Foundations of
Software Engineering

Lecture 8: Architectural Patterns,
Tactics, and Evaluation

Claire Le Goues

©
institute for
1 15-313 Software Engineering I S SOFTWARE
RESEARCH

Learning Goals

 Understand key parts of architectural
Orocess

e Use architectural styles and tactics for
design decisions

* Make justified architectural decisions for
new systems and within existing systems

* Review a proposed architecture

©
institute for
2 15-313 Software Engineering I S r SOFTWARE
RESEARCH

Traceability - Definition

"The ability to interrelate any uniquely
identifiable software engineering artifact
to any other, maintain required links over
time, and use the resulting network to
answer questions of both the software
product and it's development process" —

CoEST

©

institute for

3 15-313 Software Engineering I S r SOFTWARE
RESEARCH

Traceability in Requirements?

©
institute for
4 15-313 Software Engineering I S SOFTWARE
RESEARCH

Traceability

Quality Goal: Req.: Should run on

High Availability . redundant servers

OO0 Design/Impl.: Architecture: Fault

Voting mechanism, recovery with voting

socket communication
Fault prevention:

Test: Killing random Regular restarts
servers in test setup [EE——

institute for
SOFTWARE
RESEARCH

Traceability Compliance

* Traceability required in some domains

(avionics)

— Why does X piece of code exist?

"Enable verification of the absence of
undocumented source code and verification

of the complete implementation of the low-
level requirements”

* Link to specifications and test procedures

6

©
institute for
15-313 Software Engineering I S r SOFTWARE
RESEARCH

Traceability and Architecture

* Architecture links quality attributes to the high-
level and low-level system design

* Ensures quality attributes often not even visible
in code

e Cost, effort, discipline needed to create and
maintain.

— Often incomplete, incorrect, outdated

* Developers hate it, and often do not
understand the need.

— "Unnecessary evil"

©
institute for
7 15-313 Software Engineering I S SOFTWARE
RESEARCH

Case Study: The Google File System

©
institute for
8 15-313 Software Engineering I S SOFTWARE
RESEARCH

Application) . ;
PP (file name, chunk index) | GFS master = [foo/bar

GFS client | File namespace ,” chunk 2ef0

(chunk handle, ;

chunk locations /

: Legend:
/ mmm) Data messages
A] —_—
Instructions to chunkserver Control messages
Chunkserver state
(chunk handle, byte range) Y Y

GFS chunkserver

chunk data

GFS chunkserver

Linux file system

Linux file system

glg -

B8 -

Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating °
systems review. Vol. 37. No. 5. ACM, 2003.

institute for
9 I S SOFTWARE
RESEARCH

15-313 Software Engineering

Assumptions

10

The system is built from many inexpensive commodity
components that often fail.

The system stores a modest number of large files.

The workloads primarily consist of two kinds of reads: large
streaming reads and small random reads.

The workloads also have many large, sequential writes that
append data to files.

The system must efficiently implement well-defined
semantics for multiple clients that concurrently append to

the same file.
High sustained bandwidth is more important than low

Iatency- Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." ACM SIGOPS operating systems review. Vol.
37. No. 5. ACM, 2003. .

institute for
15-313 Software Engineering I S SOFTWARE
RESEARCH

Qualities:

Scalability
Reliability
Performance
. Cost
Application (file name, chunk index) GFS master o~ /foo/baf
GFS client | File namespace ,~ chunk 2ef0
(chunk handle, ;
chunk locations) /
/ Legend:
mmm) Data messages
! | Instructions to chunkserver — Control messages
(chunk handle, byte range) Y Chunkserver state Y

GFS chunkserver GFS chunkserver

chunk data

Linux file system Linux file system

gl - lglg -

Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

11 15-313 Software Engineering

institute for
I S SOFTWARE
RESEARCH

Questions

1. What are the most important quality
attributes in the design?

2. How are those quality attributes
realized in the design?

©
institute for
12 15-313 Software Engineering I S SOFTWARE
RESEARCH

Qualities:

