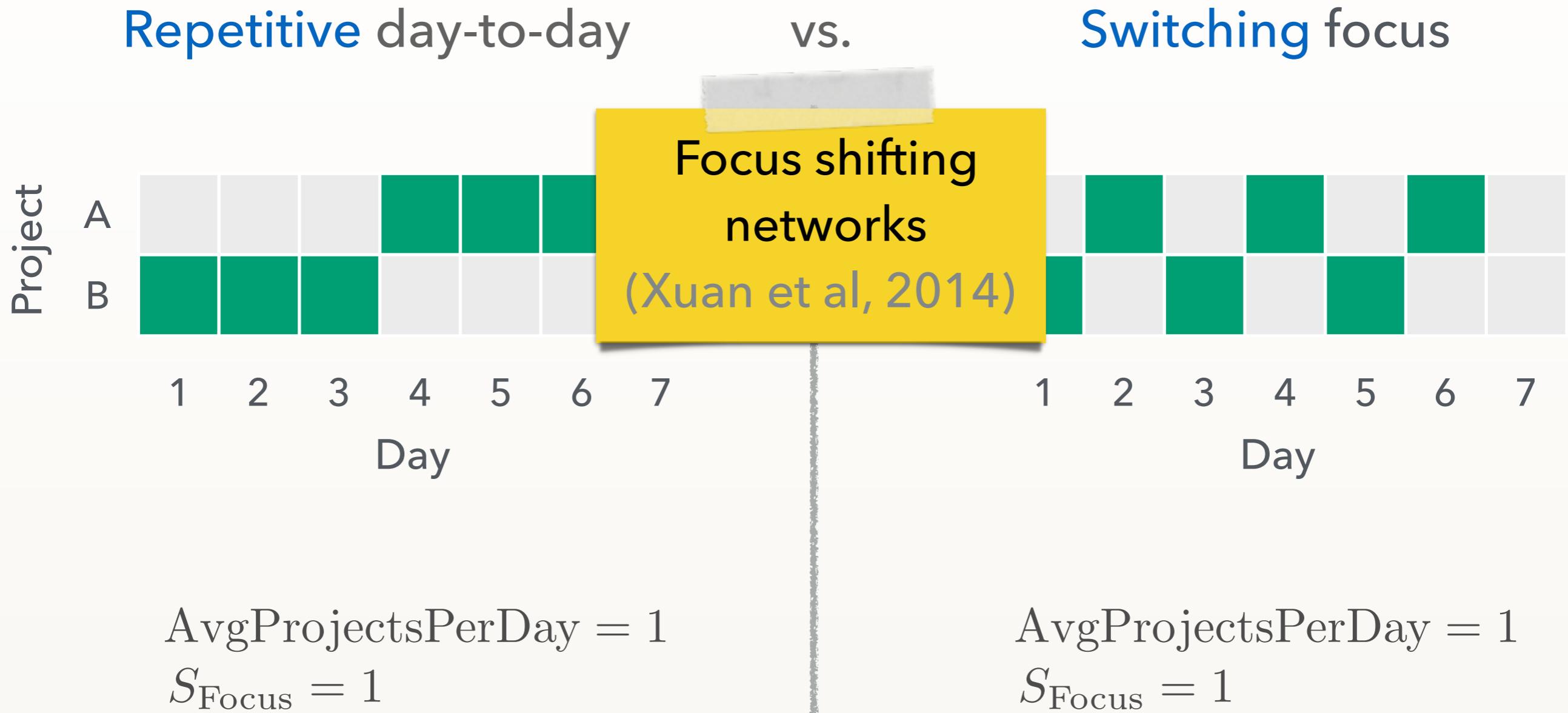
$\text{AvgProjectsPerDay} = 1$
 $S_{\text{Focus}} = 1$

vs.

Switching focus



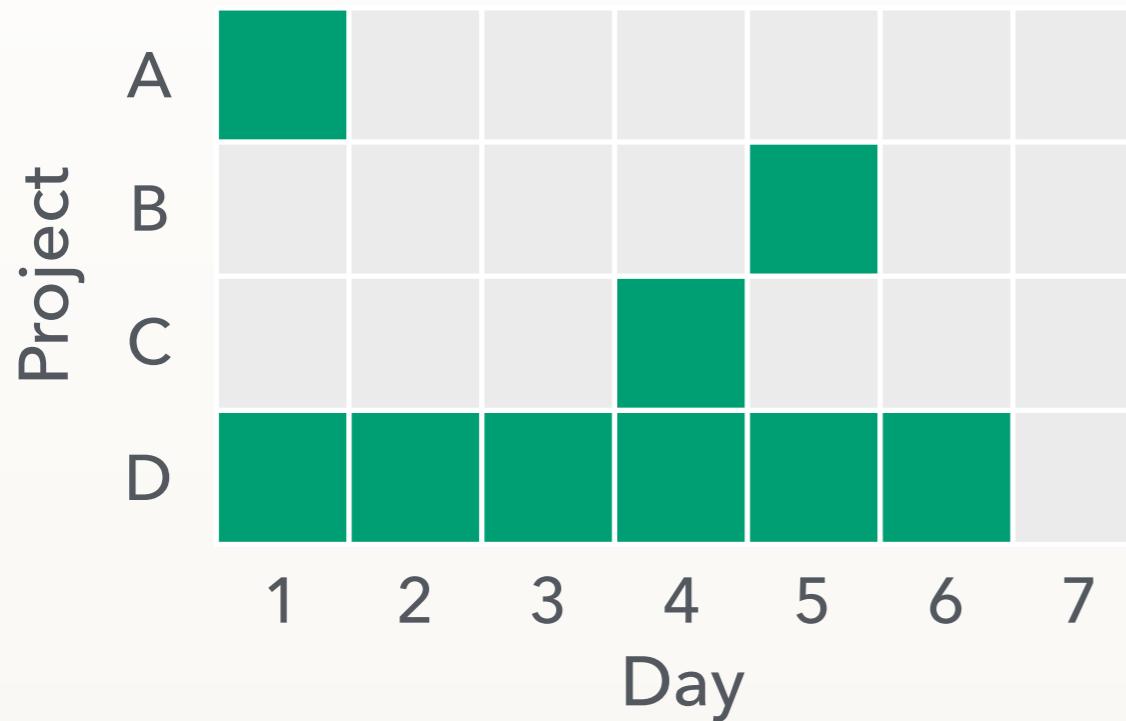
$\text{AvgProjectsPerDay} = 1$
 $S_{\text{Focus}} = 1$



Repetitive day-to-day

vs.

Switching focus



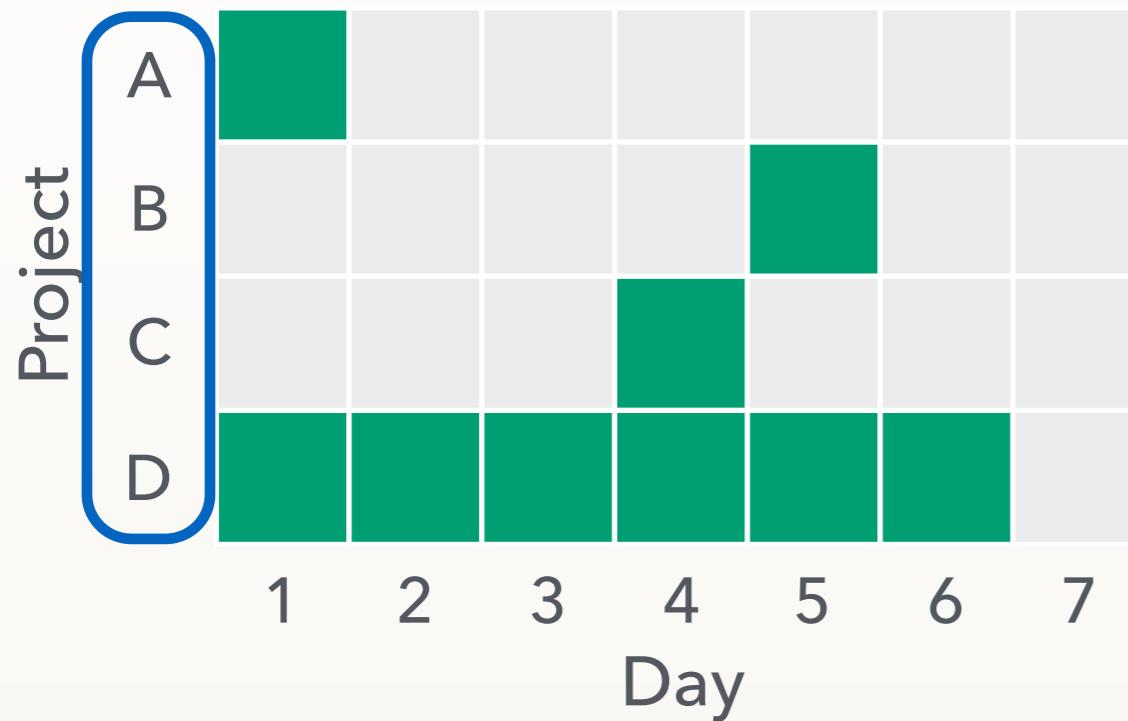
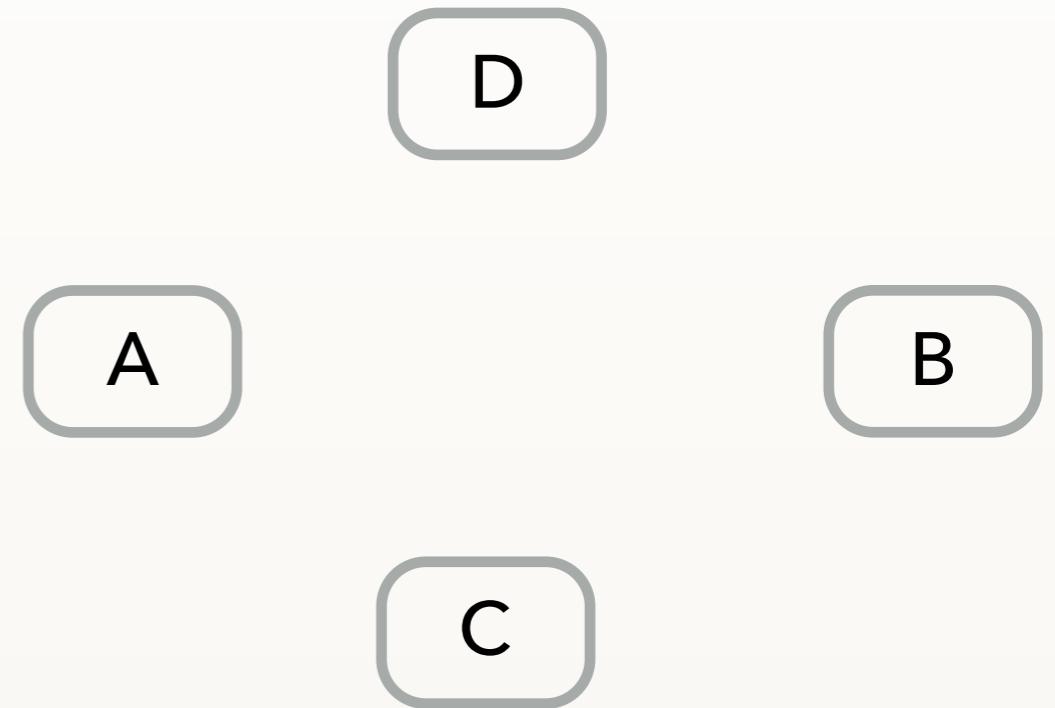
Multitasking dimensions

3. DAY-TO-DAY FOCUS

Repetitive day-to-day

vs.

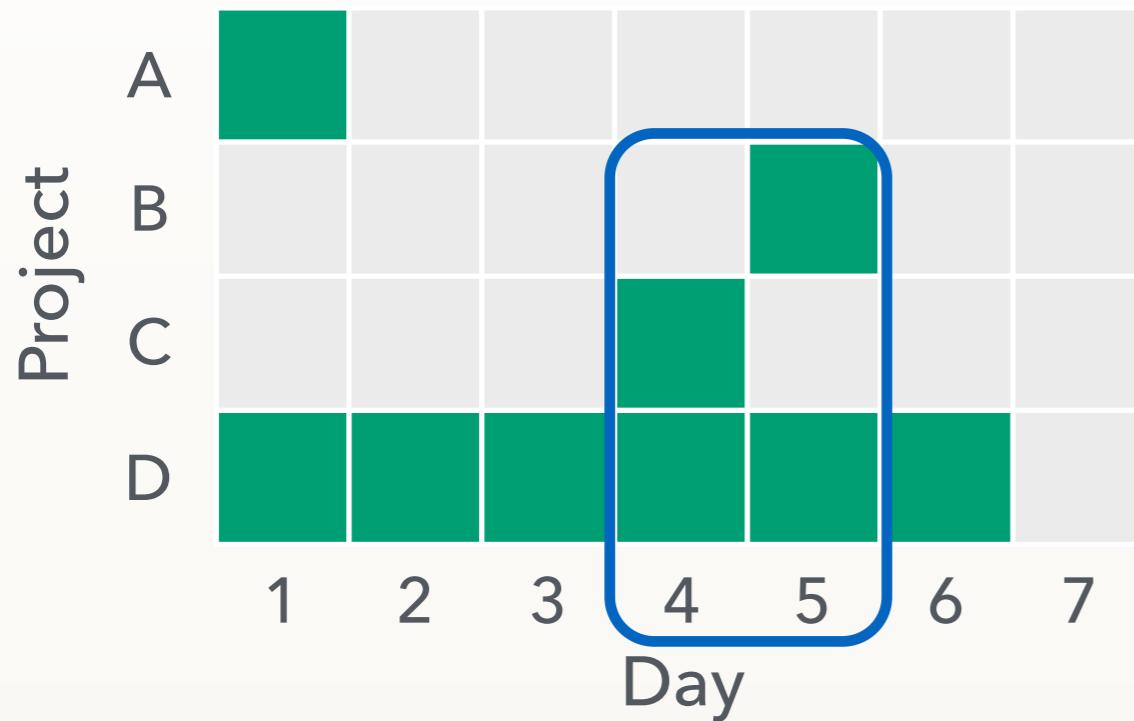
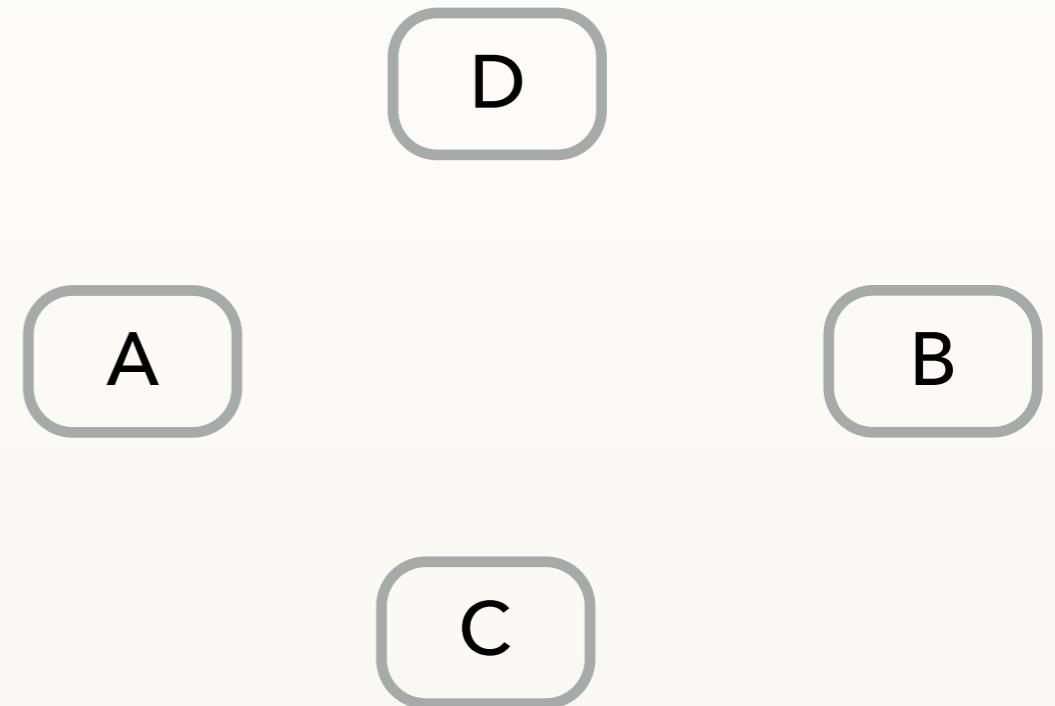
Switching focus



Repetitive day-to-day

vs.

Switching focus



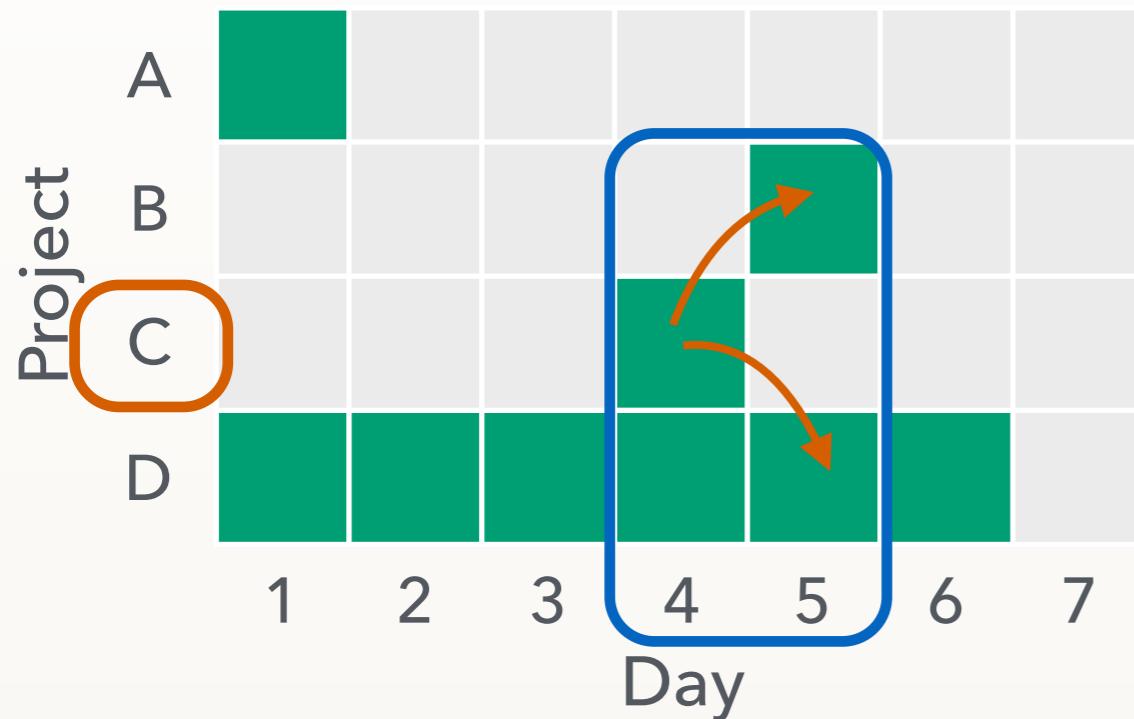
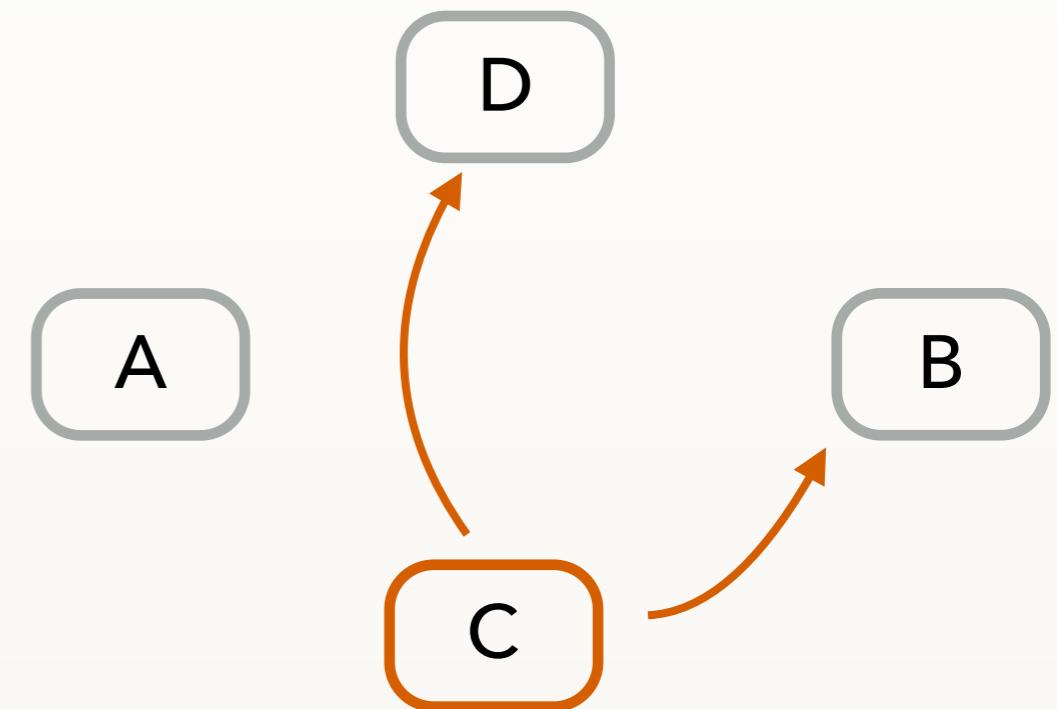
Multitasking dimensions

3. DAY-TO-DAY FOCUS

Repetitive day-to-day

vs.

