
Founda'ons	of		
So,ware	Engineering	

Lecture	8:	Architectural	Pa0erns,	
Tac5cs,	and	Evalua5on	
Claire	Le	Goues	

15-313	SoAware	Engineering	1	



Learning	Goals	

•  Understand	key	parts	of	architectural	
process	
•  Use	architectural	styles	and	tac5cs	for	
design	decisions	
•  Make	jus5fied	architectural	decisions	for	
new	systems	and	within	exis5ng	systems	
•  Review	a	proposed	architecture	

15-313	SoAware	Engineering	2	



Traceability	-	Defini'on	

15-313	SoAware	Engineering	3	

"The	ability	to	interrelate	any	uniquely	
iden5fiable	soAware	engineering	ar5fact	
to	any	other,	maintain	required	links	over	
5me,	and	use	the	resul5ng	network	to	
answer	ques5ons	of	both	the	soAware	
product	and	it's	development	process"	–	
CoEST		



Traceability	in	Requirements?	

15-313	SoAware	Engineering	4	



Traceability	

15-313	SoAware	Engineering	5	

Quality	Goal:	
High	Availability	

Req.:	Should	run	on	
redundant	servers	

Architecture:	Fault	
recovery	with	vo5ng	

	
Fault	preven5on:	
Regular	restarts	

OO	Design/Impl.:	
Vo5ng	mechanism,	

socket	communica5on	

Test:	Killing	random	
servers	in	test	setup	



Traceability	Compliance	

•  Traceability	required	in	some	domains	
(avionics)	
– Why	does	X	piece	of	code	exist?	

•  "Enable	verifica5on	of	the	absence	of	
undocumented	source	code	and	verifica5on	
of	the	complete	implementa5on	of	the	low-
level	requirements"	

•  Link	to	specifica5ons	and	test	procedures	

15-313	SoAware	Engineering	6	



Traceability	and	Architecture	
•  Architecture	links	quality	a0ributes	to	the	high-
level	and	low-level	system	design	

•  Ensures	quality	a0ributes	oAen	not	even	visible	
in	code	

•  Cost,	effort,	discipline	needed	to	create	and	
maintain.	
– OAen	incomplete,	incorrect,	outdated	

•  Developers	hate	it,	and	oAen	do	not	
understand	the	need.	
–  "Unnecessary	evil"		

15-313	SoAware	Engineering	7	



Case	Study:	The	Google	File	System	

15-313	SoAware	Engineering	8	



15-313	SoAware	Engineering	9	

Ghemawat,	Sanjay,	Howard	Gobioff,	and	Shun-Tak	Leung.	"The	Google	file	system."	ACM	SIGOPS	opera/ng	
systems	review.	Vol.	37.	No.	5.	ACM,	2003.	



Assump'ons	
•  The	system	is	built	from	many	inexpensive	commodity	

components	that	oAen	fail.		
•  The	system	stores	a	modest	number	of	large	files.		
•  The	workloads	primarily	consist	of	two	kinds	of	reads:	large	

streaming	reads	and	small	random	reads.	
•  The	workloads	also	have	many	large,	sequen5al	writes	that	

append	data	to	files.	
•  The	system	must	efficiently	implement	well-defined	

seman5cs	for	mul5ple	clients	that	concurrently	append	to	
the	same	file.	

•  High	sustained	bandwidth	is	more	important	than	low	
latency.	

15-313	SoAware	Engineering	10	

Ghemawat,	Sanjay,	Howard	Gobioff,	and	Shun-Tak	Leung.	"The	
Google	file	system."	ACM	SIGOPS	opera/ng	systems	review.	Vol.	
37.	No.	5.	ACM,	2003.	



15-313	SoAware	Engineering	11	

Ghemawat,	Sanjay,	Howard	Gobioff,	and	Shun-Tak	Leung.	"The	Google	file	system."	ACM	SIGOPS	opera/ng	
systems	review.	Vol.	37.	No.	5.	ACM,	2003.	

Quali'es:	
Scalability	
Reliability	
Performance	
Cost	



Ques'ons	

1.  What	are	the	most	important	quality	
a0ributes	in	the	design?	

2.  How	are	those	quality	a0ributes	
realized	in	the	design?	

15-313	SoAware	Engineering	12	



15-313	SoAware	Engineering	13	

Ghemawat,	Sanjay,	Howard	Gobioff,	and	Shun-Tak	Leung.	"The	Google	file	system."	ACM	SIGOPS	opera/ng	
systems	review.	Vol.	37.	No.	5.	ACM,	2003.	