Scalability
Reliability
— — Performance
- . ~ Cost
Appllcatﬁ (file lame, chunk index){ GFS master o~ /foo/bar
GFS c}ént - Y / File namespace chunk 2ef0
/ (chunk handle, ;
chunk locations) Legend:

‘ mmm) Data messages

R

;)
tructions to chunkserver o . Control messages
Chunkserver state
(chunk handle, byte range) _ " Y

GFS chunkserver GFS chunkserver

Linux file system-

m Ewcflesystem
lo— ol -

Figure 1: GFS Architecture

chunk data

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

institute for
13 15-313 Software Engineering I S SOFTWARE
RESEARCH

Exercise

For the Google File System, create a

physical architecture view that addresses
a relevant quality attribute

Application . .
PP (file name, chunk index) | GFS master = [foo/bar
GFS client | File namespace ,” chunk 2ef0
(chunk handle,
chunk locations ’
: Legend:
’ mmm) Data messages
[} . i - - :
Instructions to chunkserver Control messages
Chunkserver state
(chunk handle, byterange) [V]
GFS chunkserver GFS chunkserver
chunk data . . . T
Linux file system Linux file system

=le .. gl .

Figure 1: GFS Architecture

14

So far in course

Shopping

Standard based and| Messaging protocol must be based on industry
to enable i ili

messaging protocol

Send Only Also called Push MEP is simple one-way messaging
where a message is sent with no expectation
response.

Receive only Also called Pull MEP is a message pattern where a
non-addressable sender supports the ability to
explicitly obtain messages from another application.
This can be used for exchanges

Request/Response | Message pattern consists of one or more
exchange q PO pairs. The ion between
request and a response is well defined. In this
response maybe deferred and the requesting
application may or may not block application
processing until a response is received

A ication, di ic, logging & routing
information should be included in the message

and not the payload
Reliability Protocol capability to support assured and single "‘
delivery to the receiving application with no
loss

- ” S—

Requirements Implementation

Architecture

institute for
15-313 Software Engineering SOFTWARE
RESEARCH

Levels of abstraction

* Requirements
— high-level “what” needs to be done

Architecture (igh-evel design)
— high-level “how”, mid-level “what”

OO-DESIgn (Low-level design, e.g. design patterns)
. ‘“ ”” ‘“ ””
— mid-level "how , low-level “"what

e Code
— low-level “how”

institute for
16 15-313 Software Engineering I S SOFTWARE
RESEARCH

What is architecture?

Architecture as Architecture as

structures and relations documentation
(the actual system) (representations of the system)

Architecture as process
(activities around the other two)

17

institute for
I S SOFTWARE
RESEARCH

Architectural Styles and Tactics

o
institute for
18 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architectural style (pattern)

* Broad principle of system organization

* Describes computational model

—E.g., pipe and filter, call-return, publish-
subscribe, layered, services

* Related to one of common view types
—Static, dynamic, physical

©
institute for
19 15-313 Software Engineering I S r SOFTWARE
RESEARCH

Example Architectural Patterns

* System organization

— Repository model

— Client-server model

— Layered model
 Modular decomposition

— Object oriented

— Function-oriented pipelining
e Control styles

— Centralized control
— Event-driven systems

©

institute for

20 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architectural style (pattern)

* Broad principle of system organization
* See reading

source lexical syntax semantic | [code

code analyzer analyzer analyzer [generator
.

| Intermediate

language
code
' Interpreter
J
. Source: codeproject.or
e.xten-lal Execution prol &
libraries Results
° . . .
institute For

21 107010 oUlLwdIT LIIglicCillng SOFTWARE
RESEARCH

Architectural style (pattern)

filel.cpp COMPILER
"
file2.cpp lexical syntax semantic code
analyzer analyzer analyzer generator
filel.ohy [file2.ohy
|l Intermediate | | Intermediate
language language
code code
LINKER
external Execution
libraries Results

22

15-313 Software Engineering

Source: codeproject.org

institute for
I S SOFTWARE
RESEARCH

Client-server pattern

e Separation of clients and servers

—Servers provide services; known and
“stable”

— Clients request services; come and go
* Varieties: synchronous/asynchronous

* I[mpact on security, performance,
scalability

* Examples: TCP, HTTP, X11
23 15-313 Software Engineering gé}?i{%

Example: Yelp App

i 9 d W 4:02

X Write Review POST

S e rv e r Example: There are a few times in life when a meal

is so expertly crafted and planned that it is nothing
short of genius. Last night, | had one of those
meals - the Mahi Mahi.