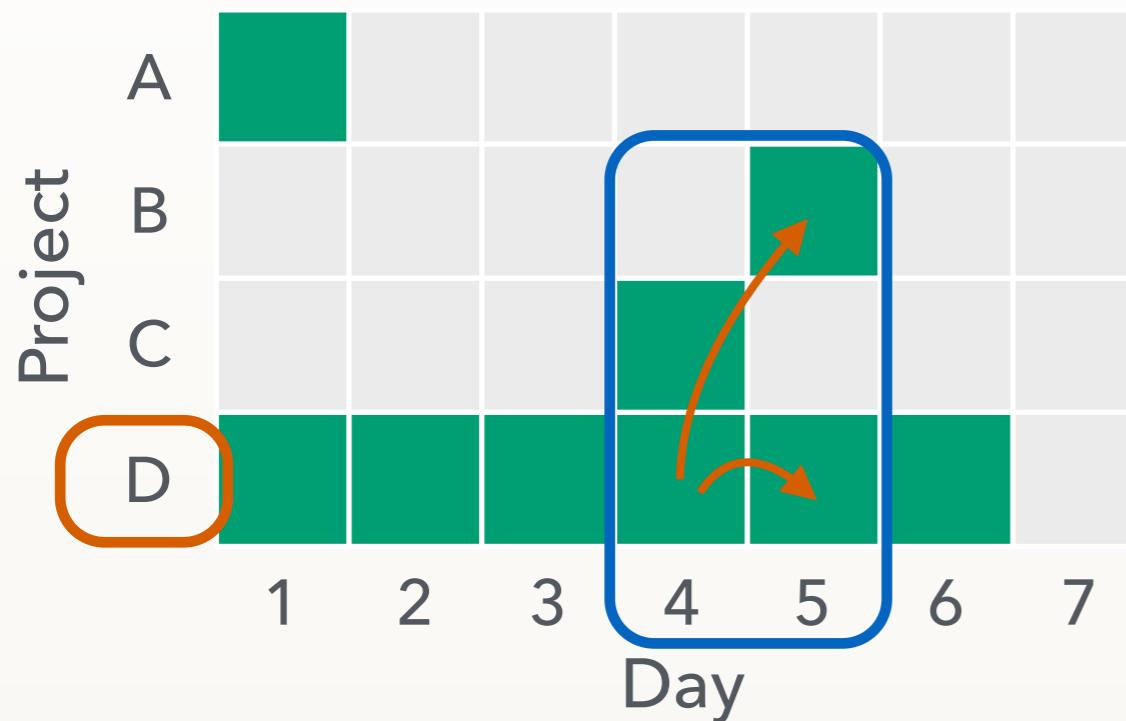
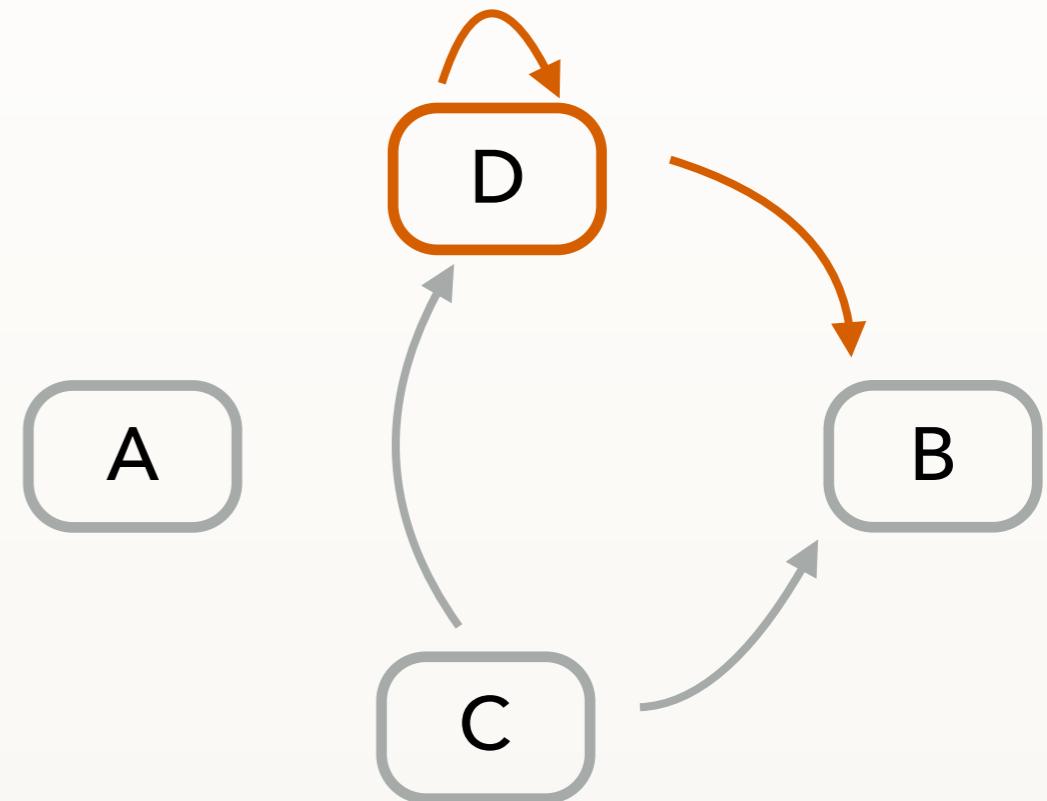
Switching focus



Repetitive day-to-day

vs.

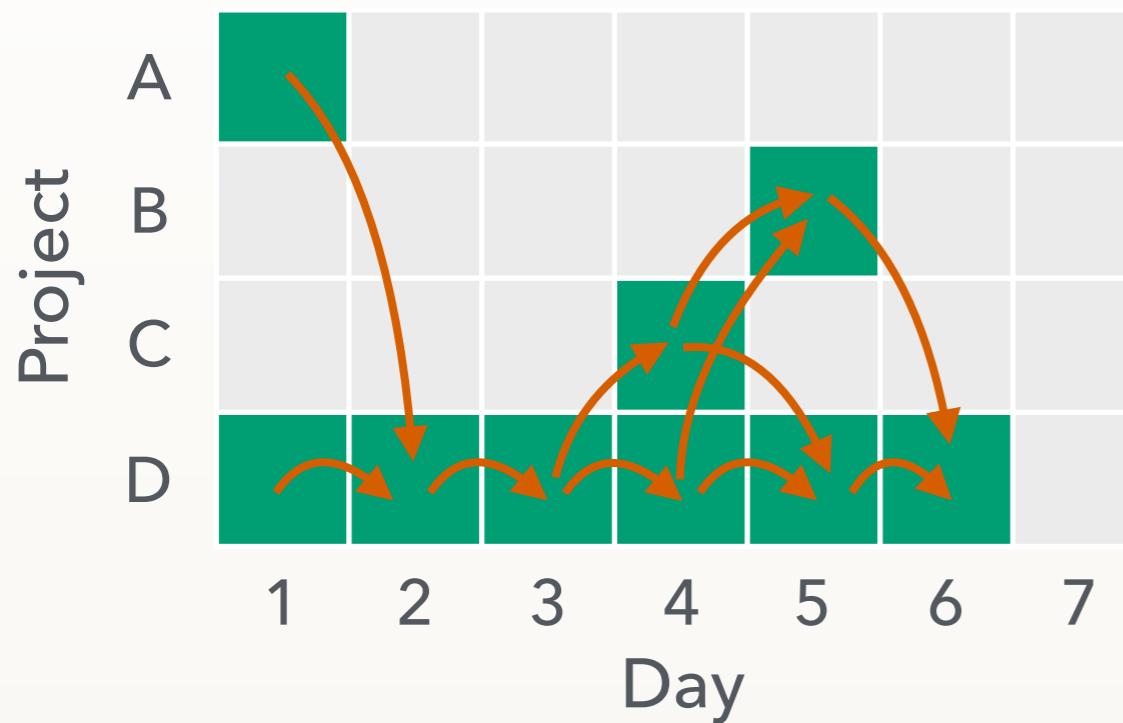
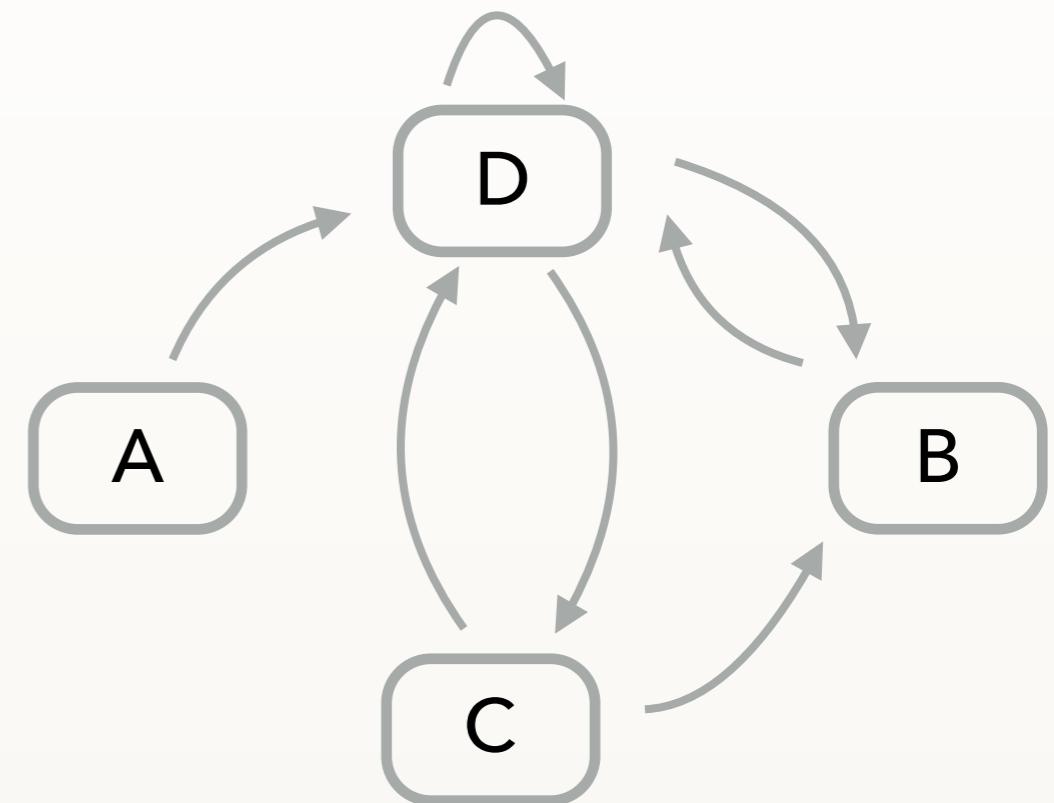
Switching focus



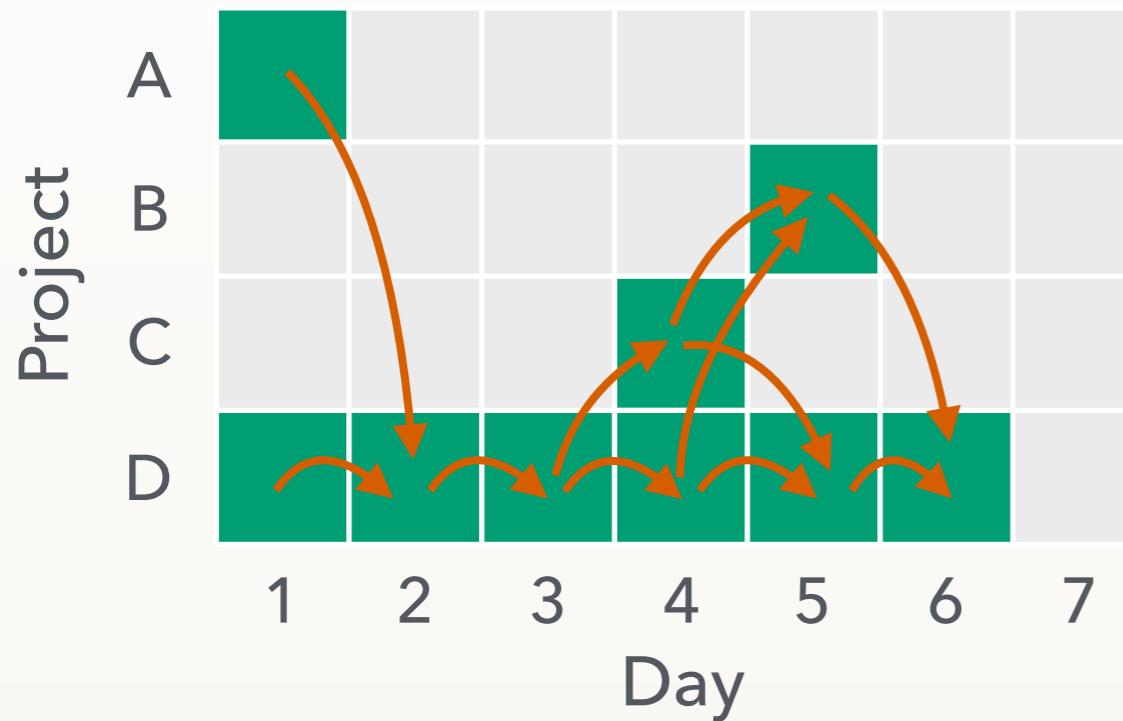
Repetitive day-to-day

vs.

Switching focus

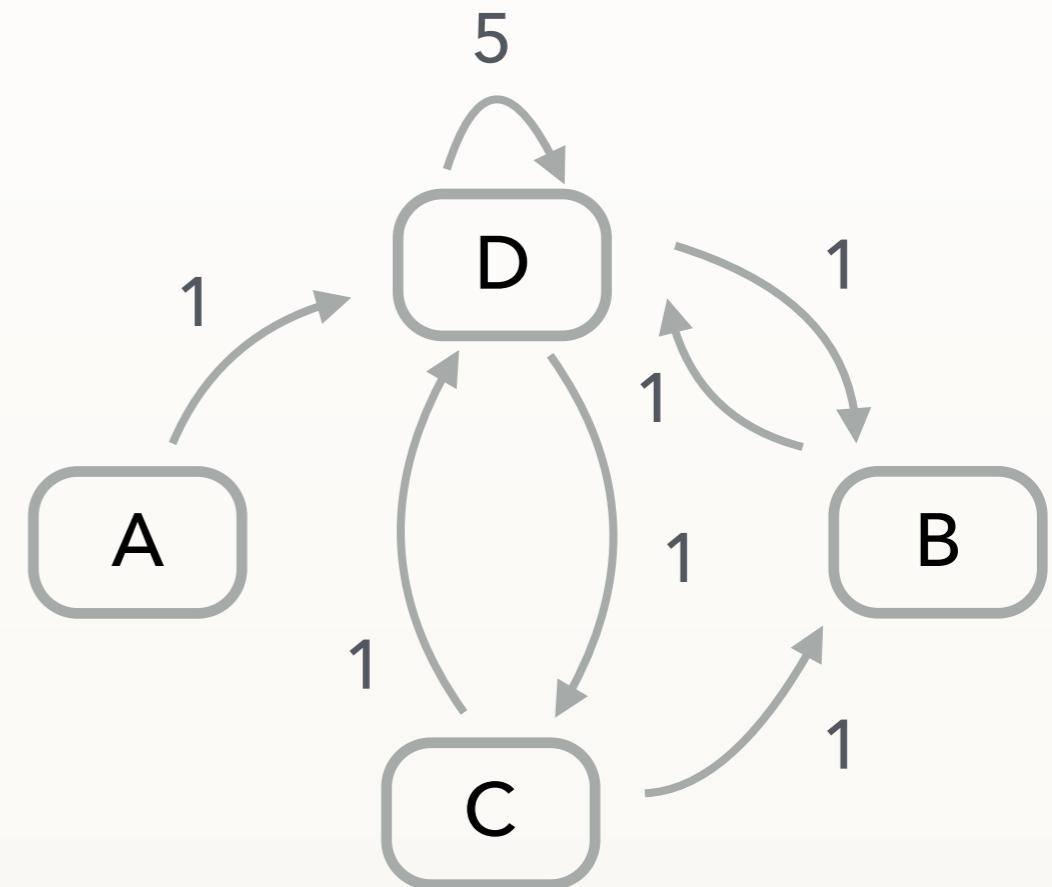


Repetitive day-to-day

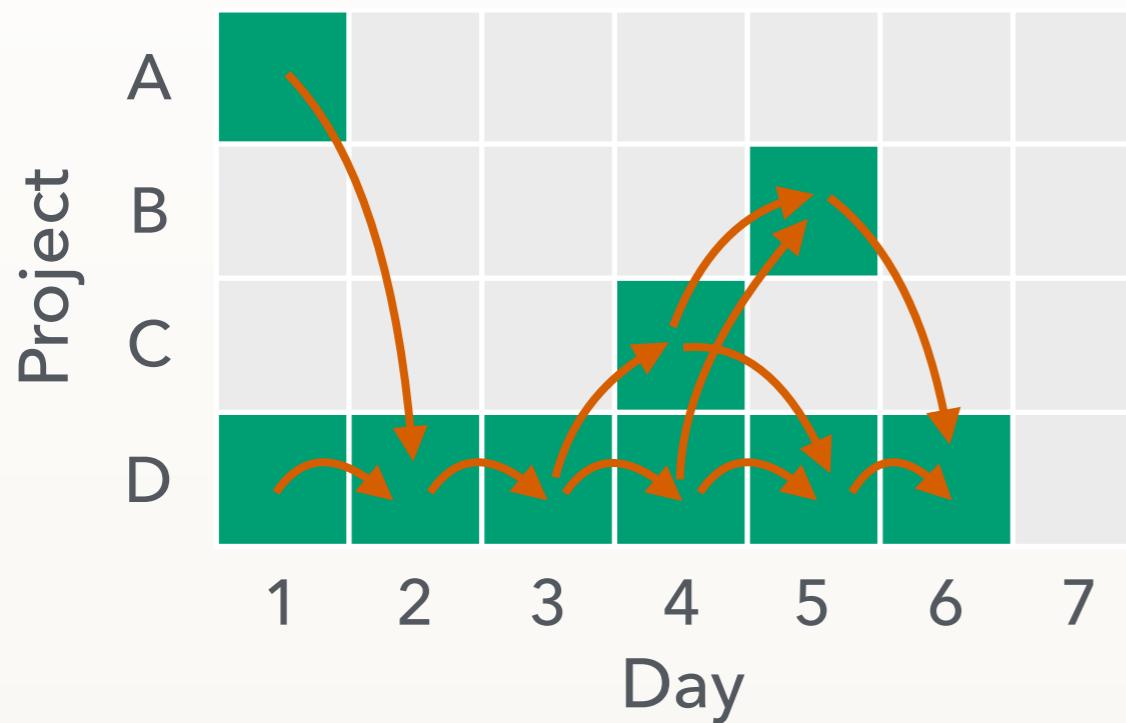


vs.