Quali'es:	
Scalability	
Reliability	
Performance	
Cost	



Exercise	

For	the	Google	File	System,	create	a	
physical	architecture	view	that	addresses	
a	relevant	quality	a0ribute	

15-313	SoAware	Engineering	14	



15-313	SoAware	Engineering	15	

So	far	in	course	

Requirements	

Architecture	

Implementa5on	



Levels	of	abstrac'on	
•  Requirements	
–  high-level	“what”	needs	to	be	done	

•  Architecture	(High-level	design)	
–  high-level	“how”,	mid-level	“what”	

•  OO-Design	(Low-level	design,	e.g.	design	pa0erns)	
– mid-level	“how”,	low-level	“what”	

	
•  Code	
–  low-level	“how”	

16	 15-313	SoAware	Engineering	



What	is	architecture?	

15-313	SoAware	Engineering	17	

Architecture	as	
structures	and	rela5ons	
(the	actual	system)	
	

Architecture	as	
documenta5on	
(representa5ons	of		the	system)	
	

Architecture	as	process		
(ac5vi5es	around	the	other	two)	



Architectural	Styles	and	Tac'cs	

15-313	SoAware	Engineering	18	



Architectural	style	(paMern)	

•  Broad	principle	of	system	organiza5on	
•  Describes	computa5onal	model	
– E.g.,	pipe	and	filter,	call-return,	publish-
subscribe,	layered,	services	

•  Related	to	one	of	common	view	types	
– Sta5c,	dynamic,	physical	

15-313	SoAware	Engineering	19	



Example	Architectural	PaMerns	
•  System	organiza5on	
– Repository	model	
– Client-server	model	
–  Layered	model	

•  Modular	decomposi5on	
– Object	oriented	
–  Func5on-oriented	pipelining	

•  Control	styles	
– Centralized	control	
– Event-driven	systems	

15-313	SoAware	Engineering	20	



Architectural	style	(paMern)	

•  Broad	principle	of	system	organiza5on	
•  See	reading	
	

15-313	SoAware	Engineering	21	

Source:	codeproject.org	



Architectural	style	(paMern)	

15-313	SoAware	Engineering	22	

Source:	codeproject.org	



Client-server	paMern	

•  Separa5on	of	clients	and	servers	
– Servers	provide	services;	known	and	
“stable”	
– Clients	request	services;	come	and	go	

•  Varie5es:	synchronous/asynchronous	
•  Impact	on	security,	performance,	
scalability	
•  Examples:	TCP,	HTTP,	X11	

15-313	SoAware	Engineering	23	



15-313	SoAware	Engineering	24	

Client	

Server	

Database	

Where	to		
validate	user	
input?	

Example:	Yelp	App	



Client-server	style	

15-313	SoAware	Engineering	25	

Source:	wikimedia	commons	



Layered	system	

15-313	SoAware	Engineering	26	

Source:	eclipse.org	



Tiered	architecture	

15-313	SoAware	Engineering	27	



Architectural	Style?	

15-313	SoAware	Engineering	28	

Ghemawat,	Sanjay,	Howard	Gobioff,	and	Shun-Tak	Leung.	"The	Google	file	system."	ACM	SIGOPS	opera/ng	
systems	review.	Vol.	37.	No.	5.	ACM,	2003.	



Tac'cs	
•  Architectural	techniques	to	achieve	quali5es	
– More	5ed	to	specific	context	and	quality		

•  Smaller	scope	than	architectural	pa0erns	
–  Problem	solved	by	pa0erns:	“How	do	I	structure	my	
(sub)system?”		

–  Problem	solved	by	tac5cs:	“How	do	I	get	be0er	at	
quality	X?”	

•  Collec5on	of	common	strategies	and	known	
solu5ons	
– Resemble	OO	design	pa0erns	

15-313	SoAware	Engineering	29	



Many	tac'cs	out	there!	

15-313	SoAware	Engineering	30	



Example	Tac'c	Descrip'on:	
Record/playback	
•  Record/playback	refers	to	both	capturing	
informa5on	crossing	an	interface	and	using	it	
as	input	into	the	test	harness.	The	
informa5on	crossing	an	interface	during	
normal	opera5on	is	saved	in	some	repository	
and	represents	output	from	one	component	
and	input	to	another.	Recording	this	
informa5on	allows	test	input	for	one	of	the	
components	to	be	generated	and	test	output	
for	later	comparison	to	be	saved.	

15-313	SoAware	Engineering	31	



Example	Tac'c	Descrip'on:		
Built-in	monitors	
•  The	component	can	maintain	state,	performance	
load,	capacity,	security,	or	other	informa5on	
accessible	through	an	interface.	This	interface	can	be	
a	permanent	interface	of	the	component	or	it	can	be	
introduced	temporarily	via	an	instrumenta5on	
technique	such	as	aspect-oriented	programming	or	
preprocessor	macros.	A	common	technique	is	to	
record	events	when	monitoring	states	have	been	
ac5vated.	Monitoring	states	can	actually	increase	
the	tes5ng	effort	since	tests	may	have	to	be	
repeated	with	the	monitoring	turned	off.	Increased	
visibility	into	the	ac5vi5es	of	the	component	usually	
more	than	outweigh	the	cost	of	the	addi5onal	
tes5ng.	