The dish was excellently prepared. Grilled, juicy,
and fresh without a hint of fishiness. A glaze of
tangerine sauce brought a hint of tart sweetness.
The fish was placed on a mound of sweet plantain
rice. The combination of the fish and rice alone
was to die for!

Database

Where to
validate user -~

Input: .
institute for
24 15-313 Software Engineering I S SOFTWARE
RESEARCH

Client-server style

User’s workstation

25

Keyboard

Mouse Screen

Y

Y 4

X Server

y

i

X client
(browser)| | (xterm)

X client

Y

1
Network =

X client
(xterm)

Remote machine

15-313 Software Engineering

Source: wikimedia commons
e}

institute for
SOFTWARE
RESEARCH

Layered system

Eclipse 4.x SDK

26

15-313 Software Engineering

Source: eclipse.org

institute for
SOFTWARE
RESEARCH

Tiered architecture

https Xm
Client ?%?--Webserver_L Webapp - sql_,

browser | o —J - (e.g. ruby program) | | [77777777 Database
stream =
|
Client LAN
computer Internet Web server ||.tAN App server ||""7 T DB server

Multiple Request and response bl
Process | | instances ||| | Physical host - » _Deployedon g connection
1

institute for
27 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architectural Style?

Application | |) . ;
PP (file name, chunk index) | GFS master = [foo/bar
GFS client | File namespace ,~ |chunk 2ef0
(chunk handle, J
chunk locations) /
Legend:
/ mmm) Data messages
A : A
Instructions to chunkserver - Control messages
Chunkserver state
(chunk handle, byte range) Y Y
GFS chunkserver GFS chunkserver
chunk data _ : _ - p—
Linux file system Linux file system

gg-. gl

Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating °
systems review. Vol. 37. No. 5. ACM, 2003.

institute for
28 15-313 Software Engineering I S SOFTWARE
RESEARCH

Tactics

29

Architectural techniques to achieve qualities
— More tied to specific context and quality

Smaller scope than architectural patterns

— Problem solved by patterns: “How do | structure my

(sub)system?”

— Problem solved by tactics: “How do | get better at

quality X?”

Collection of common strategies and known

solutions
— Resemble OO design patterns

15-313 Software Engineering

institute for
SOFTWARE
RESEARCH

Example Tactic Description:
Record/playback

31

Record/playback refers to both capturing
information crossing an interface and using it
as input into the test harness. The
information crossing an interface during
normal operation is saved in some repository
and represents output from one component
and input to another. Recording this
information allows test input for one of the
components to be generated and test output
for later comparison to be saved.

® .
Institute Fror
15-313 Software Engineering I S r SOFTWARE
RESEARCH

Example Tactic Description:
Built-in monitors

32

The component can maintain state, performance
load, capacity, security, or other information
accessible through an interface. This interface can be
a permanent interface of the component or it can be
introduced temporarily via an instrumentation
technique such as aspect-oriented programming or
preprocessor macros. A common technique is to
record events when monitoring states have been
activated. Monitoring states can actually increase
the testing effort since tests may have to be
repeated with the monitoring turned off. Increased
visibility into the activities of the component usually
more than outweigh the cost of the additional
testing. o

institute for
15-313 Software Engineering I S SOFTWARE
RESEARCH

4 R
Availability
Fault Detection Recovery- Recovery- Prevention
Preparation Reintroduction
and Repair
> —
Fault l Fault
Mask
+ v oras ed
Heartbeat Active State Service Made
Exception Redundancy Resynchronization Transactions
Passive Rollback Process Monitor
Redundancy
Spare
_ J