Switching focus

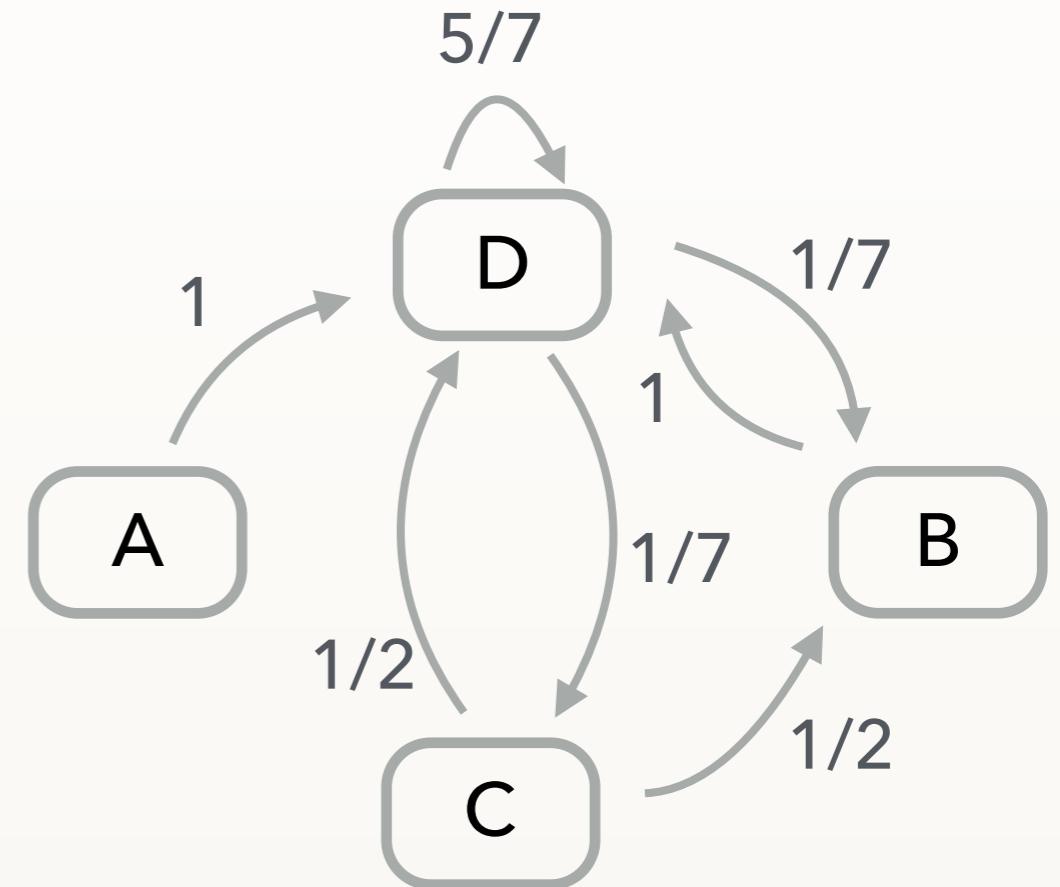


Repetitive day-to-day

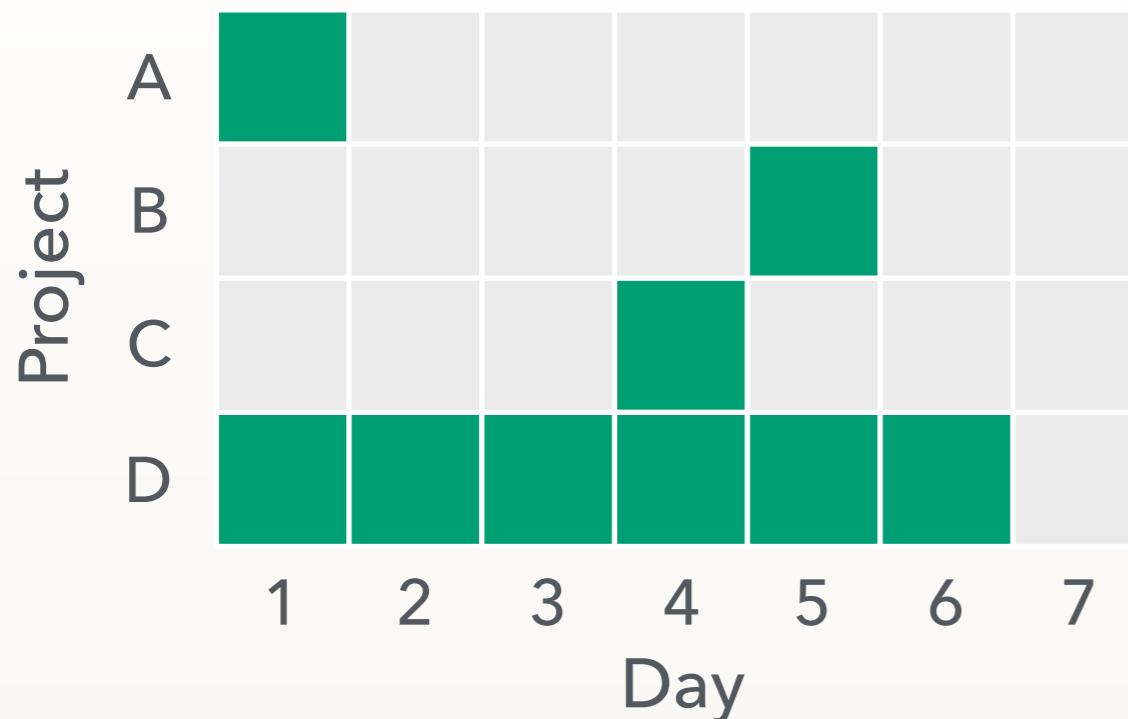


vs.

Switching focus

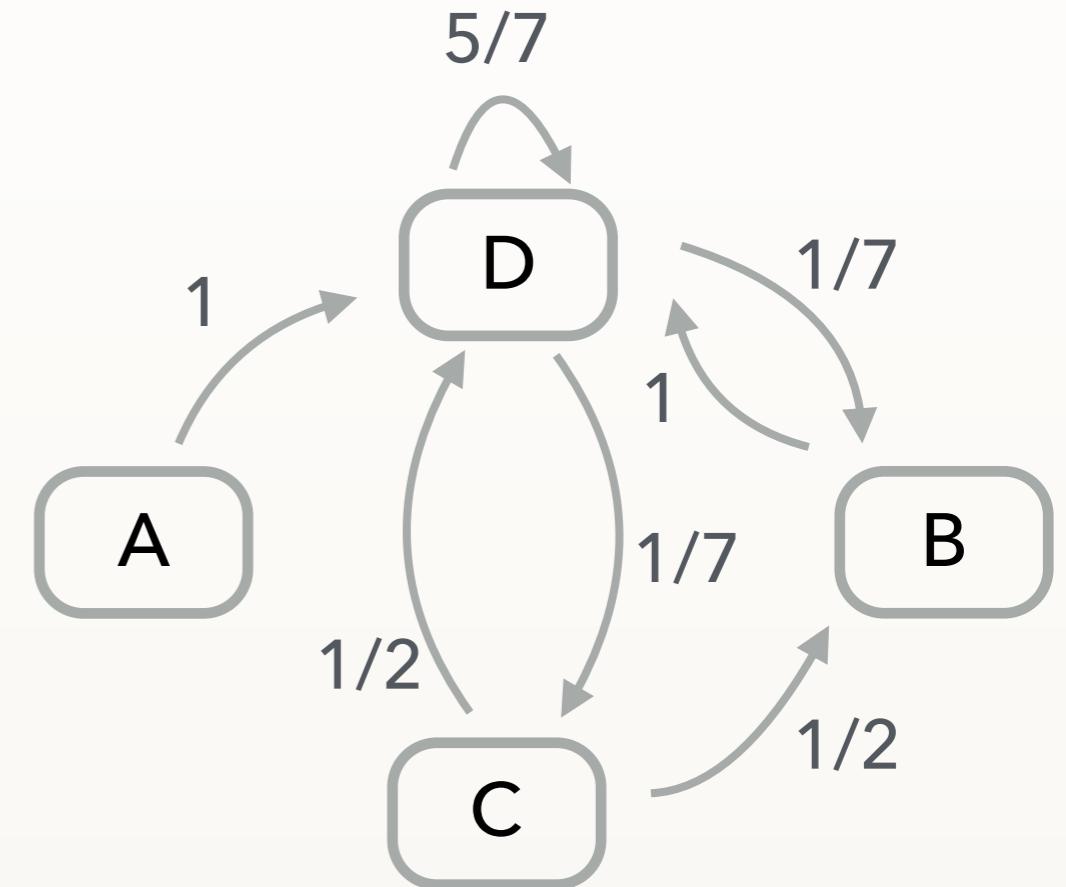


Repetitive day-to-day



vs.

Switching focus



Markov entropy:

$$S_{\text{Switch}} = - \sum_{i=1}^N \left[p_i \sum_{j \in \pi_i} p(j|i) \log_2 p(j|i) \right]$$

How predictable is my focus tomorrow if today I work on project j?

Linear mixed-effects regression

Response:

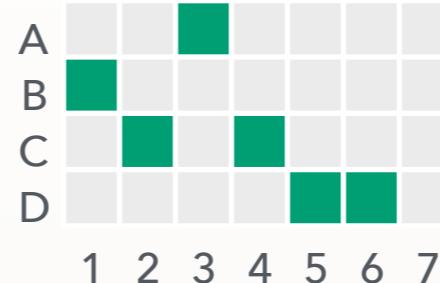
LOC added / week

Controls:

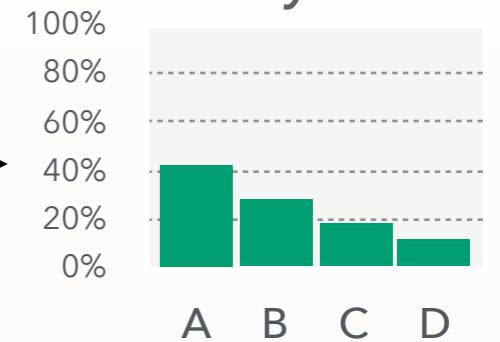
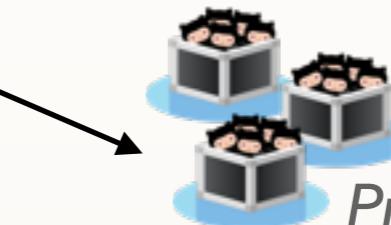
- time
- total projects
- programming languages

Predictors:

Projects per day

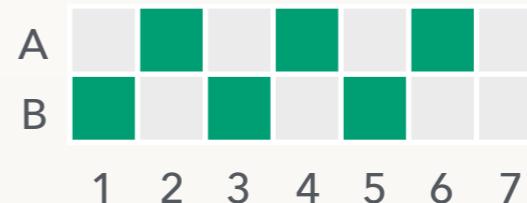


Weekly focus



Projects

Day-to-day focus



Longitudinal data

- 1,200 developers
- 5+ years each: multiple weeks of observation

Random effect: developer

- developer-to-developer variability in the response

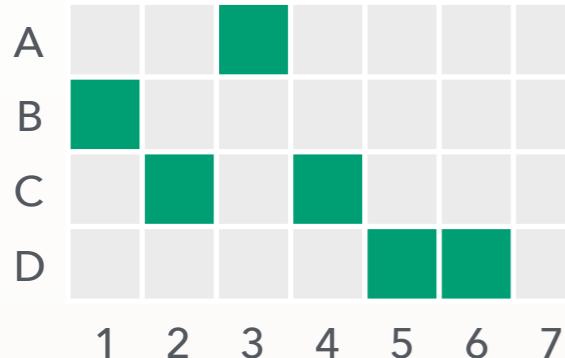
Random slope: time | developer

- developers more productive initially may be less strongly affected by time passing

Multitaskers do more; scheduling matters

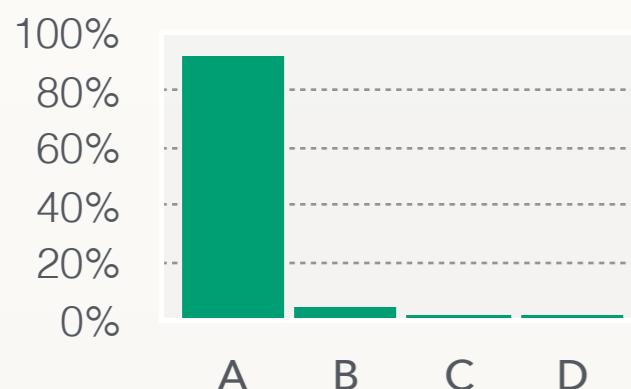
Higher LOC added

Projects per day

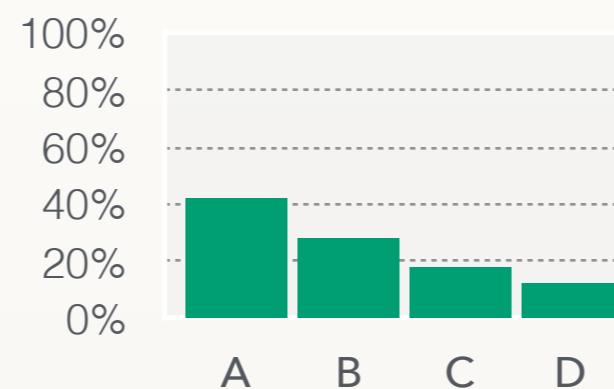


vs.

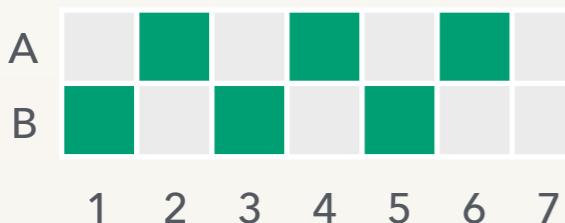
Weekly focus



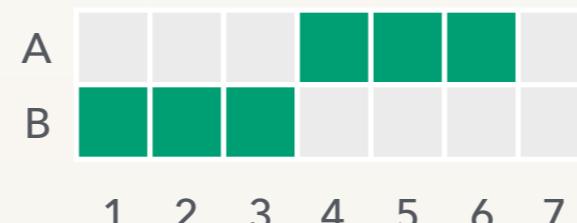
vs.



Day-to-day focus (repeatability)



vs.

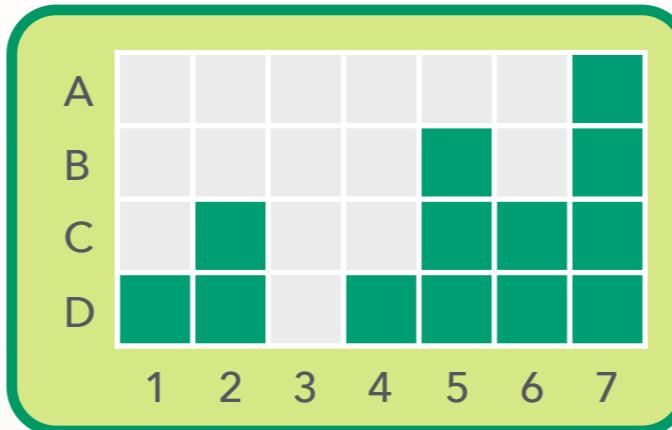


Multitaskers do more; scheduling matters

Higher LOC added

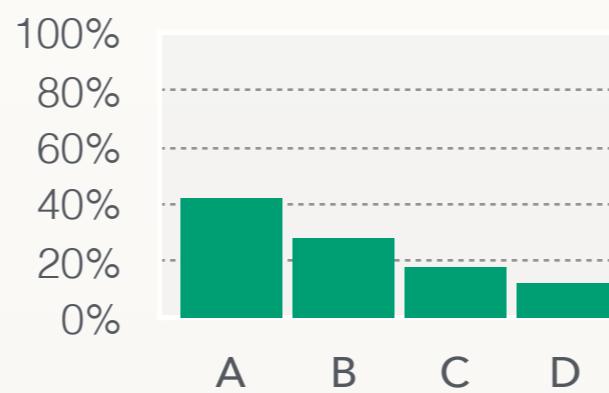
Projects per day

vs.

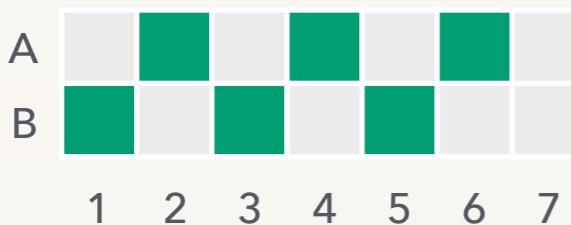


Weekly focus

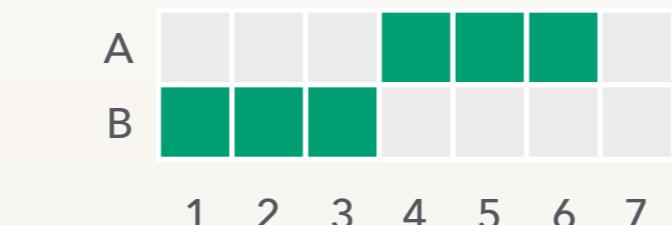
vs.



Day-to-day focus (repeatability)



vs.

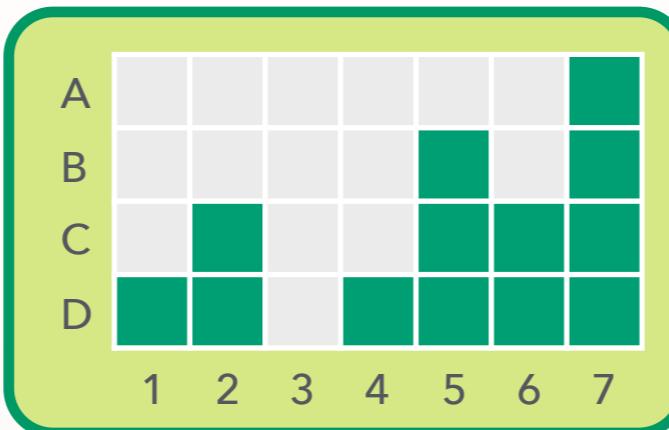


Multitaskers do more; scheduling matters

Higher LOC added

Projects per day

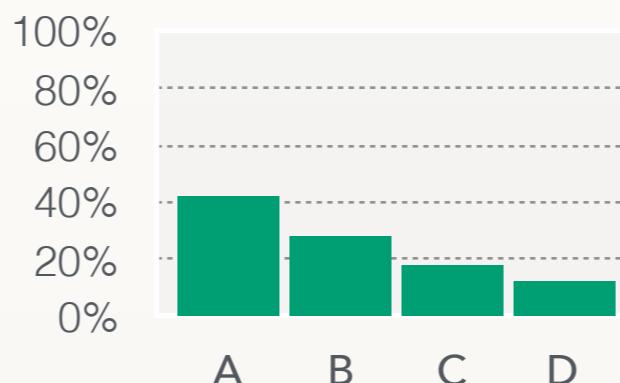
vs.



