
Foundations of
Software Engineering

Quality-Assurance Process

Christian Kästner

15-313 Software Engineering 1

Foundations of
Software Engineering

How to get developers to
[write tests|use static analysis|appreciate testers]

Christian Kästner

15-313 Software Engineering 2

15-313 Software Engineering 3

Agenda

• QA in the context of process

• Case study: QA at Microsoft from 1980 to
today

• Case study: Adopting a static analysis
tool at Ebay

• Embedding QA in a process

• Social aspects of QA

15-313 Software Engineering 4

Learning Goals

• Understand process aspects of QA
• Describe the tradeoffs of QA techniques
• Select an appropriate QA technique for a given project and

quality attribute
• Decide the when and how much of QA
• Overview of concepts how to enforce QA techniques in a

process
• Select when and how to integrate tools and policies into the

process: daily builds, continuous integration, test automation,
static analysis, issue tracking, …

• Understand human and social challenges of adopting QA
techniques

• Understand how process and tool improvement can solve the
dilemma between features and quality

15-313 Software Engineering 5

QA Process

15-313 Software Engineering 6

QA Process Considerations

• We covered several QA techniques:
– Formal verification (15-112)
– Unit testing, Test driven development (15-214)
– Various forms of advanced testing for quality attributes

(GUI testing, fuzz testing, …)
– Static analysis
– Dynamic analysis
– Formal inspections and other forms of code reviews

• But: When to use? Which techniques? How much?
How to introduce? How to establish a quality
culture? How to ensure compliance? Social issues?
What about external components?

15-313 Software Engineering 7

15-313 Software Engineering 8

15-313 Software Engineering 9

15-313 Software Engineering 10

15-313 Software Engineering 11

Qualities and Risks

• What qualities are required?
(requirements engineering)

• What risks are expected?

• Align QA strategy based on qualities and
risks

15-313 Software Engineering 12

Example: Test plans linking
development and testing

15-313 Software Engineering 13

Sommerville. Software Engineering. Ed. 8, Ch 22

Example: SQL Injection Attacks

15-313 Software Engineering 14

http://xkcd.com/327/

Which QA strategy is suitable?

Example: Scalability

15-313 Software Engineering 15

Which QA strategy is suitable?

Example: Usability

15-313 Software Engineering 16

Which QA strategy is suitable?

15-313 Software Engineering 17

Quality / Security C
ap

ab
ili

ti
es

 /
 F

ea
tu

re
s

/
Pe

rf
o

rm
an

ce

2004

Market

M
ar

ke
t

2014?

2014?

QA Tradeoffs

• Understand limitations of QA approaches

–e.g. testing vs static analysis,
formal verification vs inspection, …

• Mix and match techniques

• Different techniques for different
qualities

15-313 Software Engineering 18

Case Study: QA at Microsoft

15-313 Software Engineering 20

15-313 Software Engineering 21

15-313 Software Engineering 23

Throughout the case studies,
look for nontechnical challenges
and how they were addressed
(social issues, process issues, …)

Microsoft's Culture

• Hiring the best developers
– “Microsoft can achieve with a few hundred top-notch

developers for what IBM would need thousands”

• Giving them freedom
• Teams for products largely independent
• Relatively short development cycles

– Version updates (eg. Excel 3->4) 1-2 month
– New products 1-4 years
– Driven by release date

• Little upfront specification, flexible for change and
cutting features

Early Days (1984): Separate testing
from development
• after complaints over bugs from hardware manufacturers (eg. wrong

computations in BASIC)
• customers complained about products
• IBM insisted that Microsoft improves process for development and quality

control
• Serious data-destroying bug forced Microsoft to ship update of Multiplan

to 20000 users at 10$ cost each
• Resistance from developers and some management (incl. Balmer):

“developers could test their own products, assisted on occasion by high
school students, secretaries, and some outside contractors”

• Hired outside testers
• Avoided bureaucracy of formal inspections, signoff between stages, or

time logging
• Separate testing group; automated tests; code reviews for new people and

critical components

Early Days (1986): Testing groups

• “Developers got lazy”, relied on test team for
QA

• “Infinite defects” - Testers find defects faster
than developers can fix them

• Late and large integrations (“big bang”) -
long testing periods, delayed releases