33

15-313 Software Engineering

institute for
I S SOFTWARE
RESEARCH

Changes
Arrive

>

Localize
Changes

1

Semantic
Coherence

Anticipate
Expected
Changes

Generalize
Module

Limit Possible
Options

Abstract
Common
Services

Modifiability

Prevention

of Ripple Effect

Hide Information

Maintain Existing
Interface

Restrict
Communication
Paths

Use an Intermediary

Defer
Binding Time

|

Runtime
Registration

Configuration
Files

Polymorphism

Component
Replacement

Adherence to
Defined
Protocols

107010 oUTLWATT LITEINITTIINTS

Changes
Made,
Tested,
and
Deployed
Within
Time and
Budget

—
Events
Arrive

35

e R
Performance
Resource Resource Resource
Demand Management Arbitration
Increase Introduce Scheduling | Response
Computation Concurrency Policy Generated
Efficiency Maintain Within
Reduce Multiple Time
e utational Copies Constraints
rhead Increase
Manage Event Available
Rate Resources
equency
of Sampling
_

15-313 Software Engineering

HISULULE TUI
SOFTWARE
RESEARCH

e
Security
Resisting Dectecting Recovering
Attacks Attacks from an Attaok
——
Attack
Authenticate Users Intrusior_l Restoration Identification
Authorize Users Detection l 1
Maintain Data
Confidentiality
e : See Audit
st M 11 Availability Trail
Limit Exposure
Limit Access
o

)

36

15-313 Software Engineering

System
Detects,
Resists, or
Recovers
from
Attacks

institute for
I S SOFTWARE
RESEARCH

Completion
of an
Increment

37

>

e y A
Testability
Manage Internal
Input/Output Monitoring >
l ults
etected
Record/Playback Built-in
Separate Interface Monitors
from Implementation
Specialized Access
Routines/Interfaces
N\ J

15-313 Software Engineering

institute for
I S SOFTWARE
RESEARCH

38

15-313 Software Engineering

User

IC-\‘.iven ate
ia

Feedback

Assistance

institute for
SOFTWARE
RESEARCH

Lo

4 Software Many tactics

| Architecture jascribed in Chapter
4 1n Practice
‘ Second Edition 5

Brief high-level
- descriptions (about 1
Len Bass paragraph per tactic)

Paul Clements
Rick Kazman

Second and more detailed third edition available as ebook
through CMU library.

institute for
39 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architecture Design Process

o
institute for
40 15-313 Software Engineering I S SOFTWARE
RESEARCH

What is architecture?

Architecture as Architecture as
structures and relations documentation

(the actual system) (representations of the system)

Architecture as process

(activities around the other two)

institute for
SOFTWARE
RESEARCH

41

Architecture design process

* Choose part or whole system to focus on
 Understand relevant requirements

* Choose a notation
— Type of view, vocabulary of elements

* Create a design
— Patterns, tactics

e Evaluate

* Go Vs ho-go
— Issues feed back into process

©
institute for
42 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architecture design process

N Understand relevant
5 requirements

Choose scope

—
”—
-

e > Choose a notation
II, /””
7 /’
r L’
|1 7
1,/
v
| v
Evaluate < Create/refine a design

N A
~ P d
N ’/
\\ -
\§~ —”
“Go” e ="
=}

institute for
43 Source: ACDM, ADD I S SOFTWARE
RESEARCH

Architectural decisions

* Heart of architecture — deciding which
path to go

* |Involve tradeoff analysis

* Representing the alternatives clearly —
half of work

©
institute for
44 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architectural decisions

* Software architecture is design

“Engineering design is [...] a decision-making process (often
iterative), in which the basic sciences, mathematics, and
engineering sciences are applied to convert resources
optimally to meet a stated objective” — ABET

* A decision is a step in the process

— Record rationale! (not just diagrams)
—Tradeoffs

— Backtracking

©
institute for
45 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architecture design process

N Understand relevant
5 requirements

Choose scope

—
”—
-

e > Choose a notation
/ ’/’
II ’/,/
/ ’,
r L’
|1 7
1,/
v
| v
Evaluate < Create/refine a design
\
N /A

~
\\ ”
-~ -
e e e = T

institute for
46 Source: ACDM, ADD I S SOFTWARE
RESEARCH

Architectural decisions

* Software architecture is design

“Engineering design is [...] a decision-making process (often
iterative), in which the basic sciences, mathematics, and
engineering sciences are applied to convert resources
optimally to meet a stated objective” — ABET

