Foundations of Software
Engineering

Lecture 11 — Intro to QA, Testing
Claire Le Goues

[]
institute for
1 I S SOFTWARE
RESEARCH

Learning goals

e Define software analysis.

* Reason about QA activities with respect to coverage and
coverage/adequacy criteria, both traditional (structural)
and non-traditional.

e Conceive of testing as an activity designed to achieve
coverage along a number of (non-structural!) dimensions.

 Enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness
(both general and architectural), performance, integration.

e Give tradeoffs and identify when each of those techniques
might be useful.

institute for
2 I S SOFTWARE
RESEARCH

“We had initially scheduled time to write
tests for both front and back end systems,
although this never happened.”

. . .
institute For
3 I S SOFTWARE
RESEARCH

“Due to the lack of time, we could only
conduct individual pages’ unit testing.
Limited testing was done using use cases.
Our team felt that this testing process was
rushed and more time and effort should be
allocated.”

. . .
institute For
4 I S SOFTWARE
RESEARCH

“We failed completely to adhere to the initial
[testing] plan. From the onset of the
development process, we were more
concerned with implementing the necessary
features than the quality of our
implementation, and as a result, we delayed,
and eventually, failed to write any tests.”

. . .
institute For
5 I S SOFTWARE
RESEARCH

Time estimates (in hours):

Activity | Estimated Actual __

testing plans

unit testing
validation testing
test data

_ A~ W W
) N R O

[]
institute for
6 I S SOFTWARE
RESEARCH

“One portion we planned for but were not
able to complete to our satisfaction was
testing.”

. . .
institute For
7 I S SOFTWARE
RESEARCH

“IW]e did not end up using Github Issues
and Milestones for progress tracking,
because of our concern for implementing
features. Additionally, once we started the
development process, we felt that Github
Issues and Milestones had too much
overhead for only a week-long
development process.”

©
institute for
10 I S SOFTWARE
RESEARCH

Cost

Relative Cost of Software Fault Propogation

1368 — :
- i
400 | Relative | .
350 I Cost to Sills
Repair '
300 — |
250 \ 130, l
200 'l 64 —]
| — 37— '
50 :
oo | s, s
100 10 OS - 3.-]- - Customer
= . 2=) M Integration
50 149 o Test
e Code
o~ — Design
«<® O a2 =
&2 2 X Requirements
Qg&“ o < <e® & 5 =
“1” Identifies S e
Phase Defect Nl Repaired
Introduced

institute for
11 I S SOFTWARE
RESEARCH

Cost

theguardian

News US World Sports Comment Culture Business Money Environment Science ’

Technology) Heartbleed

Heartbleed: developer who introduced

the error regrets 'oversight'

Submitted just seconds before new year in 2012, the bug
'slipped through' — but discovery 'validates' open source

3 Share - 430
W Tweet < 269
g+1 1 27

ﬁ Share 103

Alex Hern

W Follow @alexhern % Follow @guardiantech
theguardian.com, Friday 11 April 2014 03.05 EDT

&J Jump to comments (108)

2ea8a

Technology

Heartbleed - Open source
- Programming - Software
- Internet - Hacking - Data
and computer security

More news

More on this story

E | A

institute for
12 I S SOFTWARE
RESEARCH

HOW DO YOU KNOW THAT YOUR
PROGRAM WORKS?

Questions

. b
S
. F
N

OW can we ensure a system meets its
necification?

OW Ccanh we ensure a system meets the
eeds of its users?

* How can we ensure a system does not
behave badly?

©
institute for
14 I S SOFTWARE
RESEARCH

QUALITY ATTRIBUTES??

Two kinds of analysis questions

* Verification: Does the system meet its specification?
— i.e. did we build the system correctly?
* Verification: are there flaws in design or code?

— i.e. are there incorrect design or implementation
decisions?

e Validation: Does the system meet the needs of
users?

— i.e. did we build the right system?

e Validation: are there flaws in the specification?
— i.e., did we do requirements capture incorrectly?

[]
institute for
16 I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Attempting to be comprehensive, as
measured by, as examples:

Test coverage, inspection checklists,
exhaustive model checking.

°
institute for
17 I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Automated: Regression testing, static
analysis, dynamic analysis

Manual: Manual testing, inspection,
modeling

°
institute for
18 I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Code, system, module, execution
trace, test case, design or

requirements document.