• Mac Word 3 desaster: 8 month late,
hundreds of bugs, including crashing and
data destroying bugs; 1M$ for free upgrades

• Pressure on delivering quality grew

1989 Retreat and “Zero defects”

• see memo

Zero-Defect Rules for Excel 4

• All changes must compile and link

• All changes must pass the automated
quick tests on Mac and Windows

• Any developer who has more than 10
open bugs assigned must fix them before
moving to new features

Testing Buddies

• Development and test teams separate,
roughly similar size

• Developers test their own code, run
automated tests daily

• Individual testers often assigned to one
developer
– Testing their private releases (branch), giving

direct, rapid feedback by email before code is
merged

Testers

• Encouraged to communicate with
support team and customers, review
media evaluations

• Develop testing strategy for high-risk
areas

• Many forms of testing (internally called):
unstructured testing, ad hoc testing,
gorilla testing, free-form Fridays

Early-mid 90s

• Zero defect goal (1989 memo)
• Milestones (first with Publisher 1.0 in 1988)
• Version control, branches, frequent integration
• Daily builds
• Automated tests (“quick autotest”) - must succeed before

checkin
• Usability labs
• Beta testing (400000 beta testers for Win 95) with

instrumentation
• Brief formal design reviews; selected code reviews
• Defect tracking and metrics
• Developers stay in product group for more than one release

cycle

Metrics

• Number of open bugs by severity
– Number of open bugs expected to decrease before milestone
– All know severe bugs need to be fixed before release
– Severity 1 (product crash), Severity 2 (feature crash), Severity 3

(bug with workaround), Severity 4 (cosmetic/minor)
– Metrics tracked across releases and projects

• Performance metrics
• Bug data used for deciding when “ready to ship”

– Relative and pragmatic, not absolute view
– “The market will forgive us for being late, but they won't forgive

us for being buggy”

Challenges of Microsoft's Culture

• Little communication among product teams

• Developers and testers often “not so well
read in with software-engineering literature,
reinventing the wheel”

– Long underestimated architecture, design,
sharing of components, quality metrics, …

• Developers resistant to change and
“bureaucracy”

Project Postmortem

• Identify systematic problems and good practices (10-150
page report)
– document recurring problems and practices that work well
– e.g.,

• breadth-first → depth-first & tested milestones
• insufficient specification
• not reviewing commits
• using asserts to communicate assumptions
• lack of adequate tools → automated tests
• instrumented versions for testers and beta releases
• zero defect rule not a priority for developers

• Circulate insights as memos, encourage cross-team learning

Process Audits

• Informal 1-week audits in problematic
problems

• Analyzing metrics, interviewing team
members

• Recommendations to pick up best
practices from other teams
–daily builds, automated tests, milestones,

reviews

The 2002
Trustworthy Computing Memo

http://news.microsoft.com/2012/01/11/memo-from-bill-gates/

Code Reviews

• Own code review tools (passaround
style)

• Internal studies on how effective reviews
are

• Internal tools to improve code reviews

38

Static Analysis 18Analysis of Software Artifacts

© 2009 Jonathan Aldrich

Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of software model checking
with SLAM." Communications of the ACM 54.7 (2011): 68-76.

SLAM/SDV (since 2000)

• Goal: Reducing blue screens, often caused by drivers
• Driver verification tool for C
• Model checking technology
• Finds narrow class of protocol violations

– Use characteristics of drivers (not general C code)
– Found several bugs in Microsoft's well tested sample

drivers

• Fully automated in Microsoft compiler suite
• Available for free
• Enforcement through driver certification program

SLAM

• Compelling business case: eliminated
most blue screens

• Based on basic science of model
checking: originated in university labs
with public funding

15-313 Software Engineering 40

Annotation

• How to motivate developers, especially with millions of lines of
unannotated code?