* A decision is a step in the process

— Record rationale! (not just diagrams)
—Tradeoffs

— Backtracking

©
institute for
47 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architecture evaluation

* Goal: does the architecture satisfy
requirements?

e ATAM — Architecture Tradeoff
Analysis Method
— Present requirements
— Present architecture
— Analyze architecture

— Present results — risks and
non-risks

48 15-313 Software Engineering

. Evaluating
¢ Software
¢ Architectures

Methods
y and

Case

Studies

Paul Clements
Rick Kazman
Mark Klein

institute for
I S SOFTWARE
RESEARCH

49

Source:sei.cmu.edu

Analysis

Tradeoffs

Sensitivity
Points

Non-Risks

Distilled into

o
institute for
15-313 Software Engineering I S SOFTWARE

RESEARCH

— Data Latency —

(M,L) Minimize storage latency
— . on customer DB to 200 ms.

—Performance— , |(H.M) Deliver video in real time
| Transaction
Throughput
__New product (L,H) .
: ,A) Add CORBA middleware
— Modifiability categories — in < 20 person-months
— Changs COTS — | (H,L)change web user interface
in <4 person weeks
Utility (L,H)power outage at Site 1 requires
[traffic re-direct to Site 2 in < 3 secs
H/W failure — (M,M)R , , _ _
| Availability— = estart after disk failure in <5 mins
C,OTS SIW (H,M)Network failure is detected and
failures recovered in < 1.5 mins
(L,H) . .
___Data — Credit card transactlpns are
L Security— confidentiality — secure 99.999% of time
L Data (L,H)customer database authorization
integrity works 99.999% of time

Source:arnon.me

50

15-313 Software E

institute for
ngineering I S SOFTWARE
RESEARCH

Athena — code review system

51

Database Middleware Client
4{ Arbiter
y Broker T Tool
Student Web
Doain (] Interface
Object
T] |Submission
Client
Fraud
Scanner
Mgss
Key
Requi P — .
Component | —Connector— " eqlf"ed ot~ Delta Design
o Provided Port . Fragment

Source: Jansen and Bosch 2005

15-313 Software Engineering

institute for
SOFTWARE
RESEARCH

@ Distribution Web
server
General
architecture <
style CORBA
realization

Fraud

52

Servlet
Engine

Domain
Object/
Managers

Database

abstraction

Key
<}—Refines——

<Depends on—

Fraud

Integration Design

Decision

Source: Jansen and Bosch 2005

institute for
I S SOFTWARE
RESEARCH

Architecture design process

N Understand relevant
5 requirements

Choose scope

—
”—
-

e > Choose a notation
/ ’/’
II ’/,/
/ ’,
r L’
|1 7
1,/
v
| v
Evaluate < Create/refine a design
\
N /A

~
\\ ”
-~ -
e e e = T

institute for
53 Source: ACDM, ADD I S SOFTWARE
RESEARCH

Challenges of architecting

* Describe the system that is not built yet

54

Domain knowledge is essential

I_

I_

uge space of options
eavily reliant on judgment

©
institute for
15-313 Software Engineering I S SOFTWARE
RESEARCH

How much architecture?

* Design and document when needed,
based on risk

* When:
—Beginning
—Whenever circumstances change

e Agile

©

institute for

55 15-313 Software Engineering I S SOFTWARE
RESEARCH

How much architecture?

e YAGNI
e Risk
e When to start:

— Before implementation
— Circumstances change

* When to stop:

—Well-defined, requirements addressed,
passes evaluation

©
institute for
56 15-313 Software Engineering I S r SOFTWARE
RESEARCH

Personnel
(% Level 1B) (% Level 2 & 3)

40 | 15
30 20
20 | 25
. . 10 | 30 :
Criticality,,.. . . Dynamism
(Loss due to impact of defects) |;,es Single _ 5 (% Requirements-change/month)
ife —Essential 0 35 10
nds— . 30
Dlscrettona;y_ 50
funds Comfort | —
3 90
10 70
30 50
100 30
300 10
Size Culture
(Number of personnel) (% Thriving on chaos)

