
Founda'ons	of	So,ware	
Engineering	

Lecture	11	–	Intro	to	QA,	Tes2ng	
Claire	Le	Goues	

	

1	

Learning	goals	
•  Define	so;ware	analysis.	
•  Reason	about	QA	ac2vi2es	with	respect	to	coverage	and	

coverage/adequacy	criteria,	both	tradi2onal	(structural)	
and	non-tradi2onal.	

•  Conceive	of	tes2ng	as	an	ac2vity	designed	to	achieve	
coverage	along	a	number	of	(non-structural!)	dimensions.	

•  Enumerate	tes2ng	strategies	to	help	evaluate	the	following	
quality	aNributes:	usability,	reliability,	security,	robustness	
(both	general	and	architectural),	performance,	integra2on.	

•  Give	tradeoffs	and	iden2fy	when	each	of	those	techniques	
might	be	useful.	

2	

“We	had	ini2ally	scheduled	2me	to	write	
tests	for	both	front	and	back	end	systems,	

although	this	never	happened.”	

3	

“Due	to	the	lack	of	2me,	we	could	only	
conduct	individual	pages’	unit	tes2ng.	

Limited	tes2ng	was	done	using	use	cases.	
Our	team	felt	that	this	tes2ng	process	was	
rushed	and	more	2me	and	effort	should	be	

allocated.”	

4	

“We	failed	completely	to	adhere	to	the	ini2al	
[tes2ng]	plan.	From	the	onset	of	the	
development	process,	we	were	more	

concerned	with	implemen2ng	the	necessary	
features	than	the	quality	of	our	

implementa2on,	and	as	a	result,	we	delayed,	
and	eventually,	failed	to	write	any	tests.”	

5	

Time	es2mates	(in	hours):	

Ac'vity	 Es'mated	 Actual	
tes2ng	plans	 3	 0	
unit	tes2ng	 3	 1	
valida2on	tes2ng	 4	 2	
test	data	 1	 1	

6	

“One	por2on	we	planned	for	but	were	not	
able	to	complete	to	our	sa2sfac2on	was	

tes2ng.”	

7	

8	

…WHY??!!!!1!!!11	

9	

“[W]e	did	not	end	up	using	Github	Issues	
and	Milestones	for	progress	tracking,	

because	of	our	concern	for	implemen2ng	
features.	Addi2onally,	once	we	started	the	
development	process,	we	felt	that	Github	

Issues	and	Milestones	had	too	much	
overhead	for	only	a	week-long	

development	process.”	

10	

Cost	

11	

Cost	

12	

HOW	DO	YOU	KNOW	THAT	YOUR	
PROGRAM	WORKS?	

13	

Ques'ons	

•  How	can	we	ensure	a	system	meets	its	
specifica2on?		

•  How	can	we	ensure	a	system	meets	the	
needs	of	its	users?		

•  How	can	we	ensure	a	system	does	not	
behave	badly?		

	

14	

QUALITY	ATTRIBUTES??	

15	

Two	kinds	of	analysis	ques'ons	
•  Verifica'on:	Does	the	system	meet	its	specifica2on?			

–  i.e.	did	we	build	the	system	correctly?		
•  Verifica'on:	are	there	flaws	in	design	or	code?	

–  i.e.	are	there	incorrect	design	or	implementa2on	
decisions?	

•  Valida2on:	Does	the	system	meet	the	needs	of	
users?		
–  i.e.	did	we	build	the	right	system?		

•  Valida2on:	are	there	flaws	in	the	specifica2on?	
–  i.e.,	did	we	do	requirements	capture	incorrectly?	

16	

Defini'on:	so,ware	analysis	

	
The	systema'c	examina2on	of	a	
so;ware	ar2fact	to	determine	its	

proper2es.	

17	

ANemp2ng	to	be	comprehensive,	as	
measured	by,	as	examples:	

Test	coverage,	inspec2on	checklists,	
exhaus2ve	model	checking.	

Defini'on:	so,ware	analysis	

	
The	systema2c	examina'on	of	a	
so;ware	ar2fact	to	determine	its	

proper2es.	

18	

Automated:	Regression	tes2ng,	sta2c	
analysis,	dynamic	analysis		
Manual:	Manual	tes2ng,	inspec2on,	
modeling		

Defini'on:	so,ware	analysis	

	
The	systema2c	examina2on	of	a	
so,ware	ar'fact	to	determine	its	

proper2es.	

19	

Code,	system,	module,	execu2on	
trace,	test	case,	design	or	
requirements	document.	