©
institute for
19 I S SOFTWARE
RESEARCH

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Functional: code correctness
Non-functional: evolvability, safety,

maintainability, security, reliability,
performance, ...

20 I E i SOFTWARE
RESEARCH

VERY IMPORTANT

* There is no one analysis technique that
can perfectly address all quality concerns.

* Which techniques are appropriate
depends on many factors, such as the
system in question (and its size/
complexity), quality goals, available
resources, safety/security requirements,
etc etc...

©
institute for
21 I S SOFTWARE
RESEARCH

Principle techniques

* Dynamic:
— Testing: Direct execution of code on test data
in a controlled environment.
— Analysis: Tools extracting data from test runs.
e Static:

— Inspection: Human evaluation of code, design
documents (specs and models), modifications.

— Analysis: Tools reasoning about the program
without executing it.

institute for
22 I S SOFTWARE
RESEARCH

One slide with a bunch of ideas you
should remember from 15-214

Verification vs. testing
Black box
TDD

Testing harness,
scaffolding, stubs

Unit testing/Junit
Nightly vs. smoke tests
Coverage

©
institute for
23 I S SOFTWARE
RESEARCH

“Traditional” coverage

Statement
Branch
Function
Path (?)
MC/DC

24

institute for
SOFTWARE
RESEARCH

We can measure coverage on
almost anything

e T e y
Y e view Draw Ob ;Ei‘{ié(;a Wew Drow Object W
| EJj.l New el
i i gy oo kO
Clome
- [@ Yew
ol d s o ocmmmt or 1 o [SPRAN oo '] 5\6: od L) D) (o
N CreN
| chee DI L V=
1QuoteCoune = 0 M 2 "
Draweli Application - [Drawel5] =
rFor leowmt = | To Len{sline) r
e B i . 5 ST T 3 o ovch Appication - [(hooroos
ve foand * '* than an aven musbar of * clarectass in froet | | ar o
! I o - v mabar of © shrctan dn vt 3 () e cen || EI[Ge]ER yew ‘a‘t?fj e T
B
Ly gt s e mae . N Cerk L = —_
- N —" - g e | LRS! S —e——

[

A. Zeller, Testing and Debugging Advsinced course, 2010

institute for
25 I S SOFTWARE
RESEARCH

We can measure coverage on
almost anything

e Common adequacy criteria for testing approximate full
“coverage” of the program execution or specification
space.

* Measures the extent to which a given verification activity
has achieved its objectives; approximates adequacy of the
activity.

— Can be applied to any verification activity, although most
frequently applied to testing.

* Expressed as a ratio of the measured items executed or
evaluated at least once to the total number of measured
items; usually expressed as a percentage.

institute for
26 I S SOFTWARE
RESEARCH

Covering quality requirements

e How might we test the following?
— Web-application performance
— Scalability of application for millions of users
— Concurrency in a multiuser client-server application
— Usability of the Ul
— Security of the handled data

 What are the coverage criteria we can apply to those

qualities?

institute for
27 I S SOFTWARE
RESEARCH

What is testing?

* Direct execution of code on test data in a controlled
environment
* Principle goals:
— Validation: program meets requirements, including
quality attributes.
— Defect testing: reveal failures.

* Other goals:

— Clarify specification: Testing can demonstrate
inconsistency; either spec or program could be wrong

— Learn about program: How does it behave under various
conditions? Feedback to rest of team goes beyond bugs

— Verify contract, including customer, legal, standards

institute for
28 I S SOFTWARE
RESEARCH

What are we covering?

* Program/system functionality:
— Execution space (white box!).
— Input or requirements space (black box!).
 The expected user experience (usability).
— GUI testing, A/B testing
 The expected performance envelope (performance,
reliability, robustness, integration).
— Security, robustness, fuzz, and infrastructure testing.
— Performance and reliability: soak and stress testing.
— Integration and reliability: APl/protocol testing

institute for
29 I S SOFTWARE
RESEARCH

Regression testing (redux)

* Whatis “covered” by a set of regression tests?
* Why do we do regression testing?

Usual model:
— Introduce regression tests for bug fixes, etc.

— Compare results as code evolves
 Codel + TestSet () TestResults1
* Code2 + TestSet () TestResults2
— As code evolves, compare TestResults1l with TestResults2, etc.

Benefits:
— Ensure bug fixes remain in place and bugs do not reappear.

— Reduces reliance on specifications, as <TestSet,TestResults1>
acts as one.

institute for
30 I S SOFTWARE
RESEARCH

Integration: object protocols

» Covers the space of possible API calls, or program “conceptual
states.”

