
Foundations of
Software Engineering

Part 24: Teams

Christian Kästner

15-313 Software Engineering1

15-313 Software Engineering2

Case Studies

15-313 Software Engineering3

Disclaimer: All pictures represent abstract developer groups or products to give a
sense of scale; they are not necessarily the developers of those products or
developers at all.

How to structure teams?

• Microblogging platform; 3 friends

15-313 Software Engineering4

How to structure teams?

• Banking app; 15 developers

15-313 Software Engineering5

How to structure teams?

• Mobile game;
50ish developers;

• distributed teams?

15-313 Software Engineering6

How to structure teams?

• Mobile game;
200ish developers

15-313 Software Engineering7

How to structure teams?

• Ride sharing app and self-driving cars;
1200 developers; 4 sites

15-313 Software Engineering8

Teams

15-313 Software Engineering9

Necessity of Groups

• Division of labor

• Division of expertise (e.g., security
expert, database expert)

15-313 Software Engineering10

Team Issues

• Process costs

• Groupthink

• Social loafing

• Multiple/conflicting goals

15-313 Software Engineering11

Team issues: Process costs

15-313 Software Engineering12

Mythical Man Month

• Brooks's law: Adding
manpower to a late
software project
makes it later

15-313 Software Engineering13

1975, describing experience at
IBM developing OS/360

Process Costs

15-313 Software Engineering14

n(n − 1) / 2
communication links

Process Costs

15-313 Software Engineering15

Brook's Surgical Teams

• Chief programmer – most programming and initial
documentation

• Support staff
– Copilot: supports chief programmer in development tasks,

represents team at meetings
– Administrator: manages people, hardware and other resources
– Editor: editing documentation
– Two secretaries: one each for the administrator and editor
– Program clerk: keeps records of source code and documentation
– Toolsmith: builds specialized programming tools
– Tester: develops and runs tests
– Language lawyer: expert in programming languages, provides

advice on producing optimal code.

15-313 Software Engineering16

IBM 1971

Microsoft's Small Team Practices

• Vision statement and milestones (2-4
month), no formal spec

• Feature selection, prioritized by market,
assigned to milestones

• Modular architecture

– Allows small federated teams (Conway's law)

• Small teams of overlapping functional
specialists

15-313 Software Engineering17

Windows 95: 200 developers and testers, one of 250 products

Microsoft's Small Team Practices

• Feature Team
–3-8 developers (design, develop)

–3-8 testers (validation, verification, usability,
market analysis)

–1 program manager (vision, schedule
communication; leader, facilitator) –
working on several features

–1 product manager (marketing research,
plan, betas)

15-313 Software Engineering18

Microsoft's Small Team Practices

• "Synchronize and stabilize"

• For each milestone
–6-10 weeks feature development and

continuous testing
• frequent merges, daily builds

–2-5 weeks integration and testing (“zero-
bug release”, external betas)

–2-5 weeks buffer

15-313 Software Engineering19

Agile Practices (e.g., Scrum)

• 7+/-2 team members, collocated

• self managing

• Scrum master (potentially shared among
2-3 teams)

• Product owner / customer representative

15-313 Software Engineering20

Mantle and Lichty

• Ideal team size: 2-3 colocated developers
if possible

15-313 Software Engineering21

15-313 Software Engineering22

Large teams (29 people) create around six
times as many defects as small teams (3
people) and obviously burn through a lot
more money. Yet, the large team appears to
produce about the same mount of output in
only an average of 12 days’ less time. This is
a truly astonishing finding, through it fits
with my personal experience on projects
over 35 years.

- Phillip Amour, 2006, CACM 49:9

Establish communication patterns

• Avoid overhead

• Ensure reliability

• Constraint latency

• e.g. Issue tracker vs email; online vs face
to face

15-313 Software Engineering23

Awareness

• Notifications

• Brook's documentation book

• Email to all

• Code reviews

15-313 Software Engineering24

Conway’s Law

15-313 Software Engineering25

“Any organization that designs a system (defined
broadly) will produce a design whose structure is
a copy of the organization's communication
structure.”