Defini'on:	so,ware	analysis	

	
The	systema2c	examina2on	of	a	
so;ware	ar2fact	to	determine	its	

proper'es.	

20	

Func'onal:	code	correctness		
Non-func'onal:	evolvability,	safety,	
maintainability,	security,	reliability,	
performance,	…	

VERY	IMPORTANT	

•  There	is	no	one	analysis	technique	that	
can	perfectly	address	all	quality	concerns.	

• Which	techniques	are	appropriate	
depends	on	many	factors,	such	as	the	
system	in	ques2on	(and	its	size/
complexity),	quality	goals,	available	
resources,	safety/security	requirements,	
etc	etc…	

21	

Principle	techniques	
•  Dynamic:	

– Tes'ng:	Direct	execu2on	of	code	on	test	data	
in	a	controlled	environment.	

– Analysis:	Tools	extrac2ng	data	from	test	runs.	
•  Sta'c:	

– Inspec'on:	Human	evalua2on	of	code,	design	
documents	(specs	and	models),	modifica2ons.	

– Analysis:	Tools	reasoning	about	the	program	
without	execu2ng	it.	

22	

One	slide	with	a	bunch	of	ideas	you	
should	remember	from	15-214	
•  Verifica2on	vs.	tes2ng	
•  Black	box		
•  TDD	
•  Tes2ng	harness,	
scaffolding,	stubs	

•  Unit	tes2ng/Junit	
•  Nightly	vs.	smoke	tests	
•  Coverage	
	

23	

“Tradi'onal”	coverage	

•  Statement	
•  Branch	
•  Func2on	
•  Path	(?)	
•  MC/DC	

24	

We	can	measure	coverage	on	
almost	anything	

A. Zeller, Testing and Debugging Advanced course, 2010

25	

We	can	measure	coverage	on	
almost	anything	
•  Common	adequacy	criteria	for	tes2ng	approximate	full	

“coverage”	of	the	program	execu2on	or	specifica2on	
space.	

•  Measures	the	extent	to	which	a	given	verifica2on	ac2vity	
has	achieved	its	objec2ves;	approximates	adequacy	of	the	
ac2vity.	
–  Can	be	applied	to	any	verifica:on	ac:vity,	although	most	
frequently	applied	to	tes:ng.		

•  Expressed	as	a	ra2o	of	the	measured	items	executed	or	
evaluated	at	least	once	to	the	total	number	of	measured	
items;	usually	expressed	as	a	percentage.	

26	

Covering	quality	requirements	

•  How	might	we	test	the	following?	

–  Web-applica2on	performance	

–  Scalability	of	applica2on	for	millions	of	users	

–  Concurrency	in	a	mul2user	client-server	applica2on	

–  Usability	of	the	UI	

–  Security	of	the	handled	data	

•  What	are	the	coverage	criteria	we	can	apply	to	those	
quali2es?	

27	

What	is	tes'ng?	
•  Direct	execu:on	of	code	on	test	data	in	a	controlled	
environment		

•  Principle	goals:	
–  Valida2on:	program	meets	requirements,	including	
quality	aNributes.	

–  Defect	tes2ng:	reveal	failures.	
•  Other	goals:	

–  Clarify	specifica2on:	Tes2ng	can	demonstrate		
inconsistency;	either	spec	or	program	could	be	wrong		

–  Learn	about	program:	How	does	it	behave	under	various	
condi2ons?	Feedback	to	rest	of	team	goes	beyond	bugs		

–  Verify	contract,	including	customer,	legal,	standards		

28	

What	are	we	covering?	
•  Program/system	func2onality:	

–  	Execu2on	space	(white	box!).	
–  	Input	or	requirements	space	(black	box!).		

•  The	expected	user	experience	(usability).	
–  GUI	tes2ng,	A/B	tes2ng	

•  The	expected	performance	envelope	(performance,	
reliability,	robustness,	integra2on).	
–  Security,	robustness,	fuzz,	and	infrastructure	tes2ng.	
–  Performance	and	reliability:	soak	and	stress	tes2ng.	
–  Integra2on	and	reliability:	API/protocol	tes2ng	

29	

Regression	tes'ng	(redux)	
•  What	is	“covered”	by	a	set	of	regression	tests?	
•  Why	do	we	do	regression	tes2ng?	
•  Usual	model:		

–  Introduce	regression	tests	for	bug	fixes,	etc.	
–  Compare	results	as	code	evolves	

•  Code1	+	TestSet	◊	TestResults1	
•  Code2	+	TestSet	◊	TestResults2	

–  As	code	evolves,	compare	TestResults1	with	TestResults2,	etc.	
•  Benefits:	

–  Ensure	bug	fixes	remain	in	place	and	bugs	do	not	reappear.	
–  Reduces	reliance	on	specifica2ons,	as	<TestSet,TestResults1>		
acts	as	one.	