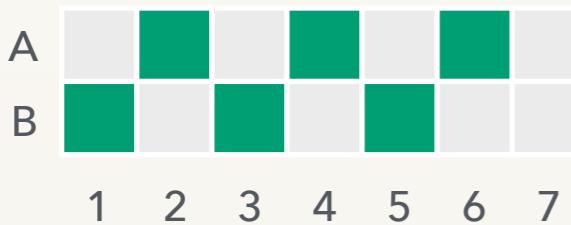
Weekly focus



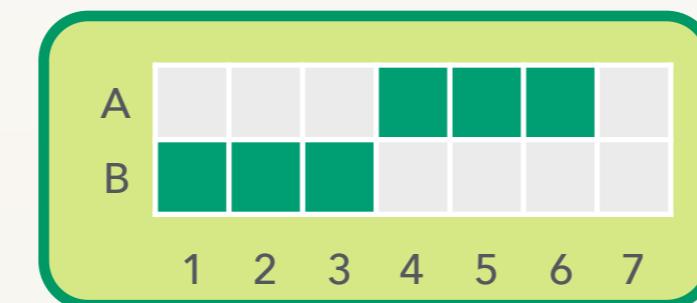
vs.



Day-to-day focus (repeatability)



vs.

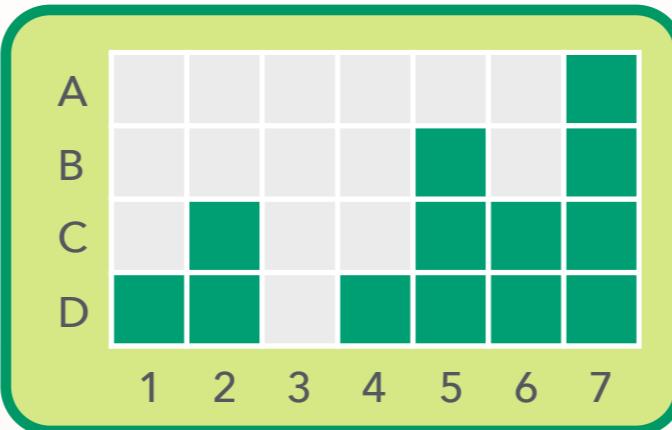


Multitaskers do more; scheduling matters

Higher LOC added

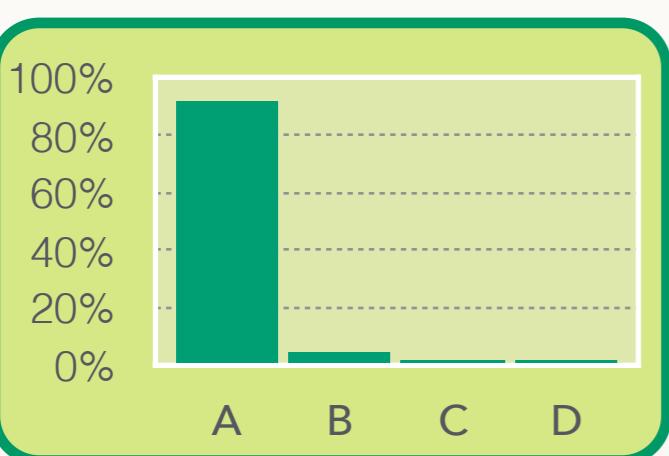
Projects per day

vs.

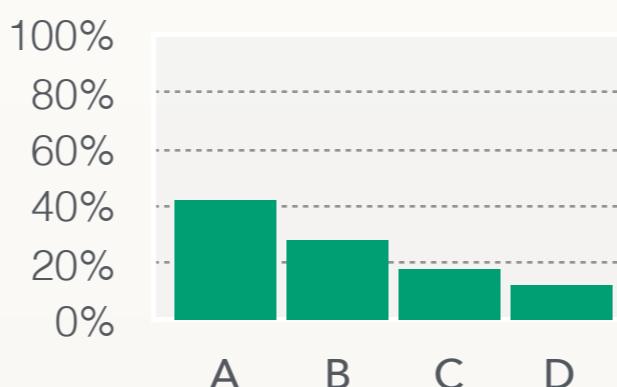


More within-day multitasking

Weekly focus

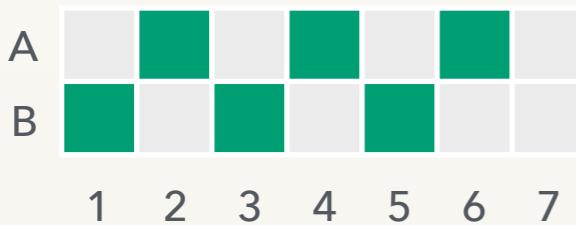


vs.

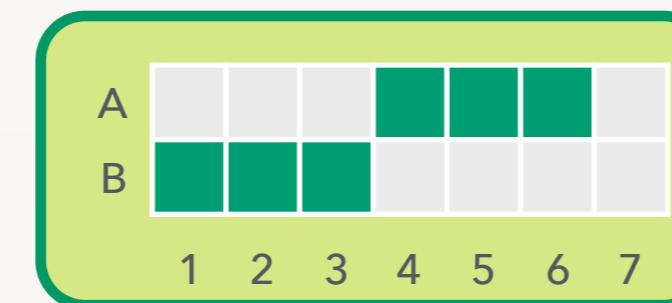


Higher focus
More repetitive
day-to-day work

Day-to-day focus (repeatability)



vs.



Interaction effects:
No scheduling is
productive over
5 projects/week

How long will my pull request take?

Yu, Y., Wang, H., Filkov, V., Devanbu, P., & Vasilescu, B. (2015, May). Wait for it: determinants of pull request evaluation latency on GitHub. In *Mining software repositories (MSR), 2015 IEEE/ACM 12th working conference on* (pp. 367-371). IEEE.

The pull-based model

... traditionally

The pull-based model

... traditionally

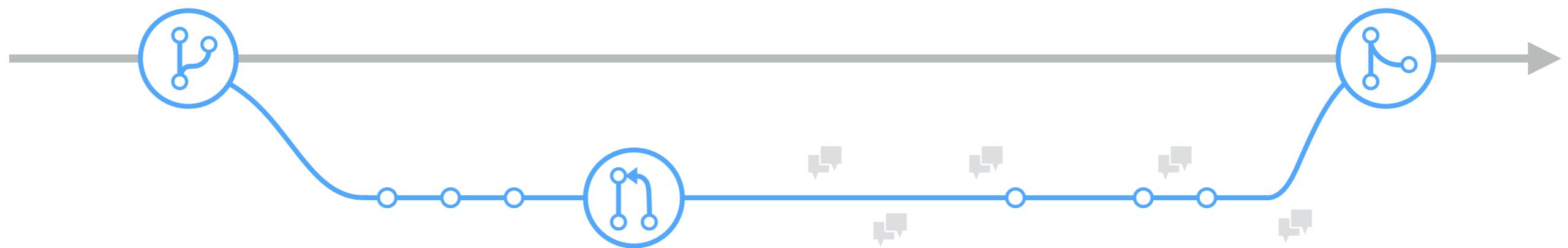
The pull-based model

... traditionally

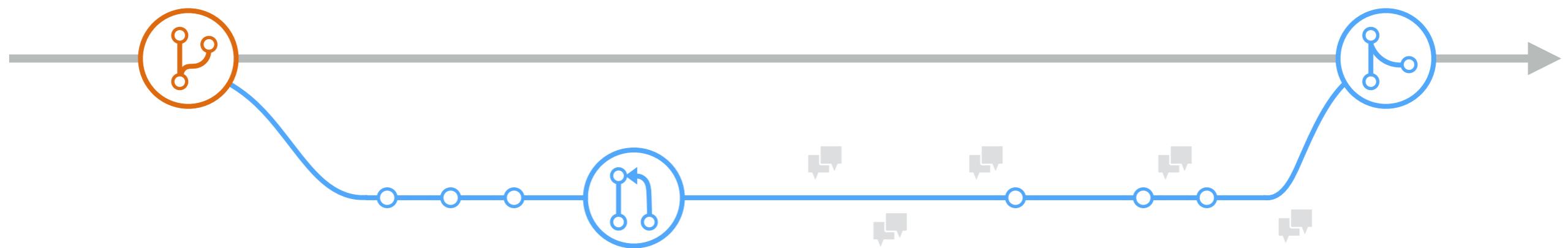
The pull-based model

... traditionally

The Pull Request process

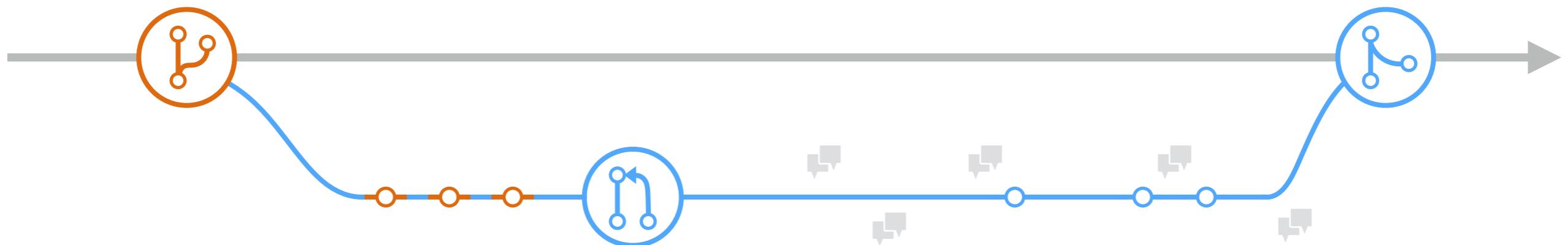


The Pull Request process



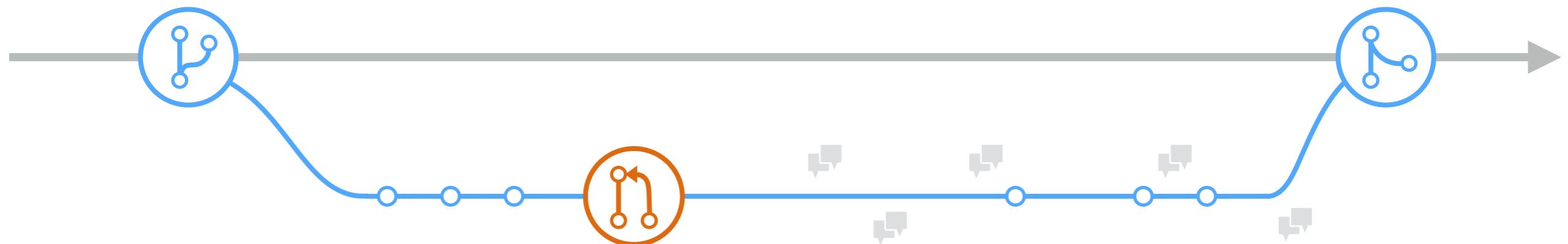
Create
a branch

The Pull Request process



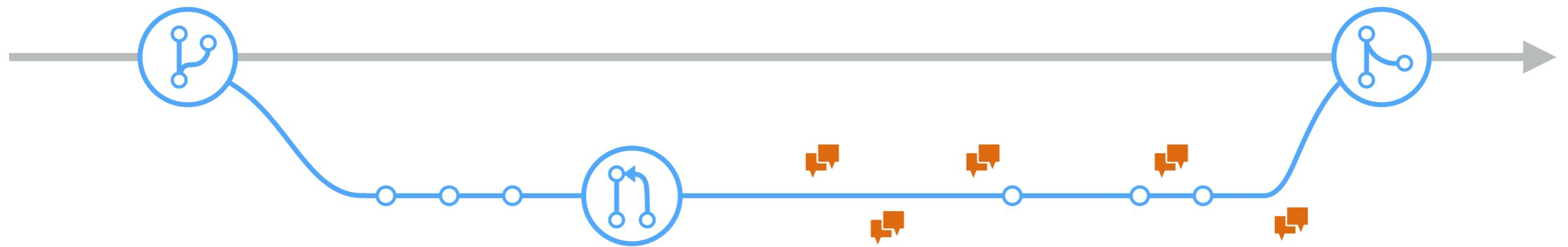
Add
commits

The Pull Request process



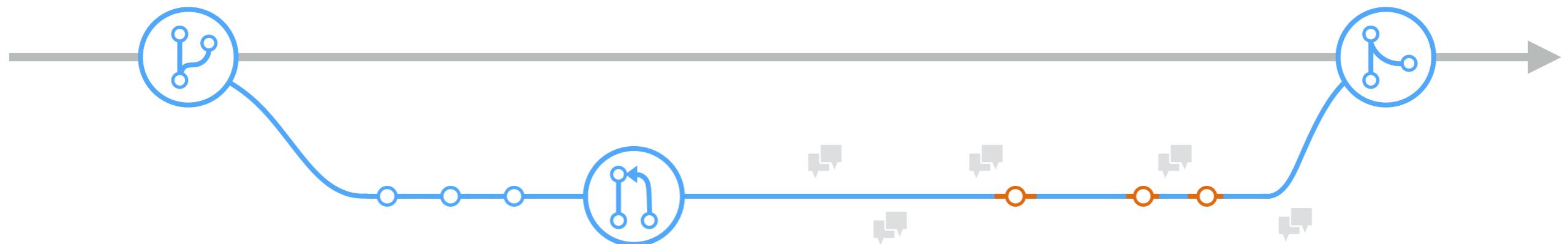
Open a
Pull Request

The Pull Request process



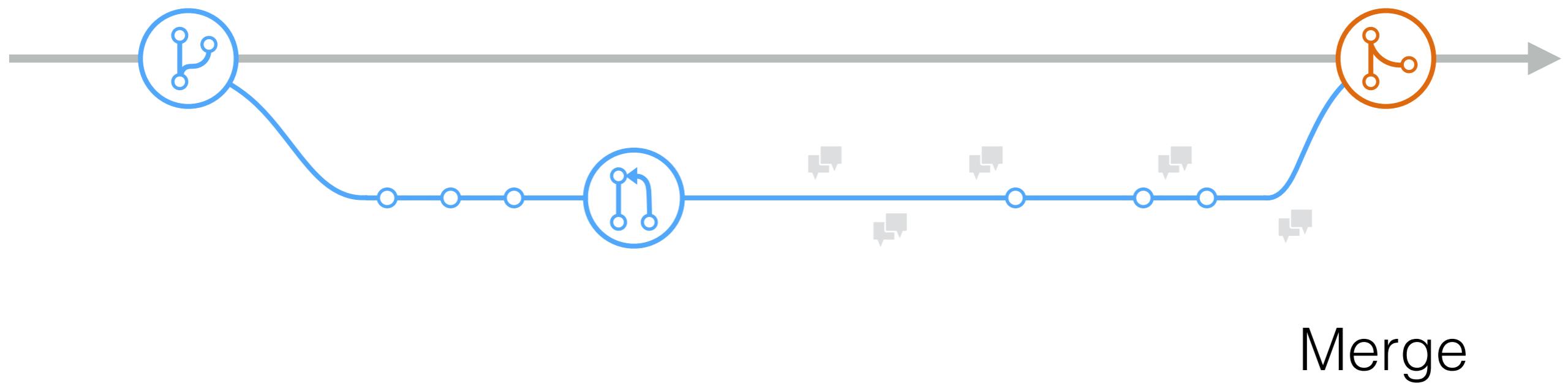
Discussion &
Code review

The Pull Request process



Pull Request
updates

The Pull Request process



The pull-based model

... modernly

The pull-based model

... modernly

- Open source-style collaborative development practices in commercial projects using GitHub
E Kalliamvakou, D Damian, K Blincoe, L Singer, DM German. *ICSE 2015*
- Work practices and challenges in pull-based development: the integrator's perspective
G Gousios, A Zaidman, MA Storey, A Van Deursen. *ICSE 2015*

... because
code review

Considerable review load

 rails / rails

Watch ▾ 1,887 Star 26,093 Fork 10,339

[Issues](#) [Pull requests](#) [Labels](#) [Milestones](#) [Filters ▾](#) [New pull request](#)

467 Open ✓ 12,551 Closed

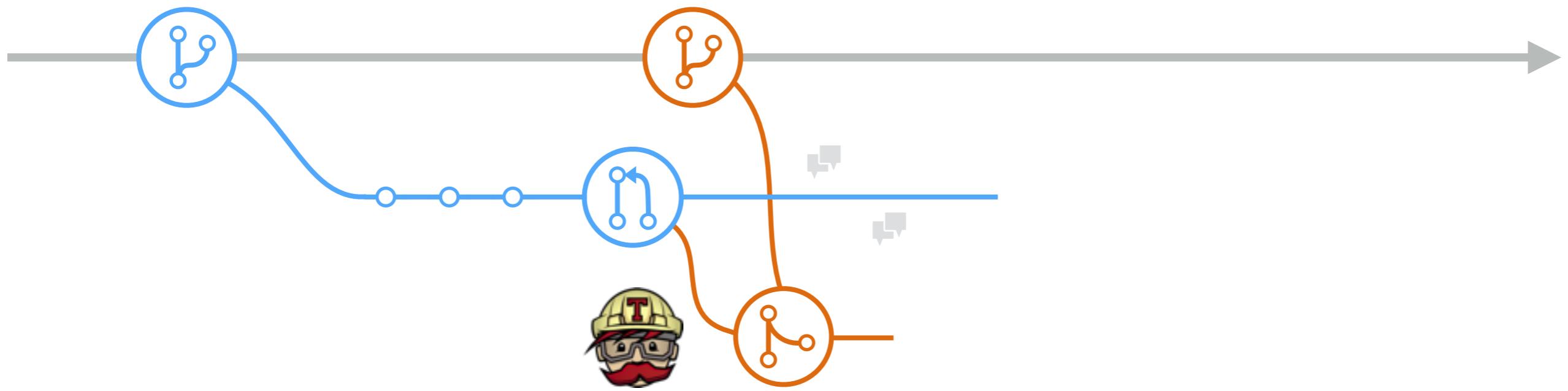
		Author ▾	Labels ▾	Milestones ▾	Assignee ▾	Sort ▾
#20143	Move Integer#positive? and Integer#negative? query methods to Numeric ✓	meinac				2
#20138	Deprecate `assert_template`. ✓	tgxworld				8
#20134	Add Enumerable#map_with to ActiveSupport ✓	mlarraz				0
#20127	Allow creating a save callback for same name with parent association ✓	meinac				2
#20125	ActiveSupport::HashWithIndifferentAccess select and reject should return enumerator if called without block ✓	imanel				0
#20124	Don't ignore false values for `include_blank` passed to `Tags::Base#select_content_tag` ✓	greystein				9
#20123	Fix for irregular inflection inconsistency ✓	yoongkang				0
#20117	Add openssl_verify_mode and sync other smtp_settings with API docs ✓	jfine				0