— Mel Conway, 1967

“If you have four groups working on a compiler,
you'll get a 4-pass compiler.”

Module C

Module A

Module B

Congruence

15-313 Software Engineering26

Socio-Technical Congruence

• Structural congruence

• Geographical congruence

• Task congruence

• IRC communication congruence

15-313 Software Engineering27

Teamwork Guidelines

• Respect Conway's Law

–Code structure and team structure should
align

• Seek well-defined, stable interfaces

15-313 Software Engineering28

Team issues: Groupthink

15-313 Software Engineering29

15-313 Software Engineering30

Groupthink

• Group minimizing conflict

• Avoid exploring alternatives

• Suppressing dissenting views

• Isolating from outside influences

• -> Irrational/dysfunctional decision
making

15-313 Software Engineering31

Time and Cost Estimation

15-313 Software Engineering32

Causes of Groupthink

• High group cohesiveness, homogeneity

• Structural faults (insulation, biased
leadership, lack of methodological
exploration)

• Situational context (stressful external
threats, recent failures, moral dilemmas)

15-313 Software Engineering33

Symptoms

• Overestimation of ability
– invulnerability, unquestioned believe in

morality

• Closed-mindedness
– ignore warnings, stereotyping

– innovation averse

• Pressure toward uniformity
– self-censorship, illusion of unanimity, …

15-313 Software Engineering34

15-313 Software Engineering35

Diversity

15-313 Software Engineering36

http://www.gallup.com/businessjournal/166220/business-benefits-gender-diversity.aspx

Stahl, Günter K., et al. "Unraveling the effects of cultural diversity in teams: A meta-analysis of research on multicultural work
groups." Journal of international business studies 41.4 (2010): 690-709.

“Men and women have different viewpoints, ideas, and
market insights, which enables better problem solving.
A gender-diverse workforce provides easier access to
resources, such as various sources of credit, multiple
sources of information, and wider industry knowledge.
A gender-diverse workforce allows the company to
serve an increasingly diverse customer base. Gender
diversity helps companies attract and retain talented
women.”
“Cultural diversity leads to process losses through task
conflict and decreased social integration, but to process
gains through increased creativity and satisfaction.”

Unconscious bias

• Pervasive, cultural

• Raise awareness

• Explicit goals

• Measurement

15-313 Software Engineering37

15-313 Software Engineering38

Mitigation Strategies

• Several agile techniques
– Planning poker
– Tests, continuous integration
– On-site customers

• Diverse teams
• Management style
• Avoid HR evaluation by metrics
• Separate QA from development
• Outside experts
• Process reflection
• …

15-313 Software Engineering39

Team issues: Social loafing

15-313 Software Engineering40

15-313 Software Engineering41

15-313 Software Engineering42

Latane, Bibb, Kipling Williams, and Stephen Harkins. "Many hands make light the
work: The causes and consequences of social loafing." Journal of personality and
social psychology 37.6 (1979): 822.

Social loafing

• People exerting less effort within a group
• Reasons

– Diffusion of responsibility
– Motivation
– Dispensability of effort / missing recognition
– Avoid pulling everybody / "sucker effect"
– Submaximal goal setting

• “Evaluation potential, expectations of co-worker
performance, task meaningfulness, and culture
had especially strong influence”

15-313 Software Engineering43

Karau, Steven J., and Kipling D. Williams. "Social loafing: A meta-analytic review and
theoretical integration." Journal of personality and social psychology 65.4 (1993): 681.

Mitigation Strategies

• Involve all team members, colocation
• Assign specific tasks with individual

responsibility
– Increase identifiability
– Team contracts, measurement

• Provide choices in selecting tasks
• Promote involvement, challenge developers
• Reviews and feedback
• Team cohesion, team forming exercises
• Small teams

15-313 Software Engineering44

Agile Practices as Mitigation?