• Microsoft approach:
– Require annotations at checkin (e.g., Reject code that has a char* with no

__ecount())
– Make annotations natural, like what you would put in a comment anyway

• But now machine checkable
• Avoid formality with poor match to engineering practices

– Incrementality
• Check code ↔ design consistency on every compile
• Rewards programmers for each increment of effort

– Provide benefit for annotating partial code
– Can focus on most important parts of the code first
– Avoid excuse: I’ll do it after the deadline

– Build tools to infer annotations
• Inference is approximate and so annotations may need to be changed, but saves work

overall.
• Unfortunately not yet available outside Microsoft

41

Bounimova, Ella, Patrice Godefroid, and David Molnar. "Billions and billions of constraints:
Whitebox fuzz testing in production." In Proceedings of the 2013
International Conference on Software Engineering, pp. 122-131. IEEE Press, 2013.

SAGE

• White-box fuzz testing (symbolic-execution-based
test generation)

• Especially for security issues in file and protocol
parsing routines
– “found many previously-unknown security

vulnerabilities in hundreds of Microsoft applications,
including image processors, media players, file decoders
and document parsers”

• In-house SMT constraint solver (Z3)
• From research project to large-scale deployment

– Running at scale on 200 machines

Bug prediction

• Metrics

• Mining software repositories

• Example results:

–Distributed development not critical, but
organizational distance is

• Now prioritizing testing effort

Boogie, Dafny, ...

• Intermediate Verification Language

• “Usable formal verification”

–Dafny language...

• Active research today...

Case Study 2:
Introducing Static Analysis at Ebay

15-313 Software Engineering 45

Jaspan, Ciera, I. Chen, and Anoop Sharma. "Understanding the value of program analysis tools." Companion
to the 22nd ACM SIGPLAN conference on Object-oriented programming systems and applications companion.
ACM, 2007.

Findbugs in 214

• We forced everybody to use Findbugs

• Has it found bugs?

• Who is still using Findbugs?

• Why not?

15-313 Software Engineering 46

Ebay: Prior Evaluations

• Individual teams tried tools
– On snapshots
– No tool customization
– Overall negative results
– Developers were not impressed: many minor

issues (2 checkers reported half the issues, all
irrelevant for Ebay)

• Would this change when integrated into
process? i.e. incremental checking

• Which bugs to look at?

15-313 Software Engineering 47

Ebay: Goals

• Find defects earlier in the lifecycle
– Allow quality engineers to focus on different issues

• Find defects that are difficult to find through other
QA techniques
– security, performance, concurrency

• As early as feasible: Run on developer machines and
in nightly builds

• No resources to build own tool
– But few people for dedicated team (customization,

policies, creating project-specific analyses etc) possible

• Continuous evaluation

15-313 Software Engineering 48

Ebay: Customization

• Customization dropped false positives from
50% to 10%

• Separate checkers evaluated separately
– By number of issues

– By severity as judged by developers; iteratively
with several groups

• Some low-priority checkers (e.g., dead store
to local) was assigned high priority –
performance impact important for Ebay

15-313 Software Engineering 49

Ebay: Enforcement policy

• High priority: All these issues must be fixed (e.g.
null pointer exceptions)
– Potentially very costly given the huge existing code

base

• Medium priority: May not be added to the code
base. Old issues won't be fixed unless
refactored anyway (e.g., high cyclomatic
complexity)

• Low priority: At most X issues may be added
between releases (usually stylistic)

• Tossed: Turned off entirely

15-313 Software Engineering 50

Ebay: Cost estimation

• Free tool

• 2 developers full time for customization
and extension

• A typical tester at ebay finds 10
bugs/week, 10% high priority

• Sample bugs found with Findbugs for a
comparison

15-313 Software Engineering 51

Aside: Cost/benefit analysis

• Cost/Benefit tradeoff
– Benefit: How valuable is the bug?

• How much does it cost if not found?
• How expensive to find using testing/inspection?

– Cost: How much did the analysis cost?
• Effort spent running analysis, interpreting results – includes false

positives
• Effort spent finding remaining bugs (for unsound analysis)

• Rule of thumb
– For critical bugs that testing/inspection can’t find, a sound

analysis is worth it, as long as false positive rate is acceptable.
– For other bugs, maximize engineer productivity

52

Ebay: Combining tools

• Program analysis coverage
– Performance – High importance
– Security – High
– Global quality – High
– Local quality – medium
– API/framework compliance – medium
– Concurrency – low
– Style and readability – low

• Select appropriate tools and detectors

15-313 Software Engineering 53

Ebay: Enforcement

• Enforcement at dev/QA handoff:

• Developers run FindBugs on desktop

• QA runs FindBugs on receipt of code,
posts results, require high-priority fixes.