Source: Boehm and Turner 2003
e}

institute for
57 15-313 Software Engineering I S SOFTWARE
RESEARCH

Personnel
(% Level 1B) | (% Level 2 & 3)

40 | 15
30 20
20 | 25
ags - 40 | 30 .
Criticality ., ' _ Dynamism
(Loss due to impact of defects) |;,es Single _ 5 (% Requirements-change/month)
ife —Essential 0 35 10
Discr monar_y_ 50 -~
fuhds Comfort | —
3 90
10 70
30 50
100 30
300 10
Size Culture
(Number of personnel) (% Thriving on chaos)

Source: Boehm and Turner 2003
e}

institute for
58 15-313 Software Engineering I S SOFTWARE
RESEARCH

Personnel

Manned space mission (% Level 18) (% Lovel 2 & 3
40 | 15
software
30 | 20

L B N 1
CrltlcalltyMany :

(Loss due to impact of defects) j,es

Dynamism

(% Requirements-change/month)

ingle . B
life "'Eséﬁﬂ"a' 0|35 10

ds—
" Discretionary .30
funds Gomfort | —

10

Size Culture
(Number of personnel) (% Thriving on chaos)

Source: Boehm and Turner 2003
©

institute for
59 15-313 Software Engineering I S SOFTWARE
RESEARCH

Challenges of architecting

* Describe the system that is not built yet

60

Domain knowledge is essential

I_

I_

uge space of options
eavily reliant on judgment

©
institute for
15-313 Software Engineering I S SOFTWARE
RESEARCH

Summary

Architecture as Architecture as
structures and relations documentation
* Patterns * Views

e Tactics e Rationale

Architecture as process

* Decisions

e Evaluation

* Reconstruction

e Agile o

institute for
61 15-313 Software Engineering I S SOFTWARE
RESEARCH

References

62

Bass, Clements, Kazman. Software Architecture in
Practice, 2013.

Lattanze. Architecting Software Intensive Systems: a
Practitioner’s Guide, 2009.

Clements, Bachmann, Bass, Garlan, Ivers, Little,
Merson, Nord, Stafford. Documenting Software
Architectures: Views and Beyond, 2010.

Boehm and Turner. Balancing Agility and Discipline:
A Guide for the Perplexed, 2003.

Jansen and Bosch. Software Architecture as a Set of
Architectural Design Decisions, WICSA 2005.

institute for
15-313 Software Engineering I S SOFTWARE
RESEARCH

Further Readings

63

Bass, Clements, Kazman. Software Architecture in
Practice, 2013.

Lattanze. Architecting Software Intensive Systems: a
Practitioner’s Guide, 2009.

Clements, Bachmann, Bass, Garlan, Ivers, Little,
Merson, Nord, Stafford. Documenting Software
Architectures: Views and Beyond, 2010.

Boehm and Turner. Balancing Agility and Discipline:
A Guide for the Perplexed, 2003.

Jansen and Bosch. Software Architecture as a Set of
Architectural Design Decisions, WICSA 2005.

institute for
15-313 Software Engineering I S SOFTWARE
RESEARCH

Levels of abstraction

* Requirements
— high-level “what” needs to be done

Architecture (igh-evel design)
— high-level “how”, mid-level “what”

OO-DESIgn (Low-level design, e.g. design patterns)
. ‘“ ”” ‘“ ””
— mid-level "how , low-level “"what

e Code
— low-level “how”

64 15-313 Software Engineering

institute for
SOFTWARE
RESEARCH

Architecture reconstruction

* Goal: describe architecture of an existing
system given its source code

* Difficulty: level of abstraction in
programming language is too low
* Process:
— |terative
—Interpretive