15-313	SoAware	Engineering	32	



15-313	SoAware	Engineering	33	



15-313	SoAware	Engineering	34	



15-313	SoAware	Engineering	35	



15-313	SoAware	Engineering	36	



15-313	SoAware	Engineering	37	



15-313	SoAware	Engineering	38	



15-313	SoAware	Engineering	39	

Second	and	more	detailed	third	edi5on	available	as	ebook	
through	CMU	library.	

Many	tac5cs	
described	in	Chapter	
5	
	
Brief	high-level	
descrip5ons	(about	1	
paragraph	per	tac5c)	



Architecture	Design	Process	

15-313	SoAware	Engineering	40	



What	is	architecture?	

15-313	SoAware	Engineering	41	

Architecture	as	
structures	and	rela5ons	
(the	actual	system)	
	

Architecture	as	
documenta5on	
(representa5ons	of		the	system)	
	

Architecture	as	process		
(ac5vi5es	around	the	other	two)	



Architecture	design	process	
•  Choose	part	or	whole	system	to	focus	on	
•  Understand	relevant	requirements	
•  Choose	a	nota5on	
– 	Type	of	view,	vocabulary	of	elements	

•  Create	a	design		
– Pa0erns,	tac5cs	

•  Evaluate	
•  Go	vs	no-go		
– Issues	feed	back	into	process	

15-313	SoAware	Engineering	42	



Architecture	design	process	

43	

Choose	scope	 Understand	relevant		
requirements	

Choose	a	nota5on	

Create/refine	a	design	Evaluate		

Source:	ACDM,	ADD	

“Go”	



Architectural	decisions	

•  Heart	of	architecture	–	deciding	which	
path	to	go	
•  Involve	tradeoff	analysis	
•  Represen5ng	the	alterna5ves	clearly	–	
half	of	work	

15-313	SoAware	Engineering	44	



Architectural	decisions	

•  SoAware	architecture	is	design	

	
•  A	decision	is	a	step	in	the	process	
– Record	ra'onale!	(not	just	diagrams)	
– Tradeoffs	
– Backtracking	

15-313	SoAware	Engineering	45	

“Engineering	design	is	[…]	a	decision-making	process		(oCen	
itera/ve),	in	which	the	basic	sciences,	mathema/cs,	and	
engineering	sciences	are	applied	to	convert	resources	
op/mally	to	meet	a	stated	objec/ve”	–	ABET	



Architecture	design	process	

46	

Choose	scope	 Understand	relevant		
requirements	

Choose	a	nota5on	

Create/refine	a	design	Evaluate		

Source:	ACDM,	ADD	



Architectural	decisions	

•  SoAware	architecture	is	design	

	
•  A	decision	is	a	step	in	the	process	
– Record	ra'onale!	(not	just	diagrams)	
– Tradeoffs	
– Backtracking	

15-313	SoAware	Engineering	47	

“Engineering	design	is	[…]	a	decision-making	process		(oCen	
itera/ve),	in	which	the	basic	sciences,	mathema/cs,	and	
engineering	sciences	are	applied	to	convert	resources	
op/mally	to	meet	a	stated	objec/ve”	–	ABET	



Architecture	evalua'on	
•  Goal:	does	the	architecture	sa5sfy	
requirements?	

•  ATAM	–	Architecture	Tradeoff		
Analysis	Method	
– Present	requirements	
– Present	architecture	
– Analyze	architecture	
– Present	results	–	risks	and		
non-risks	

15-313	SoAware	Engineering	48	



15-313	SoAware	Engineering	49	

Source:sei.cmu.edu	



U'lity	tree	

15-313	SoAware	Engineering	50	

Source:arnon.me	



Athena	–	code	review	system	

15-313	SoAware	Engineering	51	

Source:	Jansen	and	Bosch	2005	



15-313	SoAware	Engineering	52	

Source:	Jansen	and	Bosch	2005	



Architecture	design	process	

53	

Choose	scope	 Understand	relevant		
requirements	

Choose	a	nota5on	

Create/refine	a	design	Evaluate		

Source:	ACDM,	ADD	



Challenges	of	architec'ng	

•  Describe	the	system	that	is	not	built	yet	
•  Domain	knowledge	is	essen5al	
•  Huge	space	of	op5ons	
•  Heavily	reliant	on	judgment	

15-313	SoAware	Engineering	54	



How	much	architecture?	