The Pull Request process

... with Travis-CI

The Pull Request process

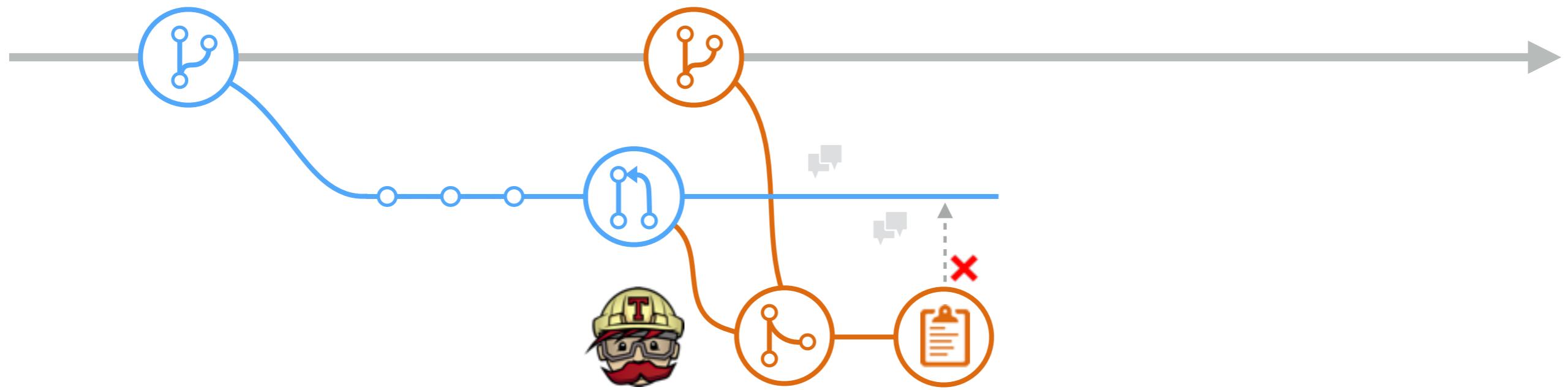
... with Travis-CI



Pull Request is
automatically
merged into
testing branch

The Pull Request process

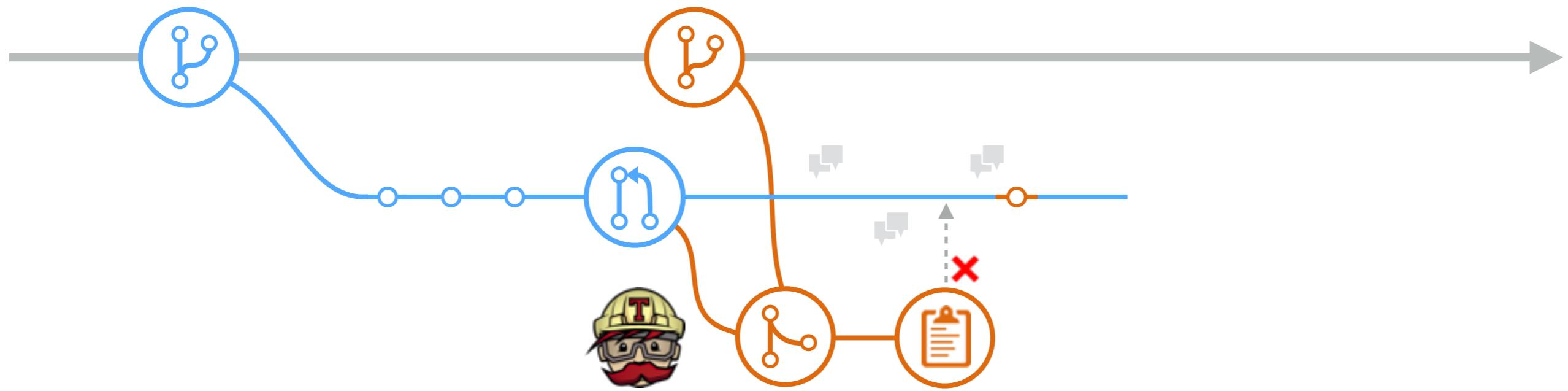
... with Travis-CI



Test suite runs
automatically

The Pull Request process

... with Travis-CI

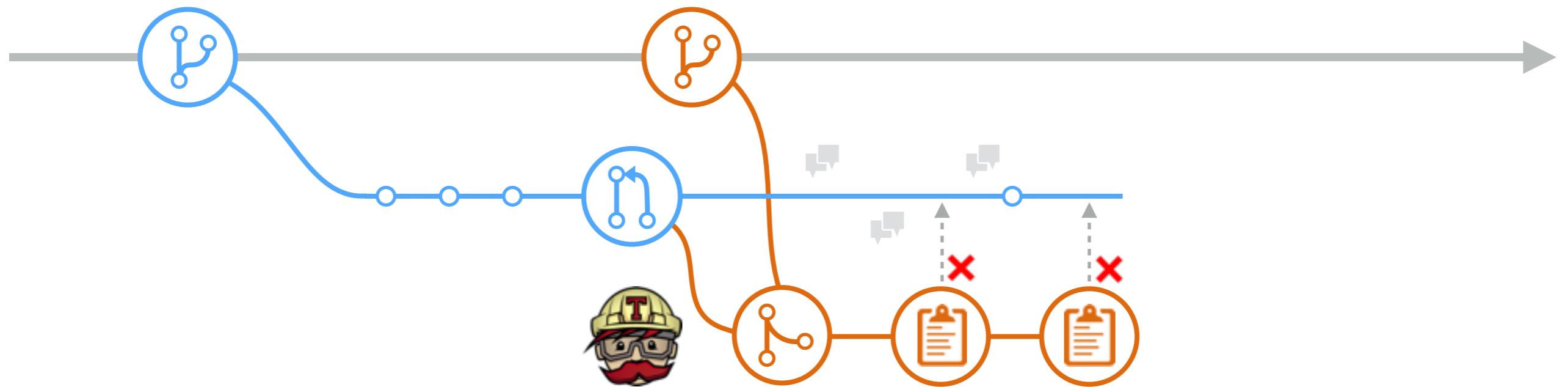


Pull Request
is updated in
response to
test failures

- Continuous integration in a social-coding world: Empirical evidence from GITHUB
B Vasilescu, S van Schuylenburg, J Wulms, A Serebrenik, MGJ van den Brand. *ICSME 2014*

The Pull Request process

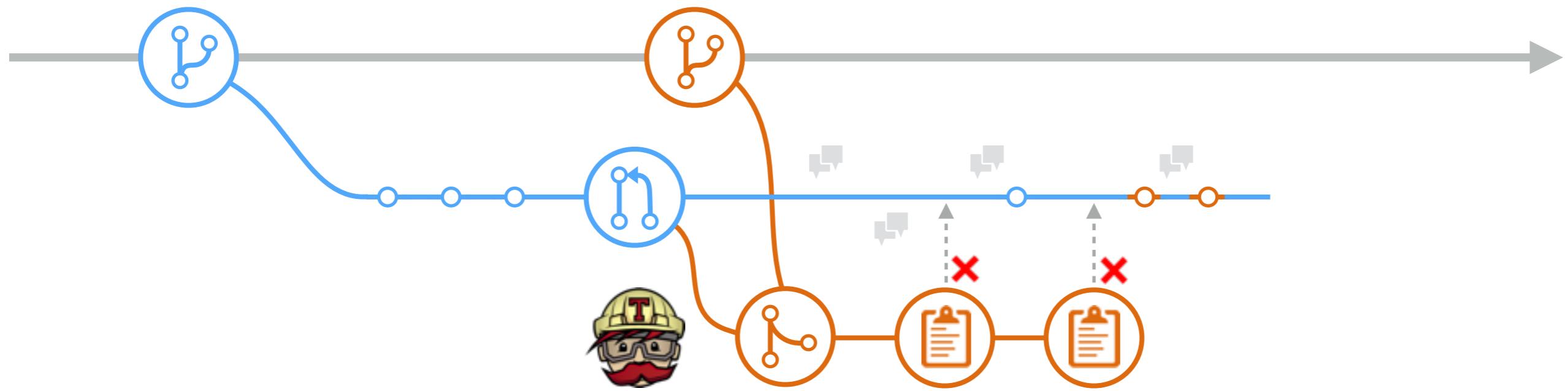
... with Travis-CI



Tests rerun
after update

The Pull Request process

... with Travis-CI

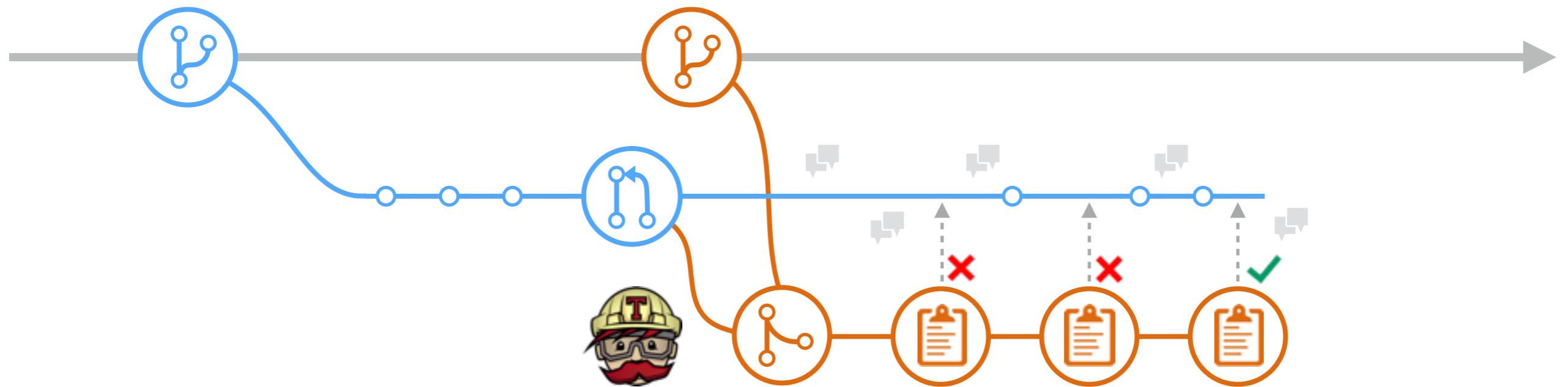


More updates

- Continuous integration in a social-coding world: Empirical evidence from GITHUB
B Vasilescu, S van Schuylenburg, J Wulms, A Serebrenik, MGJ van den Brand. *ICSME 2014*

The Pull Request process

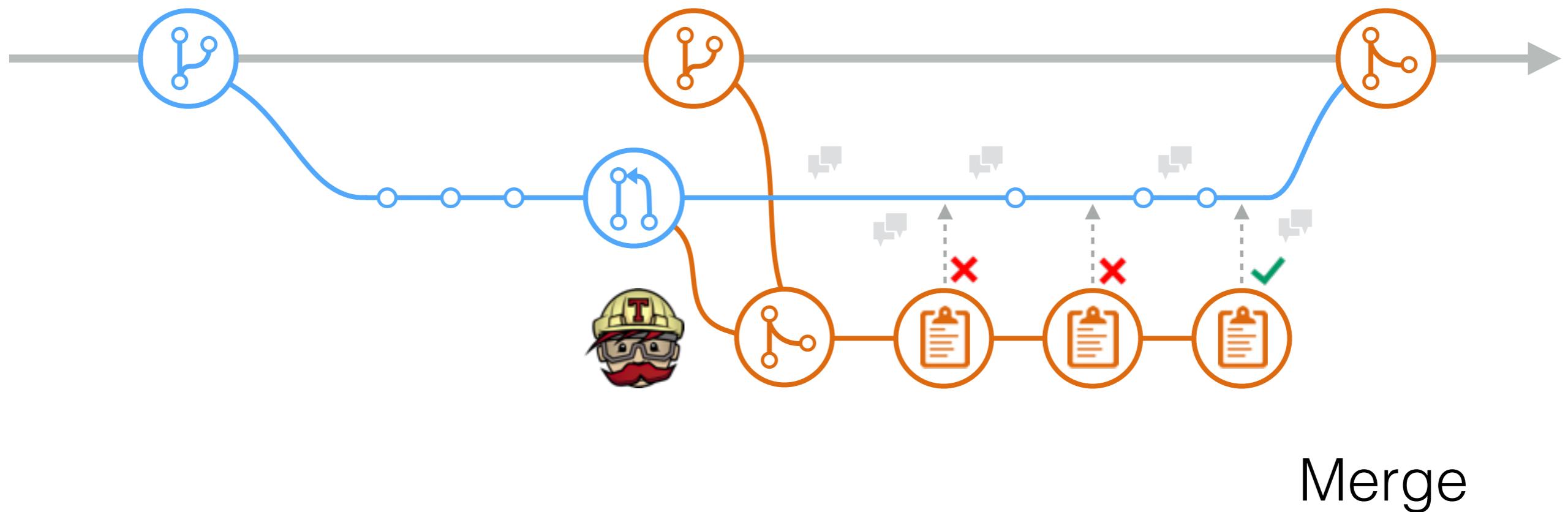
... with Travis-CI



Tests
finally
pass

The Pull Request process

... with Travis-CI



Merge after CI tests pass

This repository Search

Explore Features Enterprise Pricing

Sign up Sign in

rails / rails

Watch 2,003 Star 27,550 Fork 11,060

Issues Pull requests Labels Milestones

is:pr is:closed is:merged

New pull request

Clear current search query, filters, and sorts

8,842 Total

Author ▾ Labels ▾ Milestones ▾ Assignee ▾ Sort ▾

removing unnecessary default parameter in private method ✓ #18356 opened on Jan 6 by georgemillo

Documenting 'remove_possible_method' and 'redefine_method' [ci skip] #18355 opened on Jan 6 by georgemillo

Improve protect_from_forgery documentation. #18354 opened on Jan 6 by simi

Propagate bind_values from join in subquery ✓ #18350 opened on Jan 5 by brainopia

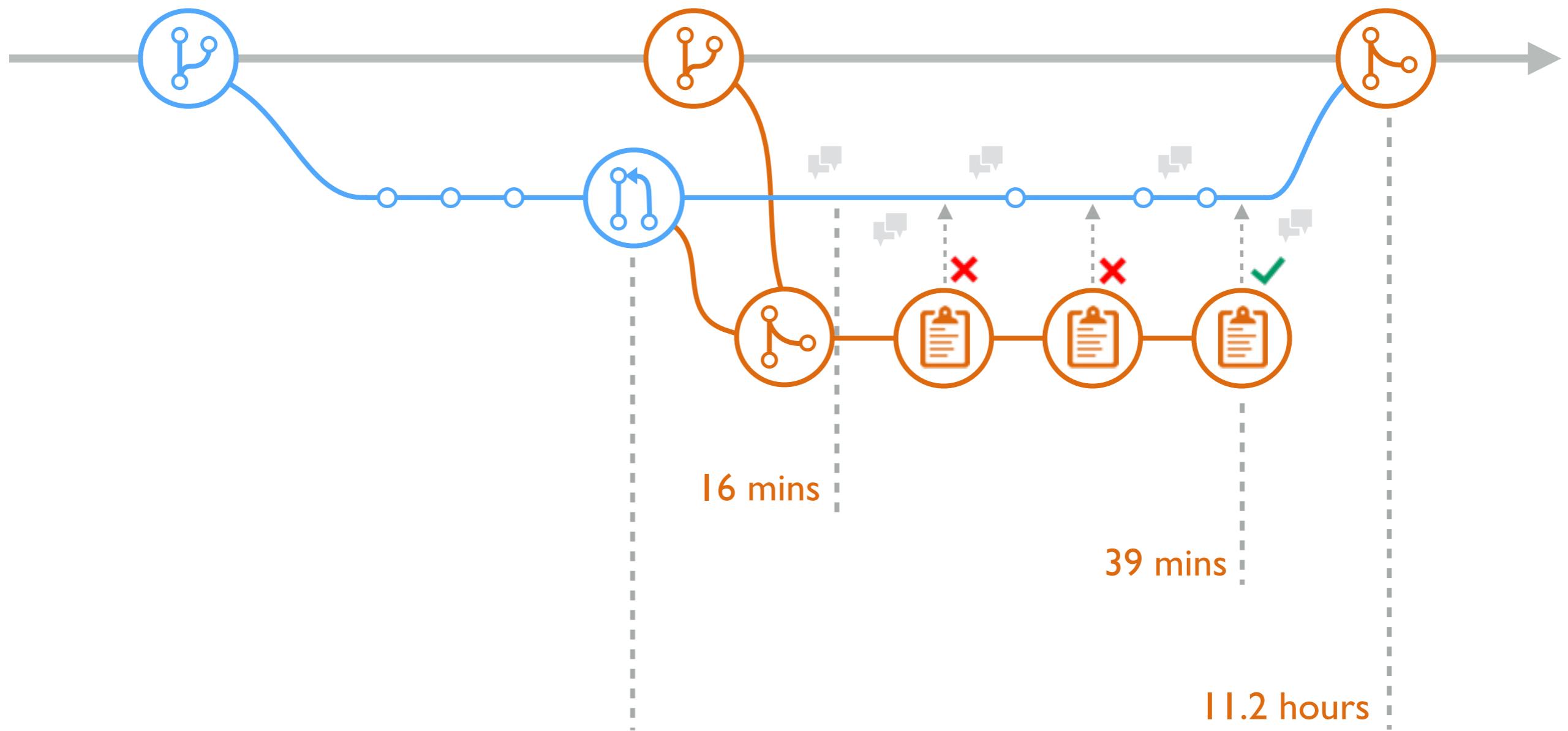
Fix rollback of primarykey-less tables ✓ #18349 opened on Jan 5 by jdelStrother

Switching SecureTokens to Base58 #18347 opened on Jan 5 by robertomiranda

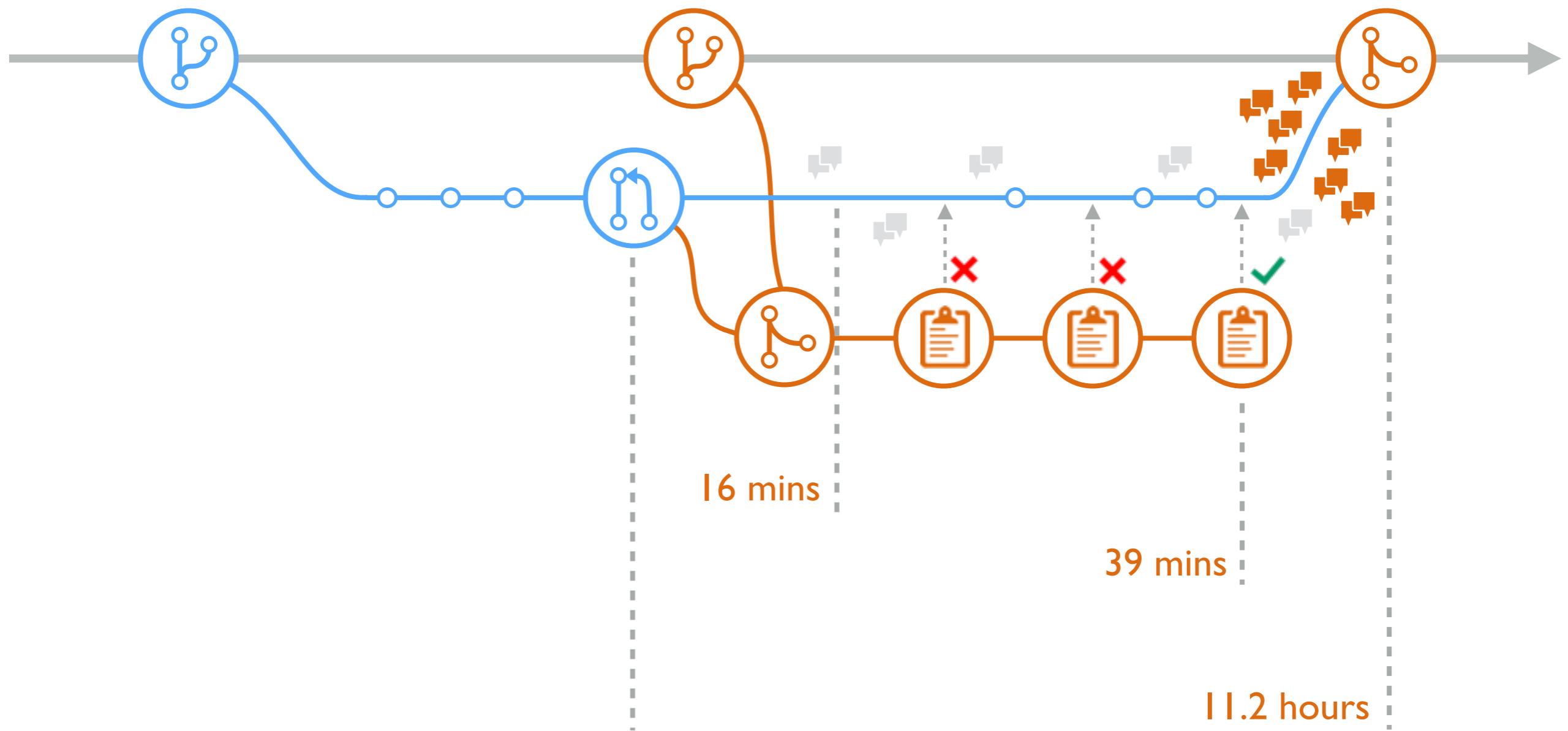
Fix TypeError in Fixture creation ✓ #18345 opened on Jan 5 by mtthgn