30	

Integra'on:	object	protocols	
•  Covers the space of possible API calls, or program “conceptual

states.”	
•  Develop	test	cases	that	involve	representa2ve	sequence	of	opera2ons	on	

objects	
–  Example:	Dic2onary	structure:	Create, AddEntry*, Lookup,

ModifyEntry*, DeleteEntry, Lookup, Destroy
–  Example:	IO	Stream:	Open, Read, Read, Close, Read, Open,

Write, Read, Close, Close
–  Test	concurrent	access	from	mul2ple	threads	

•  Example:	FIFO	queue	for	events,	logging,	etc.	
 Create Put Put Get Get

 Put Get Get Put Put Get

•  Approach	
–  Develop	representa2ve	sequences	–	based	on	use	cases,	scenarios,	profiles		
–  Randomly	generate	call	sequences	

•  Also	useful	for	protocol	interac2ons	within	distributed	designs.	

31	

What	are	we	covering?	
•  Program/system	func2onality:	

–  	Execu2on	space	(white	box!).	
–  	Input	or	requirements	space	(black	box!).		

•  The	expected	user	experience	(usability).	
–  GUI	tes'ng,	A/B	tes'ng	

•  The	expected	performance	envelope	(performance,	
reliability,	robustness,	integra2on).	
–  Security,	robustness,	fuzz,	and	infrastructure	tes2ng.	
–  Performance	and	reliability:	soak	and	stress	tes2ng.	
–  Integra2on	and	reliability:	API/protocol	tes2ng	

32	

Automa'ng	GUI/Web	Tes'ng	(from	214)	

•  First:	why	is	this	hard?	
•  Capture	and	Replay	Strategy		

–  mouse	ac2ons	
–  system	events	

•  Test	Scripts:	(click	on	buNon	
labeled	"Start"	expect	value	X	
in		field	Y)	

•  Lots	of	tools	and	frameworks		
–  e.g.	JUnit	+	Jemmy	for	Java/
Swing	

•  (Avoid	load	on	GUI	tes2ng	by	
separa2ng	model	from	GUI)	

33	

Usability:	A/B	tes'ng	
•  Controlled	randomized	experiment	with	two	
variants,	A	and	B,	which	are	the	control	and	
treatment.			

•  One	group	of	users	given	A	(current	system);	
another	random	group	presented	with	B;	
outcomes	compared.	

•  O;en	used	in	web	or	GUI-based	applica2ons,	
especially	to	test	adver2sing	or	GUI	element	
placement	or	design	decisions.	

34	

Example	

•  A	company	sends	an	adver2sing	email	to	
its	customer	database,	varying	the	
photograph	used	in	the	ad...		

35	

Example:	group	A	(99%	of	users)	

• Act	now!	
Sale	ends	
soon!	

36	

Example:	group	B	(1%)	

• Act	now!	
Sale	ends	
soon!	

37	

HOW	DOES	THIS	TECHNIQUE	
GENERALIZE,	ESPECIALLY	TECHNICALLY?	

38	

What	are	we	covering?	
•  Program/system	func2onality:	

–  	Execu2on	space	(white	box!).	
–  	Input	or	requirements	space	(black	box!).		

•  The	expected	user	experience	(usability).	
•  The	expected	performance	envelope	(performance,	
reliability,	robustness,	integra'on).	
–  Security,	robustness,	fuzz,	and	infrastructure	tes2ng.	
–  Performance	and	reliability:	soak	and	stress	tes2ng.	
–  Integra2on	and	reliability:	API/protocol	tes2ng	

39	

(214	review)	Random	tes'ng	
•  Select	inputs	independently	at	random	from	the	program’s	

input	domain:	
–  Iden2fy	the	input	domain	of	the	program.	
–  Map	random	numbers	to	that	input	domain.	
–  Select	inputs	from	the	input	domain	according	to	some	
probability	distribu2on.	

–  Determine	if	the	program	achieves	the	appropriate	outputs	on	
those	inputs.	

•  Random	tes2ng	can	provide	probabilis2c	guarantees	about	
the	likely	faul2ness	of	the	program.	
–  E.g.,	Random	tes2ng	using	~23,000	inputs	without	failure	(N	=	
23,	000)	establishes	that	the	program	will	not	fail	more	than	
one	2me	in	10,000	(F	=	104),	with	a	confidence	of	90%	(C	=	0.9).	