* Develop test cases that involve representative sequence of operations on
objects

— Example: Dictionary structure: Create, AddEntry*, Lookup,
ModifyEntry*, DeleteEntry, Lookup, Destroy

— Example: IO Stream: Open, Read, Read, Close, Read, Open,
Write, Read, Close, Close

— Test concurrent access from multiple threads
* Example: FIFO queue for events, logging, etc.
Create Put Put Get Get
Put Get Get Put Put Get

* Approach
— Develop representative sequences — based on use cases, scenarios, profiles
— Randomly generate call sequences

* Also useful for protocol interactions within distributed designs.

institute for
31 I S SOFTWARE
RESEARCH

What are we covering?

* Program/system functionality:
— Execution space (white box!).
— Input or requirements space (black box!).
* The expected user experience (usability).
— GUI testing, A/B testing
 The expected performance envelope (performance,
reliability, robustness, integration).
— Security, robustness, fuzz, and infrastructure testing.
— Performance and reliability: soak and stress testing.
— Integration and reliability: APl/protocol testing

institute for
32 I S SOFTWARE
RESEARCH

Automating GUI/Web Testing (from 214)

First: why is this hard?

Capture and Replay Strategy
— mouse actions
— system events

e Test Scripts: (click on button

labeled "Start" expect value X
in fieldY)
e Lots of tools and frameworks
— e.g. JUnit + Jemmy for Java/
Swing

* (Avoid load on GUI testing by
separating model from GUI)

institute for
33 I S SOFTWARE
RESEARCH

Usability: A/B testing

Controlled randomized experiment with two
variants, A and B, which are the control and
treatment.

One group of users given A (current system);
another random group presented with B;
outcomes compared.

Often used in web or GUI-based applications,
especially to test advertising or GUI element
placement or design decisions.

©
institute for
34 I S SOFTWARE
RESEARCH

Example

* A company sends an advertising email to
its customer database, varying the
photograph used in the ad...

©
institute for
35 I S SOFTWARE
RESEARCH

Example: group A (99% of users)

e Act now!
Sale ends
soon!

Example: group B (1%)

e Act now!
Sale ends
soon!

HOW DOES THIS TECHNIQUE
GENERALIZE, ESPECIALLY TECHNICALLY?

o
institute for
38 I S SOFTWARE
RESEARCH

What are we covering?

* Program/system functionality:
— Execution space (white box!).
— Input or requirements space (black box!).

 The expected user experience (usability).

* The expected performance envelope (performance,
reliability, robustness, integration).
— Security, robustness, fuzz, and infrastructure testing.
— Performance and reliability: soak and stress testing.
— Integration and reliability: APl/protocol testing

institute for
39 I S SOFTWARE
RESEARCH

(214 review) Random testing

e Select inputs independently at random from the program’s
input domain:
— ldentify the input domain of the program.
— Map random numbers to that input domain.
— Select inputs from the input domain according to some
probability distribution.
— Determine if the program achieves the appropriate outputs on
those inputs.
 Random testing can provide probabilistic guarantees about
the likely faultiness of the program.

— E.g., Random testing using ~23,000 inputs without failure (N =

23, 000) establishes that the program will not fail more than
one time in 10,000 (F = 10%), with a confidence of 90% (C = 0.9).

institute for
40 I S SOFTWARE
RESEARCH

Reliability: Fuzz testing

* Negative software testing method that feeds
malformed and unexpected input data to a
program, device, or system with the purpose of
finding security-related defects, or any critical
flaws leading to denial of service, degradation
of service, or other undesired behavior (A.
Takanen et al, Fuzzing for Software Security
Testing and Quality Assurance, 2008)

* Programs and frameworks that are used to
create fuzz tests or perform fuzz testing are
commonly called fuzzers.

©
institute for
a1 I S SOFTWARE
RESEARCH

Types of faults found

* Pointer/array errors

* Not checking return codes

* Invalid/out of boundary data
* Data corruption

* Signed characters

* Race conditions
 Undocumented features

e ...Possible tradeoffs?

42

institute for
SOFTWARE
RESEARCH

Fuzzing process

FUZZER

—

‘GET / HTIT/1.1

Aocupts dmoge/eil, ivage/x->liteap,
tmago/ipen, */*

Accepr-Ercoding: q:ip, deflate
Ascopc- o9: en-ug

Connacticn: ¥eep-Alivo

) —

VALID request

—

GET alafaialalaiaiadaiaiafaiaZalaiaiah
HTTP/1.1

Accept:

inage/git,

Lrage/x->Ditmap,

lrag=/jceq.