Clean up secure_token_test ✓ #18344 opened on Jan 5 by jonatack

~~Merge after CI tests pass~~ Code review



~~Merge after CI tests pass~~ Code review

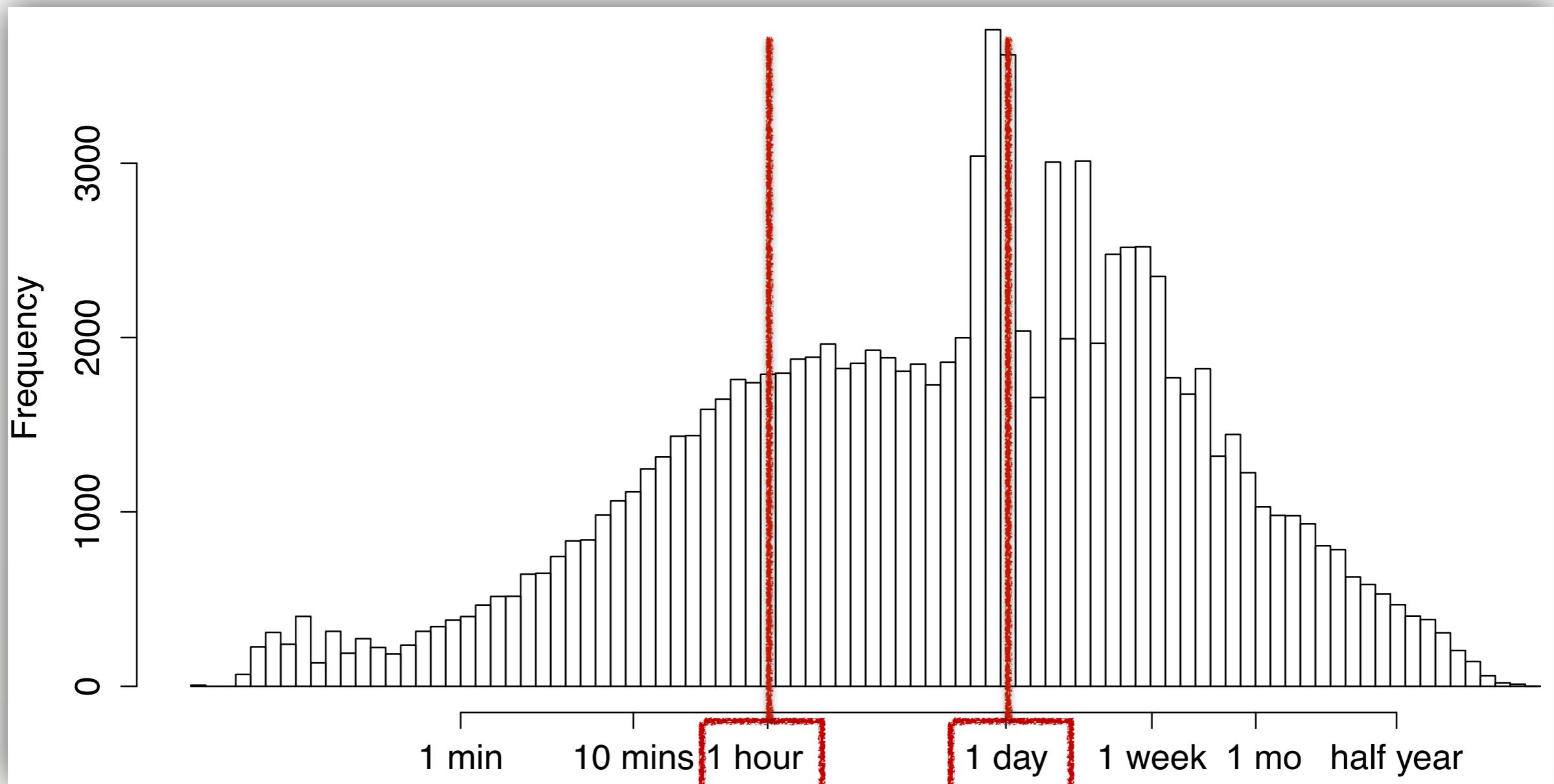


- Wait for it: Determinants of pull request evaluation latency on GitHub

Y Yu, H Wang, V Filkov, P Devanbu, B Vasilescu. MSR 2015

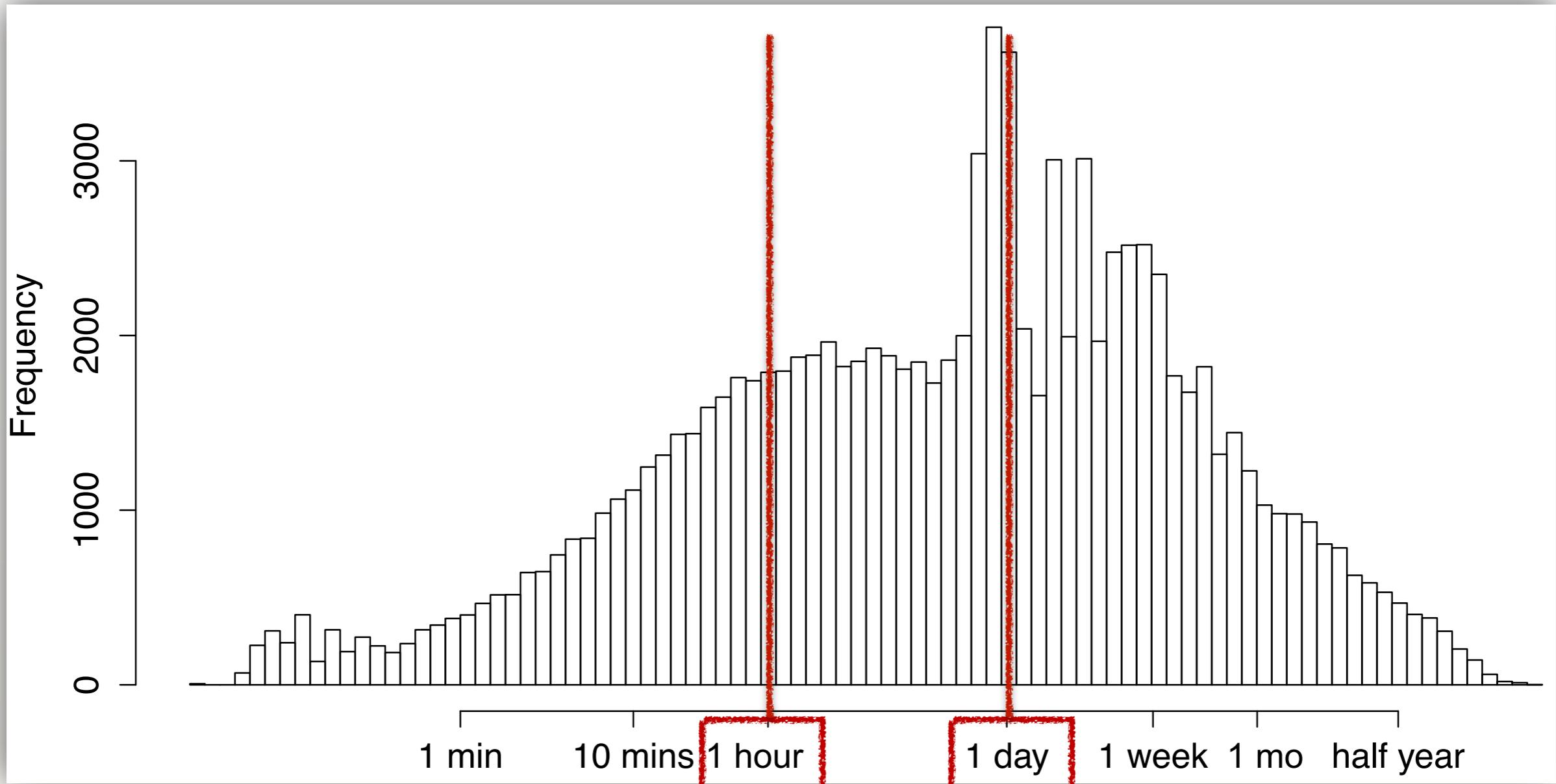
PULL REQUEST EVALUATION TIME

HOW TO PREDICT?



PULL REQUEST EVALUATION TIME

HOW TO PREDICT?

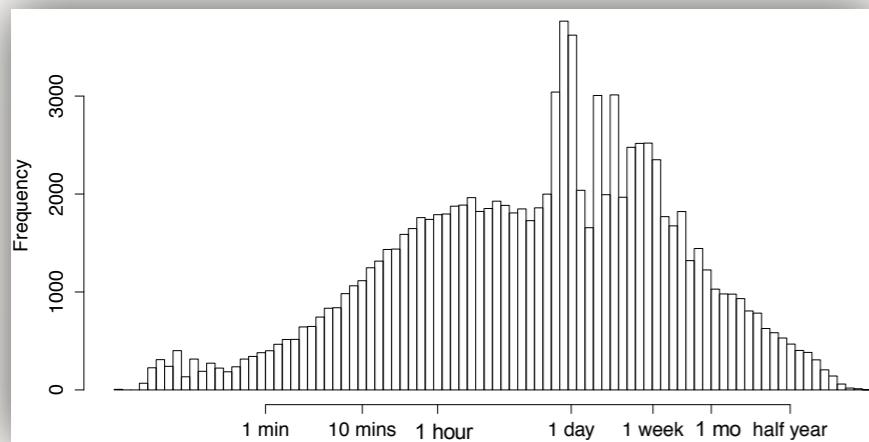
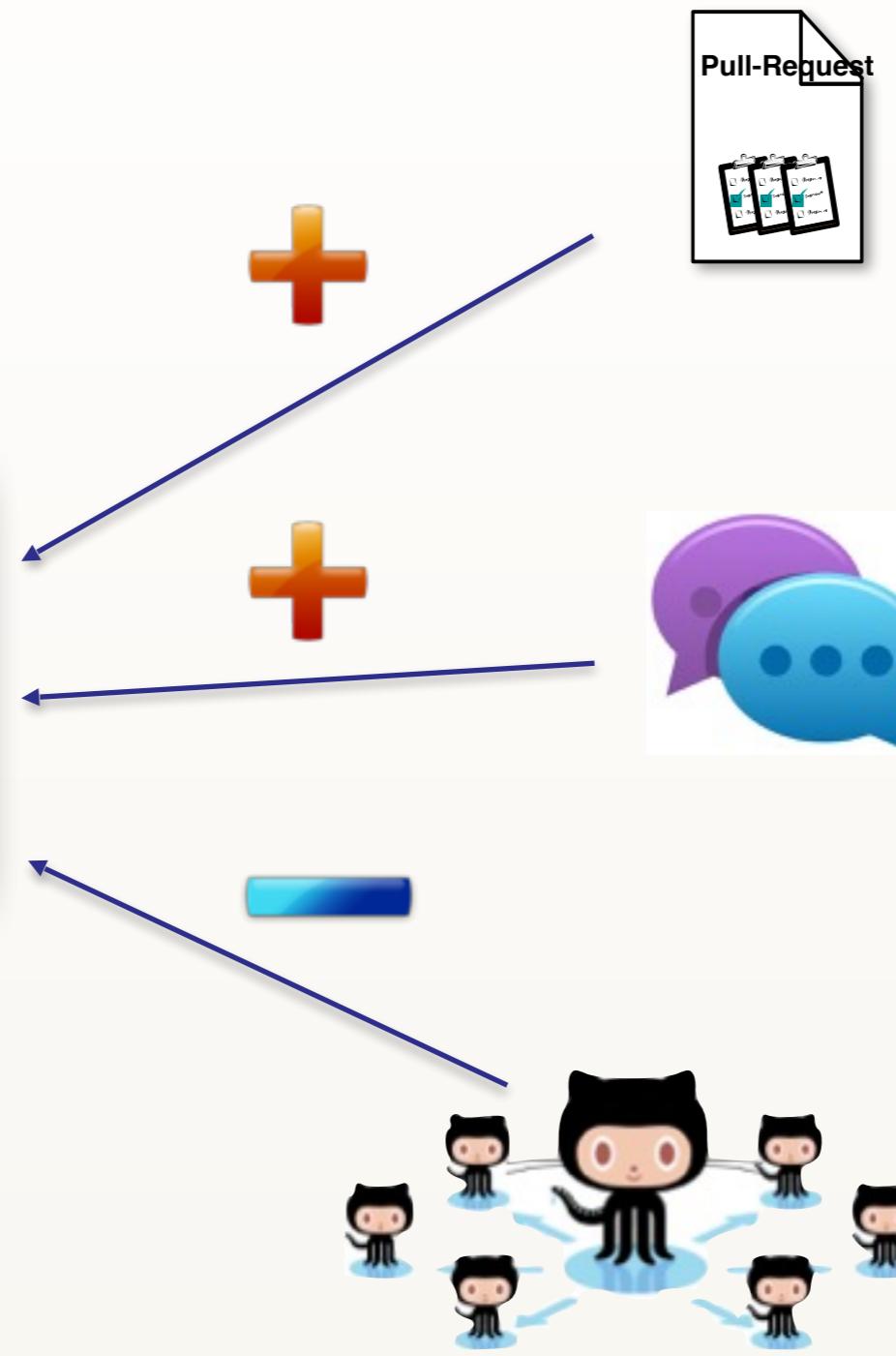


Hypothesis:

Technical attributes dominate: Size, Complexity, Having Tests

PULL REQUEST EVALUATION TIME

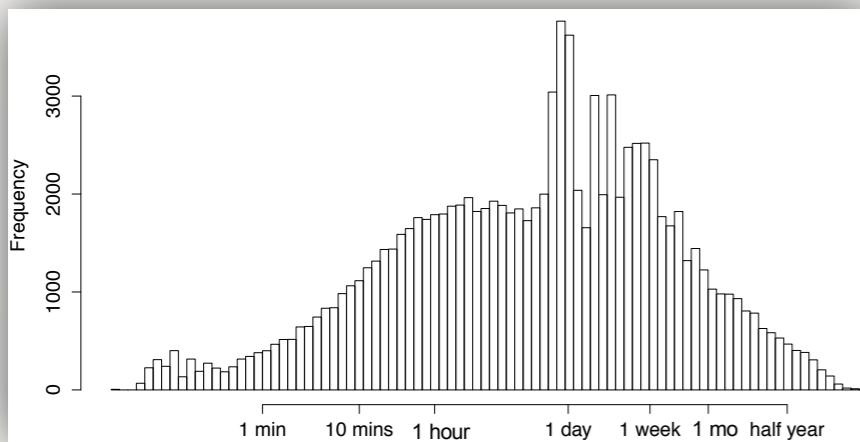
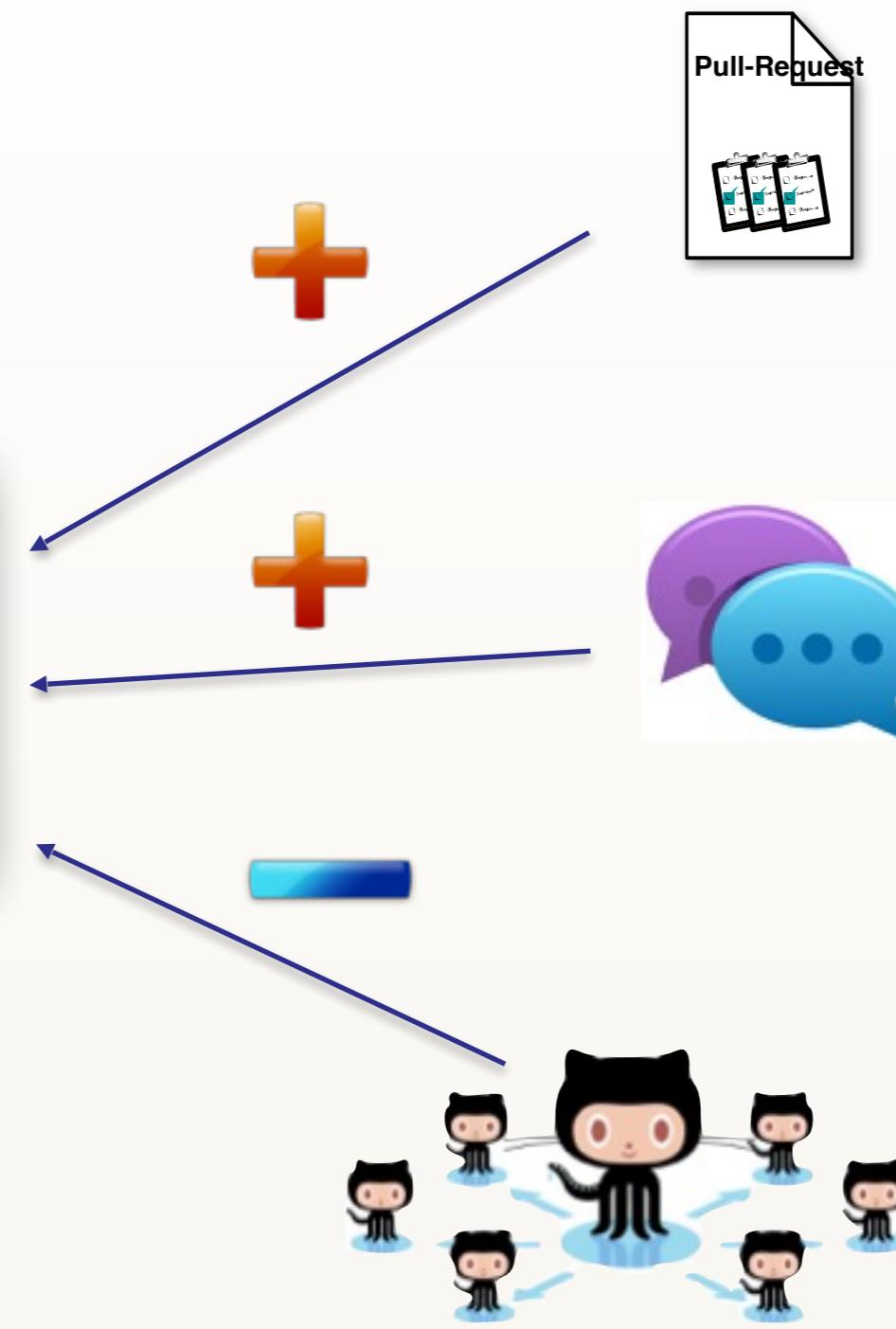
FACTORS



[Gousios et al, ICSE'14, ICSE'15]
[Tsay et al, ICSE'14, FSE'14]