40	

Reliability:	Fuzz	tes'ng	
•  Nega2ve	so;ware	tes2ng	method	that	feeds	
malformed	and	unexpected	input	data	to	a	
program,	device,	or	system	with	the	purpose	of	
finding	security-related	defects,	or	any	cri2cal	
flaws	leading	to	denial	of	service,	degrada2on	
of	service,	or	other	undesired	behavior	(A.	
Takanen	et	al,	Fuzzing	for	So;ware	Security	
Tes2ng	and	Quality	Assurance,	2008)	

•  Programs	and	frameworks	that	are	used	to	
create	fuzz	tests	or	perform	fuzz	tes2ng	are	
commonly	called	fuzzers.	

41	

Types	of	faults	found	
•  Pointer/array	errors	
•  Not	checking	return	codes	
•  Invalid/out	of	boundary	data	
•  Data	corrup2on	
•  Signed	characters	
•  Race	condi2ons	
•  Undocumented	features	
•  …Possible	tradeoffs?	

42	

Fuzzing	process	

43	

Stress	tes'ng	

•  Robustness	tes2ng	technique:	test	beyond	
the	limits	of	normal	opera2on.	

•  Can	apply	at	any	level	of	system	granularity.	
•  Stress	tests	commonly	put	a	greater	
emphasis	on	robustness,	availability,	and	
error	handling	under	a	heavy	load,	than	on	
what	would	be	considered	“correct”	
behavior	under	normal	circumstances.	

44	

Soak	tes'ng	
•  Problem:	A	system	may	behave	exactly	as	
expected	under	ar2ficially	limited	execu2on	
condi2ons.	
– E.g.,	Memory	leaks	may	take	longer	to	lead	to	
failure	(also	mo2vates	sta2c/dynamic	analysis,	but	
we’ll	talk	about	that	later).	

•  Soak	tes'ng:	tes2ng	a	system	with	a	significant	
load	over	a	significant	period	of	2me	(posi:ve).	

•  Used	to	check	reac2on	of	a	subject	under	test	
under	a	possible	simulated	environment	for	a	
given	dura2on	and	for	a	given	threshold.		

45	

46	

Chaos	monkey/Simian	army	
•  A	Nezlix	infrastructure	tes2ng	system.	
•  “Malicious”	programs	randomly	trample	on	
components,	network,	datacenters,	AWS	instances…	
–  Chaos	monkey	was	the	first	–	disables	produc2on	
instances	at	random.	

–  Other	monkeys	include	Latency	Monkey,	Doctor	
Monkey,	Conformity	Monkey,	etc…	Fuzz	tes2ng	at	the	
infrastructure	level.	

–  Force	failure	of	components	to	make	sure	that	the	
system	architecture	is	resilient	to	unplanned/random	
outages.	

•  Nezlix	has	open-sourced	their	chaos	monkey	code.	

47	

Completeness?	
•  Sta2s2cal	thresholds	

–  Defects	reported/repaired	
–  Rela2ve	propor2on	of	defect	kinds	
–  Predictors	on	“going	gold”	

•  Coverage	criterion	
–  E.g.,	100%	coverage	required	for	avionics	so;ware	
–  Distorts	the	so;ware	
–  Matrix:	Map	test	cases	to	requirements	use	cases	

•  Can	look	at	historical	data	
–  Within	an	organiza2on,	can	compare	across	projects;	Develop	expecta2ons	

and	predictors	
–  (More	difficult	across	organiza2ons,	due	to	difficulty	of	commensurability,	E.g.,	

telecon	switches	vs.	consumer	so;ware)	
•  Rule	of	thumb:	when	error	detec2on	rate	drops	(implies	diminishing	

returns	for	tes2ng	investment).	
•  Most	common:	Run	out	of	2me	or	money	

48	

Learning	goals	
•  Conceive	of	tes2ng	as	an	ac2vity	designed	to	achieve	

coverage	along	a	number	of	(non-structural!)	dimensions.	
•  Enumerate	tes2ng	strategies	to	help	evaluate	the	following	

quality	aNributes:	usability,	reliability,	security,	robustness	
(both	general	and	architectural),	performance,	integra2on.	

•  Give	tradeoffs	and	iden2fy	when	each	of	those	techniques	
might	be	useful.	

•  Integrate	tes2ng	into	your	project’s	lifecycle	and	prac2ces.	
•  Outline	a	test	plan.	

49	