.=

Accept-Encoding: gzip,
ACCept-Lanpunoe:: Cn-us
Connacticns Heep-Alive

S—

deflate

—

iragz/joea, */*

Accept-Irocding: gzlip,
Accept-Language: en-us
Connecticn: ¥Feep-Allve

-

GET tatntxtstatastotstatats HTTIP/1.1
Accept: inmage/gif, image/x->xbitmap,

d=flate

—

‘GET hzrp:// (T

lenge/jpeq, */*

Asgept-Encoding: qgzip,
Ascept- 3 1 en-us
Connacticn: ¥eep-Alive

S —

:C] ETTP 1.1

Accept: dmagc/olfl, lsaae/A->Litewp,

deflate

ANOMALY sent

VALID response

SUT

KTTP/1.1 200 O
Date: Wed, 07 Now 2007 09:44:49 0T
Seyver: nysedSerwer/2.1 |ILinux)

Mocept-Ranges;: ytes

Content-Length: 130

Conrection: <¢loae

Centent -Type: toxt/Meal; charaecr-UTF-8

tasc-dodifled: Ned, 07 Nov 2007 09:44:36 OVT

__

—

KTTIP/3.1 404 Mot Found

Dote: Wed, 07 Now 2007 03:49:27 GMT
Server: MyWebServer/2.1 |Linux)
Ceontent -length: 224

Conrnectica: <lose

Content-Type: text/keml;
ChaTeet«l20-8359-1

~~

J\

—

KTIP/3.1 509 Intormal Server Srror
Date Tue, 01 Jan 1570 €&.00:00 T

Eerver: ()
Centent-length: -1

Coneent-Type: YTV
Conrection: close

cesssnsns| NO RESPONSE]| sasssssax

J\

43 IS

institute for
SOFTWARE
RESEARCH

Stress testing

* Robustness testing technique: test beyond
the limits of normal operation.

e Can apply at any level of system granularity.

e Stress tests commonly put a greater
emphasis on robustness, availability, and
error handling under a heavy load, than on

what would be considered “correct”
behavior under normal circumstances.

©

institute for

44 I S SOFTWARE
RESEARCH

Soak testing

* Problem: A system may behave exactly as
expected under artificially limited execution
conditions.

— E.g., Memory leaks may take longer to lead to

failure (also motivates static/dynamic analysis, but
we’ll talk about that later).

* Soak testing: testing a system with a significant
load over a significant period of time (positive).

* Used to check reaction of a subject under test
under a possible simulated environment for a
given duration and for a given threshold.

institute for
45 I S SOFTWARE
RESEARCH

o .
Institute ror

I S r SOFTWARE
RESEARCH

Chaos monkey/Simian army

* A Netflix infrastructure testing system.

* “Malicious” programs randomly trample on
components, network, datacenters, AWS instances...

— Chaos monkey was the first — disables production
instances at random.

— Other monkeys include Latency Monkey, Doctor
Monkey, Conformity Monkey, etc... Fuzz testing at the
infrastructure level.

— Force failure of components to make sure that the
system architecture is resilient to unplanned/random
outages.

* Netflix has open-sourced their chaos monkey code.

institute for
47 I S SOFTWARE
RESEARCH

Completeness?

Statistical thresholds
— Defects reported/repaired
— Relative proportion of defect kinds
— Predictors on “going gold”
* Coverage criterion
— E.g., 100% coverage required for avionics software
— Distorts the software
— Matrix: Map test cases to requirements use cases
* Canlook at historical data

— Within an organization, can compare across projects; Develop expectations
and predictors

— (More difficult across organizations, due to difficulty of commensurability, E.g.,
telecon switches vs. consumer software)

* Rule of thumb: when error detection rate drops (implies diminishing
returns for testing investment).

* Most common: Run out of time or money

institute for
48 I S SOFTWARE
RESEARCH

Learning goals

e Conceive of testing as an activity designed to achieve
coverage along a number of (non-structural!) dimensions.

 Enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness
(both general and architectural), performance, integration.

e Give tradeoffs and identify when each of those techniques
might be useful.

* |ntegrate testing into your project’s lifecycle and practices.
e Qutline a test plan.

institute for
49 I S SOFTWARE
RESEARCH