MI: Previously-
identified factors

✓ $R^2 = 36.2\%$



Size

- `n_additions`
- `n_commits`

Review

- `n_comments`

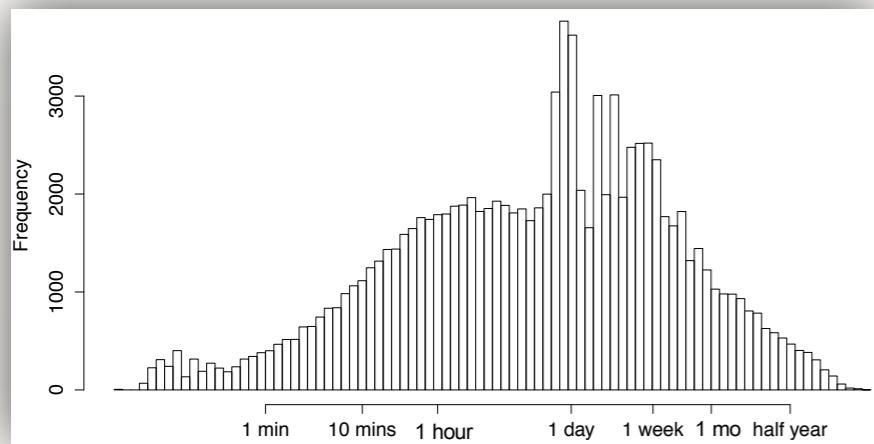
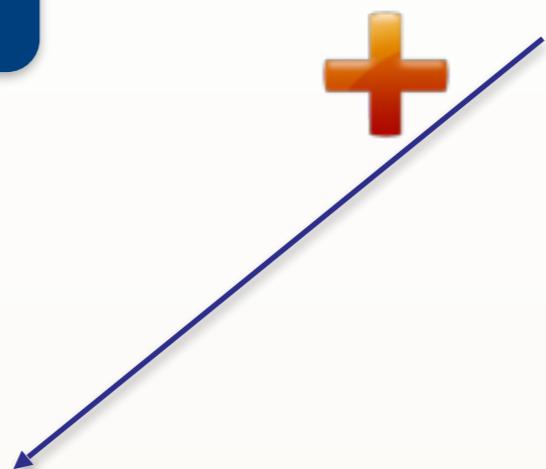
Experience & Social Connections

- `merge_rate`
- `connection_strength`
- `n_followers`

[Gousios et al, ICSE'14, ICSE'15]

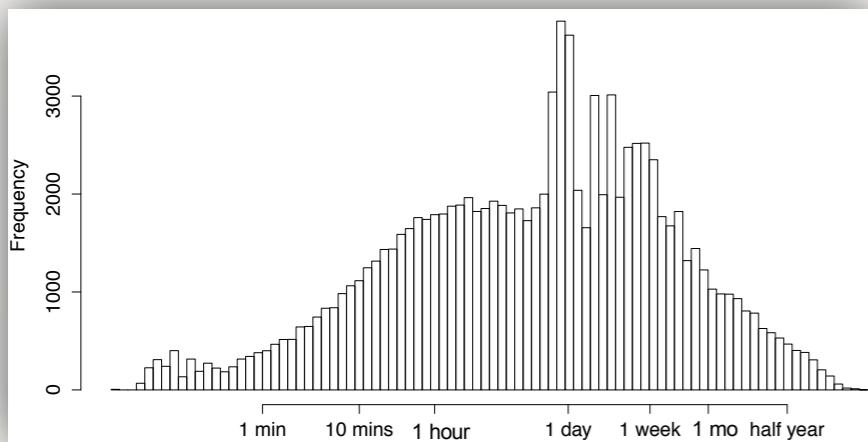
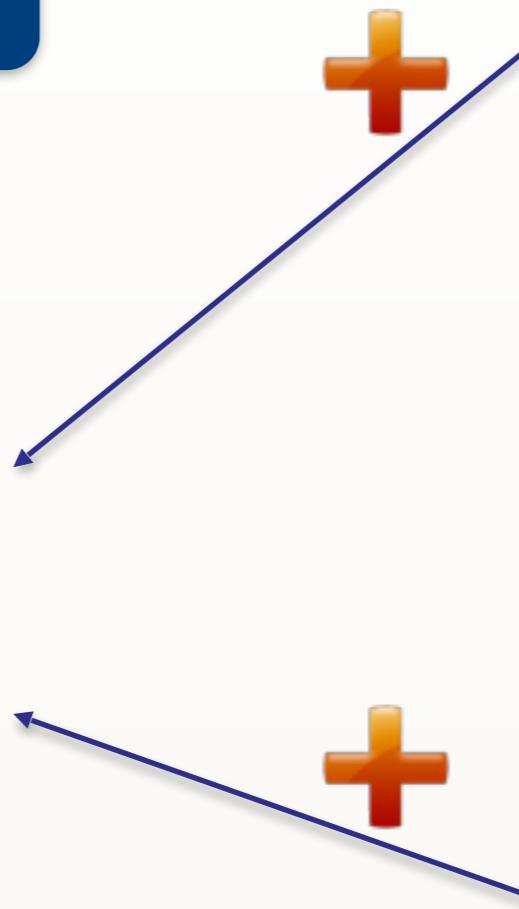
[Tsay et al, ICSE'14, FSE'14]

M2: MI + process-related factors + continuous integration



Title & description
• n_tokens

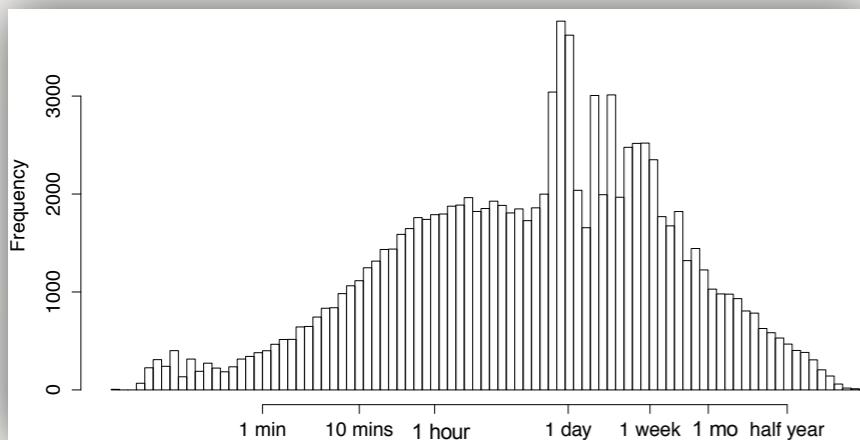
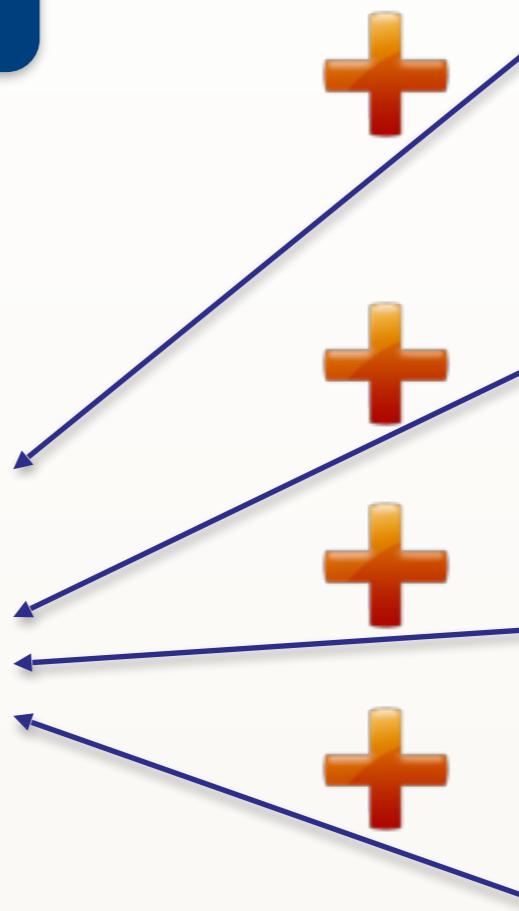
M2: MI + process-related factors + continuous integration



Title & description
• n_tokens

Management
• workload
• availability

M2: MI + process-related factors + continuous integration



Title & description

- n_tokens

Priority

- time_to_first_response

Continuous Integration

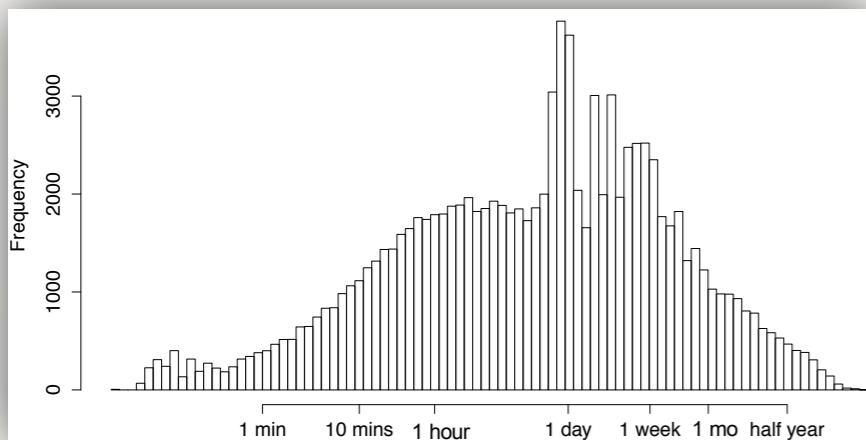
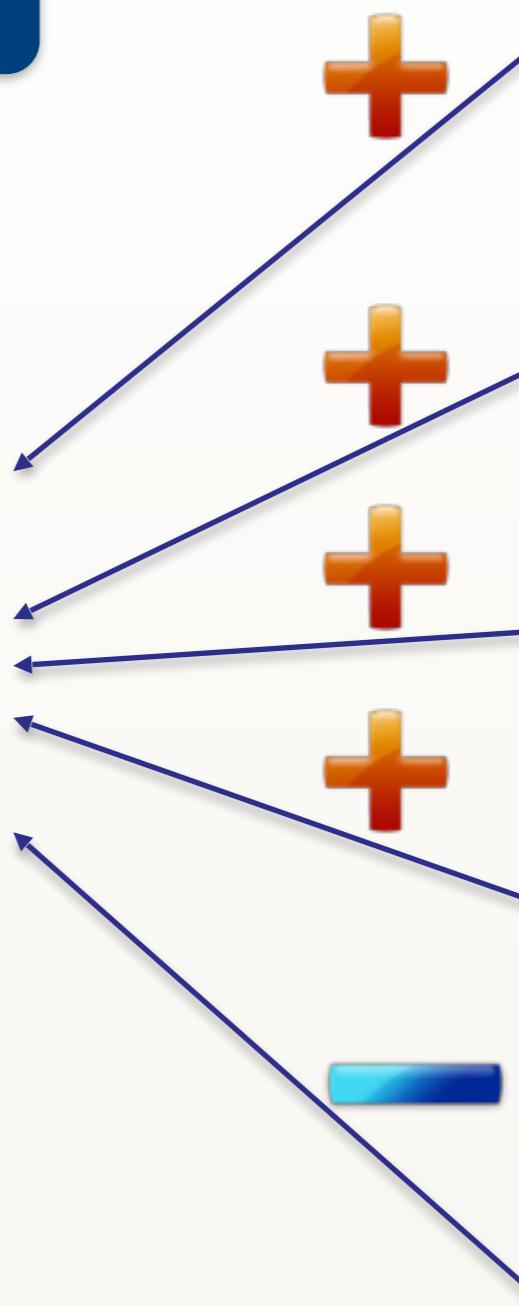
- response time

Management

- workload
- availability

M2: MI + process-related factors + continuous integration

✓ $R^2 = 58.7\%$



Title & description

- n_tokens

Priority

- time_to_first_response

Continuous Integration

- response time

Management

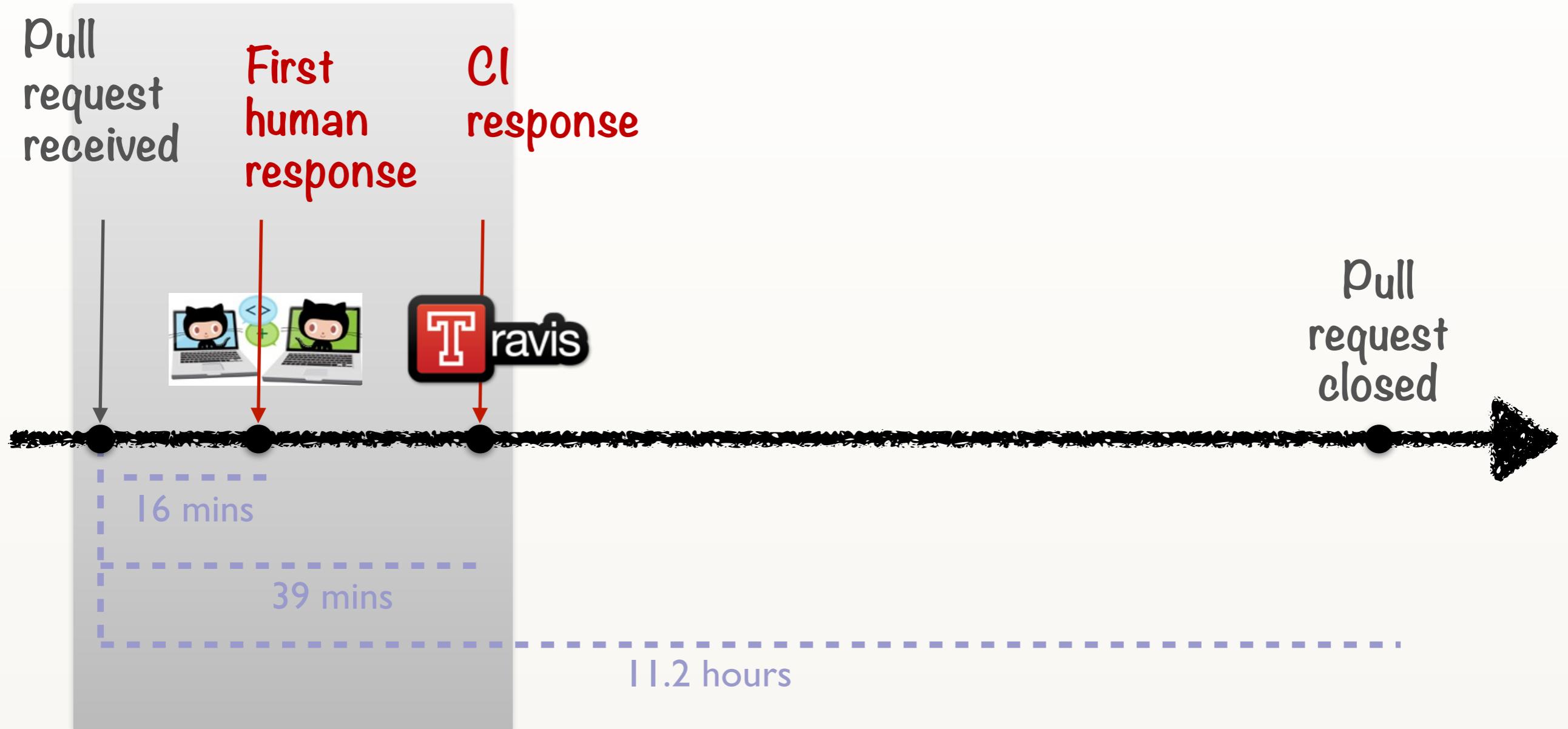
- workload
- availability

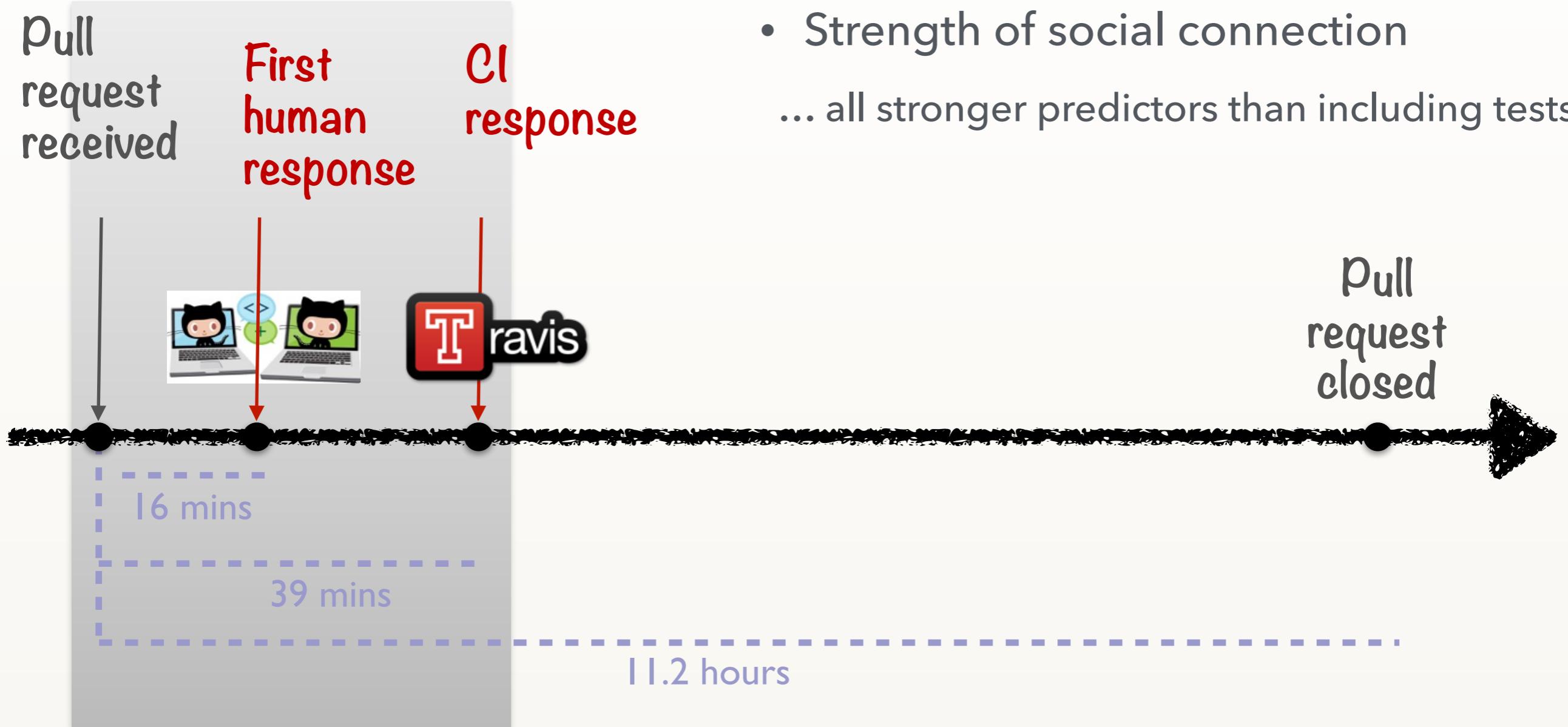
Social tagging

- @mention
- #issue

PULL REQUEST EVALUATION TIME

IS PREDICTABLE





Science is hard to
get right

Sobel, A. E. K., & Clarkson, M. R. (2002). Formal methods application: An empirical tale of software development. *IEEE Transactions on Software Engineering*, 28(3), 308-320.

- Two classes of students at Miami University of Ohio that studied object-oriented (OO) design in a one semester course:
 - Control group (random sample): OO design class
 - Treatment group (volunteers): OO design class + formal methods
 - No statistical difference between the abilities of the two groups on standardized ACT pre-tests
- As project, both classes were assigned the development of an elevator system
 - Hand in functioning executable + source code (+ formal specification written using first-order logic)

Sobel, A. E. K., & Clarkson, M. R. (2002). Formal methods application: An empirical tale of software development. *IEEE Transactions on Software Engineering*, 28(3), 308-320.

- Standard set of test cases:
 - 45.5% of control teams passed all tests
 - 100% of treatment teams
- Conclusions:
 - “formal methods students had increased complex-problem solving skills”
 - “the use of formal methods during software development produces ‘better’ programs”

Berry, D. M., & Tichy, W. F. (2003). Comments on" Formal methods application: an empirical tale of software development". *IEEE Transactions on Software Engineering*, 29(6), 567-571.

- “Unfortunately, the paper contains several subtle problems. The reader unfamiliar with the basic principles of experimental psychology may easily miss them and interpret the results incorrectly. Not only do we wish to point out these problems, but we also aim to illustrate what to look for when drawing conclusions from controlled experiments.”