15-313 Software Engineering45

Responsibilities & Buy-In

• Involve team members in decision
making

• Assign responsibilities (ideally goals not
tasks)

• Record decisions and commitments;
make record available

15-313 Software Engineering46

15-313 Software Engineering47

Autonomy
Mastery
Purpose

Team issues: Multiple/conflicting
goals

15-313 Software Engineering48

15-313 Software Engineering49

Incentives?

• Team incentives

• vs individual incentives?

15-313 Software Engineering50

Agile Practices as Mitigation?

15-313 Software Engineering51

Matrix Organization

15-313 Software Engineering52

System
programmers

Application
programmers

QA Security Marketing

Project 1

Project 2

Project 3

mgmt

Temporary assignment to projects; flexible staffing

Project Organization

15-313 Software Engineering53

System
programmers

Application
programmers

QA Security Marketing

Project 1

Project 2

Project 3

mgmt

Case Study: Brøderbund

• As the functional departments grew, staffing the heavily
matrixed projects became more and more of a nightmare. To
address this, the company reorganized itself into “Studios”, each
with dedicated resources for each of the major functional areas
reporting up to a Studio manager. Given direct responsibility for
performance and compensation, Studio managers could allocate
resources freely.

• The Studios were able to exert more direct control on the
projects and team members, but not without a cost. The major
problem that emerged from Brøderbund’s Studio reorganization
was that members of the various functional disciplines began to
lose touch with their functional counterparts. Experience wasn’t
shared as easily. Over time, duplicate effort began to appear.

15-313 Software Engineering54

Commitment & Accountability

• Conflict is useful, expose all views

• Come to decision, commit to it

• Assign responsibilities

• Record decisions and commitments;
make record available

15-313 Software Engineering55

Bell & Hart – 8 Causes of Conflict

• Conflicting resources.

• Conflicting styles.

• Conflicting perceptions.

• Conflicting goals.

• Conflicting pressures.

• Conflicting roles.

• Different personal values.

• Unpredictable policies.

15-313 Software Engineering56
https://www.mindtools.com/pages/article/eight-causes-conflict.htm

Bell, Art. (2002). Six ways to resolve workplace conflicts.
McLaren School of Business, University of San Francisco.

Virtual Teams

15-313 Software Engineering57

Virtual Teams?

15-313 Software Engineering58

Computer Supported Collaborative
Work (CSCW): Technology-assisted
collaboration

• Many failures

• Isolated, but very significant, success

– Jazz, Github, …

15-313 Software Engineering59

General Guidelines

15-313 Software Engineering60

Hints for team functioning

• Trust them; strategic not tactical direction
• Reduce bureaucracy, protect team
• Physical colocation, time for interaction
• Avoid in-team competition (bonuses etc)
• Time for quality assurance, cult of quality
• Realistic deadlines
• Peer coaching
• Sense of elitism
• Allow and encourage heterogenity

15-313 Software Engineering61 DeMarco and Lister. Peopleware. Chapter 23

Team Fusion

• Forming, Storming, Norming, Performing

• Preserve existing teams, resist project
mobility

15-313 Software Engineering62

Elitism Case Study: The Black Team

• Legendary team at IBM in the 1960s
• Group of talented ("slightly better") testers

– Goal: Final testing of critical software before delivery

• Improvement over first year
• Formed team personality and energy

– "adversary philosophy of testing"
– Cultivated image of destroyers
– Started to dress in black, crackled laughs, grew

mustaches

• Team survived loss of original members

15-313 Software Engineering63 DeMarco and Lister. Peopleware. Chapter 22

Troubleshooting Teams

• Cynicism as warning sign

• Training to improve practices

• Getting to know each other; celebrate
success; bonding over meals

• “A meeting without notes is a meeting
that never happened”

15-313 Software Engineering64

Further Reading

• Mantle and Lichty. Managing the
Unmanageable. Addison-Wesley, 2013
– Very accessible and practical tips at recruiting

and management

• DeMarco and Lister. Peopleware. 3rd Edition.
Addison Wesley, 2013
– Anecdotes, stories, and tips on facilitating

teams, projects, and environments

• Sommerville. Software Engineering. 8th

Edition. Chapter 25

15-313 Software Engineering65