•  Design	and	document	when	needed,	
based	on	risk	
• When:	
– Beginning	
– Whenever	circumstances	change	

•  Agile	

15-313	SoAware	Engineering	55	



How	much	architecture?	

•  YAGNI	
•  Risk	
• When	to	start:		
– Before	implementa5on	
– Circumstances	change	

• When	to	stop:		
– Well-defined,	requirements	addressed,	
passes	evalua5on	

15-313	SoAware	Engineering	56	



15-313	SoAware	Engineering	57	

Source:	Boehm	and	Turner	2003	



15-313	SoAware	Engineering	58	

Student	applica'on	system	

Source:	Boehm	and	Turner	2003	



15-313	SoAware	Engineering	59	

Manned	space	mission	
so,ware	

Source:	Boehm	and	Turner	2003	



Challenges	of	architec'ng	

•  Describe	the	system	that	is	not	built	yet	
•  Domain	knowledge	is	essen5al	
•  Huge	space	of	op5ons	
•  Heavily	reliant	on	judgment	

15-313	SoAware	Engineering	60	



Summary	

15-313	SoAware	Engineering	61	

Architecture	as	
structures	and	rela5ons	
•  Pa0erns	
•  Tac5cs	

Architecture	as	
documenta5on	
•  Views	
•  Ra5onale	

	

Architecture	as	process		
•  Decisions	
•  Evalua5on	
•  Reconstruc5on	
•  Agile	



References	
•  Bass,	Clements,	Kazman.	SoAware	Architecture	in	
Prac5ce,	2013.		

•  La0anze.	Architec5ng	SoAware	Intensive	Systems:	a	
Prac55oner’s	Guide,	2009.	

•  Clements,	Bachmann,	Bass,	Garlan,	Ivers,	Li0le,	
Merson,	Nord,	Stafford.	Documen5ng	SoAware	
Architectures:	Views	and	Beyond,	2010.		

•  Boehm	and	Turner.	Balancing	Agility	and	Discipline:	
A	Guide	for	the	Perplexed,	2003.	

•  Jansen	and	Bosch.	SoAware	Architecture	as	a	Set	of	
Architectural	Design	Decisions,	WICSA	2005.	

	
15-313	SoAware	Engineering	62	



Further	Readings	
•  Bass,	Clements,	Kazman.	SoAware	Architecture	in	
Prac5ce,	2013.		

•  La0anze.	Architec5ng	SoAware	Intensive	Systems:	a	
Prac55oner’s	Guide,	2009.	

•  Clements,	Bachmann,	Bass,	Garlan,	Ivers,	Li0le,	
Merson,	Nord,	Stafford.	Documen5ng	SoAware	
Architectures:	Views	and	Beyond,	2010.		

•  Boehm	and	Turner.	Balancing	Agility	and	Discipline:	
A	Guide	for	the	Perplexed,	2003.	

•  Jansen	and	Bosch.	SoAware	Architecture	as	a	Set	of	
Architectural	Design	Decisions,	WICSA	2005.	

	
15-313	SoAware	Engineering	63	



Levels	of	abstrac'on	
•  Requirements	
–  high-level	“what”	needs	to	be	done	

•  Architecture	(High-level	design)	
–  high-level	“how”,	mid-level	“what”	

•  OO-Design	(Low-level	design,	e.g.	design	pa0erns)	
– mid-level	“how”,	low-level	“what”	

	
•  Code	
–  low-level	“how”	

64	 15-313	SoAware	Engineering	



Architecture	reconstruc'on	

•  Goal:	describe	architecture	of	an	exis5ng	
system	given	its	source	code	
•  Difficulty:	level	of	abstrac5on	in	
programming	language	is	too	low	
•  Process:		
– Itera5ve	
– Interpre5ve	
– Interac5ve	

15-313	SoAware	Engineering	65	



Reconstruc'on	steps	

•  Extract	raw	views	
– Tool	assistance,	sta5c	&	dynamic	analysis	

•  Construct	a	database	
– Aggregate	large	volumes	of	data	

•  View	fusion	
– Synthesize	a	hypothe5cal	view	

•  Check	for	viola5ons	
15-313	SoAware	Engineering	66	



Architecture	reconstruc'on	

15-313	SoAware	Engineering	67	

•  Itera5ve	
•  Interpre5ve	
•  Interac5ve	



Reconstruc'on	steps	

•  Extract	raw	views	
– Tool	assistance,	sta5c	&	dynamic	analysis	

•  Construct	a	database	
– Aggregate	large	volumes	of	data	

•  View	fusion	
– Synthesize	a	hypothe5cal	view	

•  Check	for	viola5ons	
15-313	SoAware	Engineering	68	



69	
Source:	BCK13	