15-313 Software Engineering 54

Ebay: Continuous evaluation

• Gather data on detected bugs and false
positives

• Present to developers, make case for tool

15-313 Software Engineering 55

Incremental introduction

• Begin with early adopters in small team

• Use these as champions in organization

• Support team: answer questions, help
with tool.

15-313 Software Engineering 56

Case Study 3: Google’s Tricorder

15-313 Software Engineering 57

Integrate Static Analysis in Review
Process

• Static analysis as bots in code review tool

–Automatically applied on each commit

–Results visible to author and reviewers

• Lightweight checkers, easy to add and
modify

• Feedback buttons to indicate ineffective
checkers

15-313 Software Engineering 58

Sadowski, Caitlin, et al. "Tricorder: Building a program analysis ecosystem."
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 1. IEEE, 2015.

15-313 Software Engineering 59

15-313 Software Engineering 60

QA within the Process

15-313 Software Engineering 61

QA as part of the process

• Have QA deliverables at milestones
(management policy)
– Inspection / test report before milestone

• Change development practices (req.
developer buy-in)
– e.g., continuous integration, pair

programming, reviewed checkins, zero-bug
static analysis before checking

• Static analysis part of code review (Google)
• Track bugs and other quality metrics

15-313 Software Engineering 62

Defect tracking

• Issues: Bug, feature request, query
• Basis for measurement

– reported in which phase
– duration to repair, difficulty
– categorization

-> root cause analysis

• Facilitates communication
– questions back to reporter
– ensures reports are not

forgotten

• Accountability

 15-313 Software Engineering 63

Enforcement

• Microsoft: check in gates
– Cannot check in code unless analysis suite has been run and produced

no errors (test coverage, dependency violation, insufficient/bad design intent, integer

overflow, allocation arithmetic, buffer overruns, memory errors, security issues)

• eBay: dev/QA handoff
– Developers run FindBugs on desktop

– QA runs FindBugs on receipt of code, posts results, require high-
priority fixes.

• Google: static analysis on commits, shown in review

• Requirements for success
– Low false positives

– A way to override false positive warnings (typically through
inspection).

– Developers must buy into static analysis first 64

Reminder: Continuous Integration

15-313 Software Engineering 65

Automating Test Execution

Continuous Integration with
Travis-CI

Social Aspects

15-313 Software Engineering 68

Social issues

• Developer attitude toward defects

• Developer education about security

• Using peer pressure to enforce QA
practices

–Breaking the build – various rules

15-313 Software Engineering 69

Social issues

• Developer vs tester culture

• Testers tend to deliver bad news

• Defects in performance evaluations?

• Issues vs defects

• Good test suits raise confidence,
encourage shared code ownership

15-313 Software Engineering 70

Reporting Defects

• Reproducible defects

• Simple and general

• One defect per report

• Non-antagonistic

– (testers usually bring bad news)

– State the problem

–Don't blame

15-313 Software Engineering 71

15-313 Software Engineering 72

15-313 Software Engineering 73

Summary

• Developing a QA plan:

– Identify quality goals and risks

–Mix and match approaches

– Enforce QA, establish practices

• Case study from Microsoft

• Integrate QA in process

• Social issues in QA

15-313 Software Engineering 74

Further Reading

• Cusumano, Michael A., and Richard W. Selby. "Microsoft secrets." (1997).
– Book covers quality assurance at Microsoft until the mid 90s (and much more)

• Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of
software model checking with SLAM." Communications of the ACM 54.7
(2011): 68-76.
– An overview of SLAM at Microsoft

• Jaspan, Ciera, I. Chen, and Anoop Sharma. "Understanding the value of
program analysis tools." Companion OOPSLA. ACM, 2007.
– Description of eBay evaluating FindBugs

• Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., & Winter, C. Tricorder:
Building a Program Analysis Ecosystem. ICSE 2015
– Integrating static analysis into code reviews at Google in a data-driven way

• Sommerville. Software Engineering. 8th Edition. Chapter 27
– QA planning and process improvement, standards

15-313 Software Engineering 75