Berry, D. M., & Tichy, W. F. (2003). Comments on" Formal methods application: an empirical tale of software development". *IEEE Transactions on Software Engineering*, 29(6), 567-571.

- Confounding variables:
 - differences in motivation (treatment group volunteers more motivated)
 - differences in exposure (treatment group more instruction)
 - differences in learning style (treatment group better learners)
 - differences in skills (outside of ACT)
- Novelty effects
- ...

Why big data needs
thick data

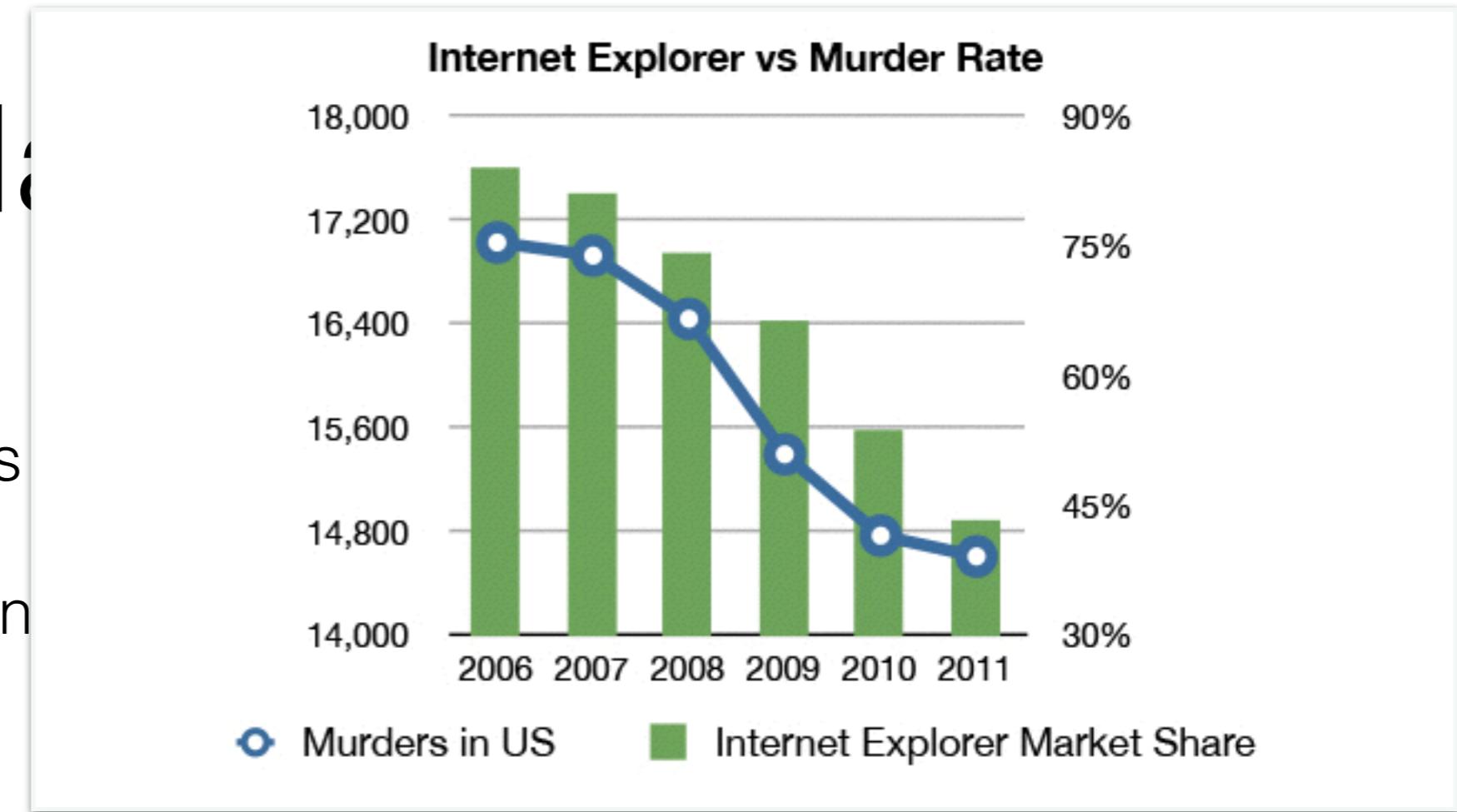
Why big data needs thick data

Why big data needs thick data

- Looking for answers in the wrong places:
 - A/B testing doesn't say anything about why users prefer a certain feature

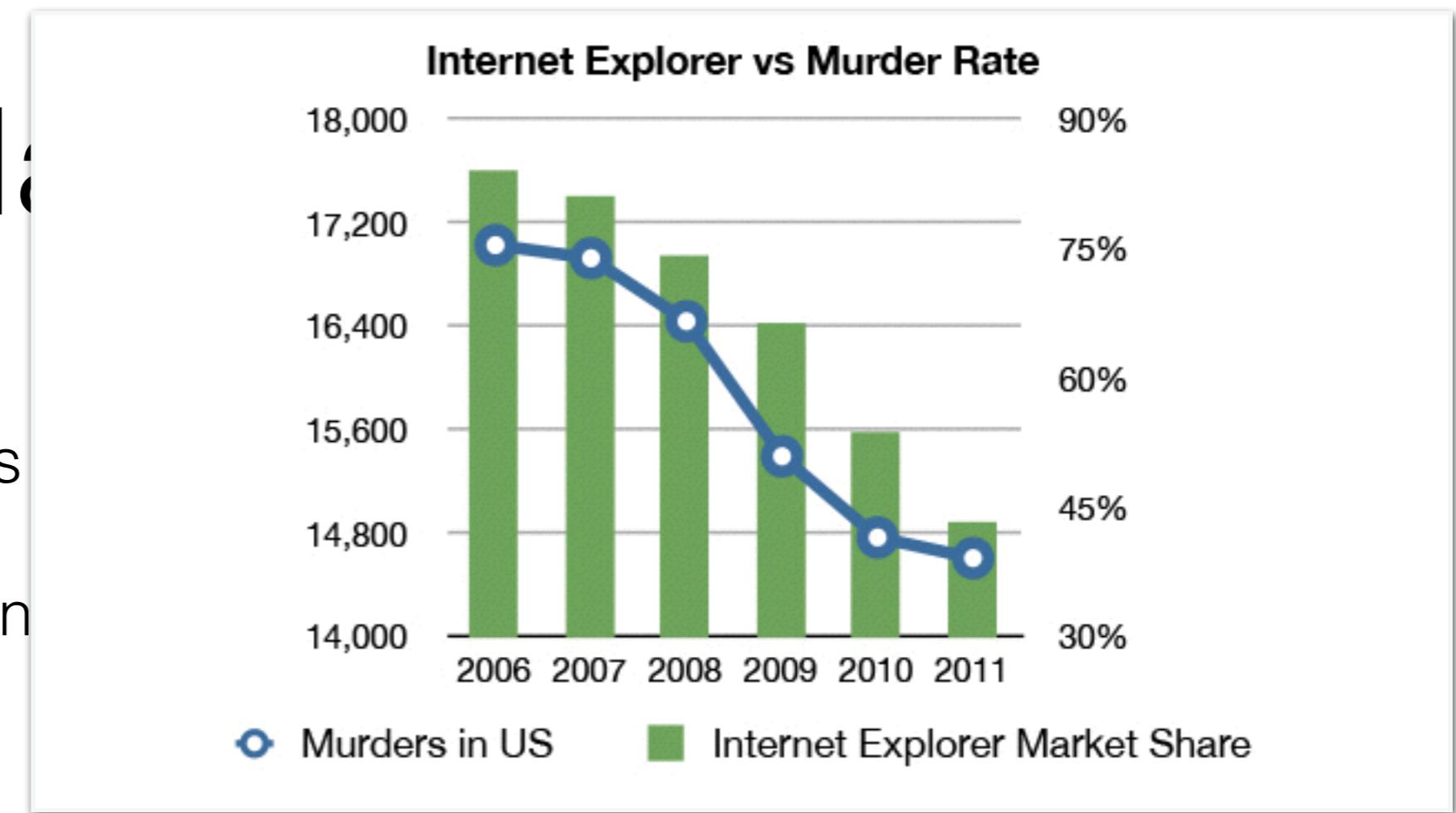
Why big data?

- Looking for answers
 - A/B testing doesn't certain feature
- Reality distortion field:
 - From 2006 to 2011 the US murder rate was well correlated with the market share of Internet Explorer: Both went down sharply

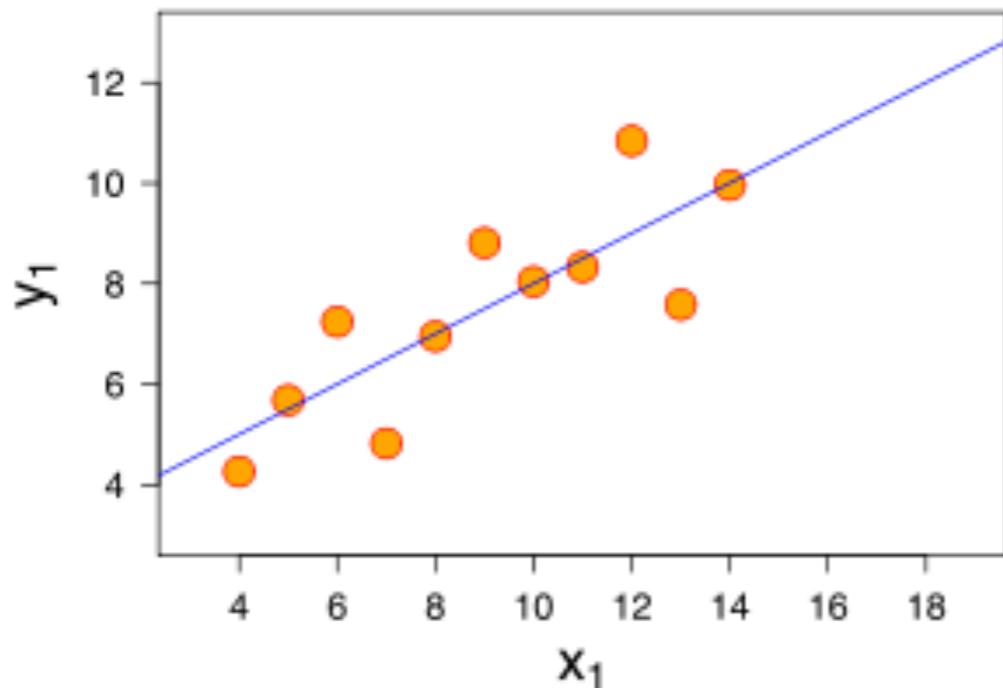
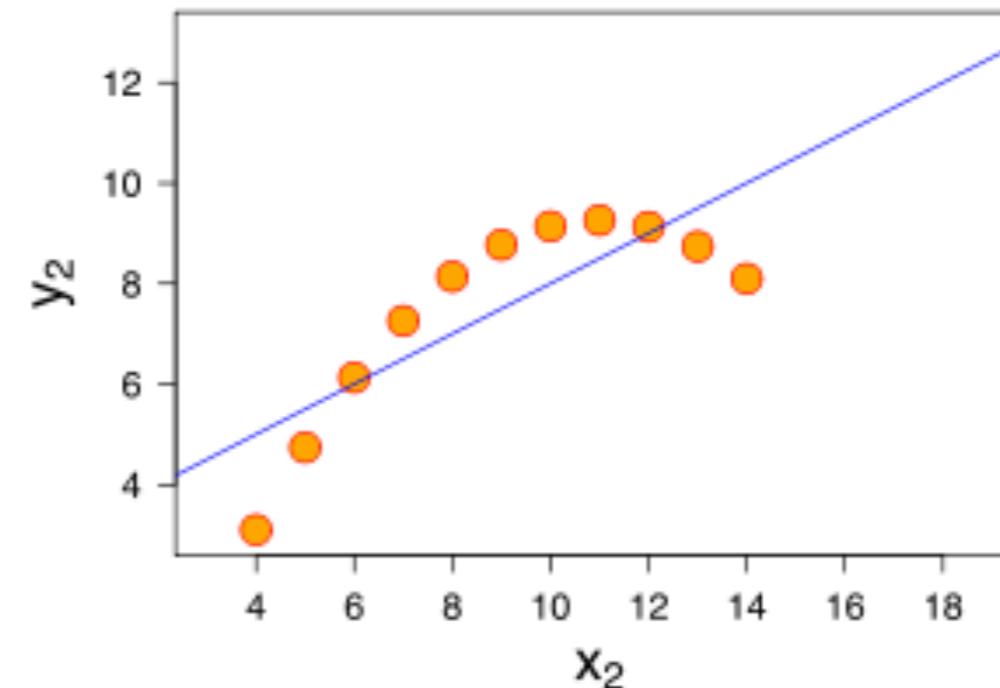
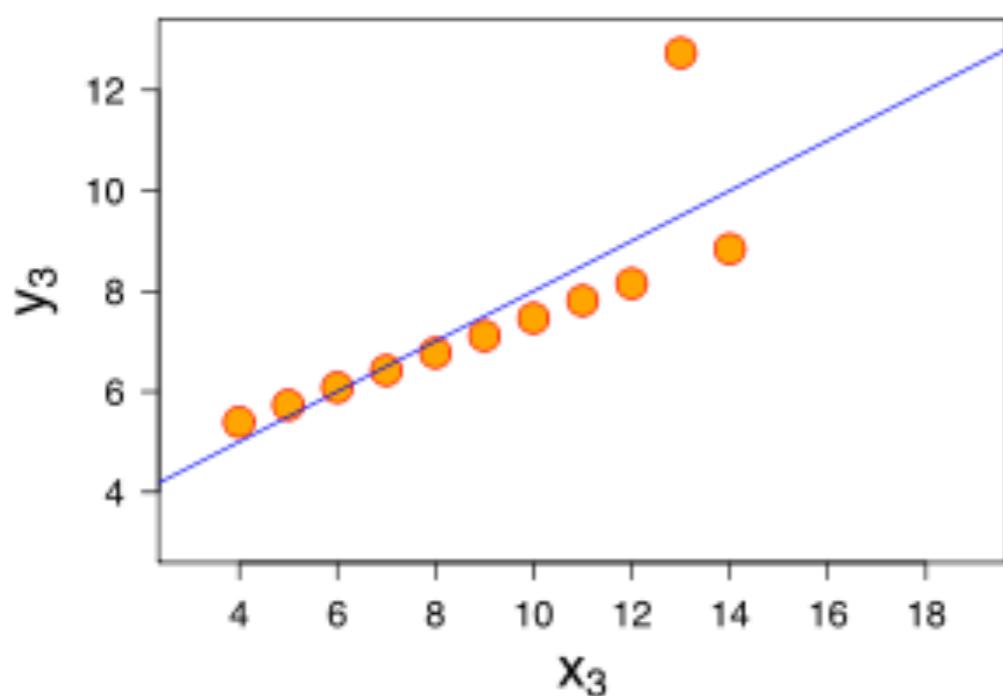
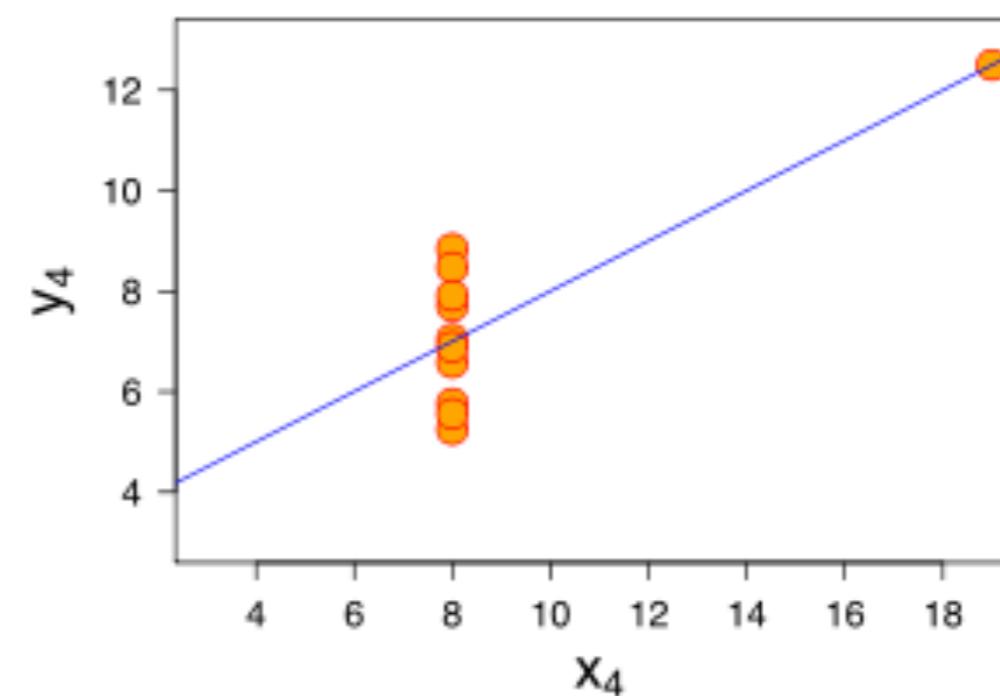


Why big data?

- Looking for answers
 - A/B testing doesn't certain feature
- Reality distortion field:
 - From 2006 to 2011 the US murder rate was well correlated with the market share of Internet Explorer: Both went down sharply
 - “Data is like people – interrogate it hard enough and it will tell you whatever you want to hear”



Anscombe's quartet



Why big data needs thick data

- Looking for answers in the wrong places:
 - A/B testing doesn't say anything about why users prefer a certain feature
- Reality distortion field:
 - From 2006 to 2011 the US murder rate was well correlated with the market share of Internet Explorer: Both went down sharply
 - “Data is like people – interrogate it hard enough and it will tell you whatever you want to hear”
- Which data should we collect? What is the meaning of the data that is collected? How should the insights be shared and used?

Microsoft's 10 Most Unwise Questions

Unwise

Which individual measures correlate with employee productivity (e.g. employee age, tenure, engineering skills, education, promotion velocity, IQ)?	25.5%
Which coding measures correlate with employee productivity (e.g. lines of code, time it takes to build software, particular tool set, pair programming, number of hours of coding per day, programming language)?	22.0%
What metrics can we use to compare employees?	21.3%
How can we measure the productivity of a Microsoft employee?	20.9%
Is the number of bugs a good measure of developer effectiveness?	17.2%
Can I generate 100% test coverage?	14.4%
Who should be in charge of creating and maintaining a consistent company-wide software process and tool chain?	12.3%
What are the benefits of a consistent, company-wide software process and tool chain?	10.4%
When are code comments worth the effort to write them?	9.6%
How much time and money does it cost to add customer input into your design?	8.3%

Percentage of women in top 100 Google image search results for CEO: 11%

Percentage of U.S. CEOs who are women: 27%

Percentage of women in the top 100 Google image search results for telemarketers: 64%

Percentage of U.S. telemarketers who are women: 50%

Turkish - detected▼

English▼

o bir aşçı
o bir mühendis
o bir doktor
o bir hemşire
o bir temizlikçi
o bir polis
o bir asker
o bir öğretmen
o bir sekreter

she is a cook
he is an engineer
he is a doctor
she is a nurse
he is a cleaner
He-she is a police
he is a soldier
She's a teacher
he is a secretary

o bir arkadaş
o bir sevgili

he is a friend
she is a lover

onu sevmiyor
onu seviyor

she does not like her
she loves him

onu görüyor
onu göremiyor

she sees it
he can not see him

o onu kucaklıyor
o onu kucaklamıyor

she is embracing her
he does not embrace it

o evli
o bekar

she is married
he is single

o mutlu
o mutsuz

he's happy
she is unhappy

o çalışkan
o tembelli

he is hard working
she is lazy