—Interactive

©
institute for
65 15-313 Software Engineering I S r SOFTWARE
RESEARCH

Reconstruction steps

* Extract raw views
—Tool assistance, static & dynamic analysis

e Construct a database

— Aggregate large volumes of data

* View fusion
—Synthesize a hypothetical view

 Check for violations

©

institute for

66 15-313 Software Engineering I S SOFTWARE
RESEARCH

Architecture reconstruction

= wehlogic.application.utils. Statemachinebriver.nextstate(StateMachinebriver. java:26)
Pl Project Explorer X =R g 5
. " - ##dd<Dac 29, 2006 2:14:24 PM IST> <Notice» <Log Management> <svaidyan02» <xbusServer:
-1z org.eclipse.test.performance [dev.eclipse.org] Lo <[ACTIVE] ExecuteThread: '0' for queue: 'web'loﬁic.kerne'l.nefau'lt (self-tuning)'> <<wLs
+ 'ﬁ% org.eclipse.text [dev.eclipse.org) Kernel>> <> <> <1167381864275> <BEA-170027> <The server initialized the domain log
e))) broadcaster successfully. Log messages will now he broadcasted to the domain log.>
-4y org.eclipse.ui [dev.eclipse.org] ###E<DRC 29, 2006 2:14:24 PM IST> <Notice> <webLogicServers <svaidyan02» <xbusservers> <Main
+ l!?j org.eclipse.ui.editors [dev.eclipse.org] Threads> <<wLS Kernels> <> <> <1167381864976> <BEA-000365> <Server state changed to ADMIN>
#7293 ora.edlipse.uilide [dev.eclipse.org] ####<Dec 29, 2006 2:14:24 PM IST> <Notice> <webLogicServer> <svaidyan02> <xhusServer> <Main
&7y 0rg.ecipse.ul. «eclipse.org Thread> <<WLS Kernels> <> <> <1167381864996> <BEA-000365> <Server state changed to RESUMINGS>
=%z org.eclipse.ui.navigator [dev.eclipse.org] ##d#<Dec 29, 2006 2:14:28 PM IST> <Notice» <Security> <svaidyan02> <xbusServer> <[STANDEY]
58 orc ExecuteThread: '5' for queue: 'weblogic.kernel.pefault (self-tuning)'> <<WLS Kernel>> <> <>
&0 <1167381868541> <BEA-090171> <Loading the identity certificate and private key stored under
-} org.eclipse.ui.internal.navigator thsbaﬁas DsmoIdenti{y from\'_tlhg\jks Egystore ‘Fl'pe
G ; . ; ; C:\bea2613a\WEBLOG~1\server\1ib\DemoIdentity. jks.>
%‘ & org.eclfpse.u!.!nternal.nangator.actlons #idd<Dec 29, 2006 2:14:29 PM IST> <Notices)</S«Jecur'ity> <svaidyan02> <xbusServer> <[STANDBY]
-} org.eclipse.ui.internal.navigator.dnd 3 ExecuteThread: 'S' for gueue: 'weblogic.kernel.pefault (self-tuning)'> <<wLS Kernely> <> <>
[org.eclipse.ui.internal.navigator.extensions <1167381869643> <BEA-090169> <Loading trusted certificates from the jks keystore file
i) -)) C:\bea2613a\WEBLOG~1\server\1ib\DemoTrust. jks.>
- H#j org.eclipse.ui.internal.navigator Ffilters ####<DeC 29, 2006 2:14:29 PM IST> <Notice» <Security> <svaidyan02> <xhusServer> <[STANDEY]
-4 org.eclipse.ui.internal.navigator. sorters ExecuteThread: '5' for queue: 'weblogic.kernel.pefault (self-tuning)'> <<wLsS Kernel»> <> <>
i) . .) <1167381869713> <BEA-090169> <Loading trusted certificates from the jks keystore file
i org.eclipse.ui.internal.navigator.wizards C:\bea2613a\JROCKI~1\jre\lib\security\cacerts.»
(=413 org.eclipse.ui.navigator ##d#<Dec 29, 2006 2:15:32 PM IST> <warning> <Server> <svaidyan02» <xhusservers
&0 c actionProvider i 1.9 (ASCII -kk <DynamicssLListenThread[pefaultSecure[1]]> <<wLS Kernels>> <> <> <1167381932743> <BEA-002611>
) CommenActionProvider.java 1.9 { -kkv) <Hostname "svaidyan02.apac.bea.com", maps to multiple IP addresses: 192.168.1.5,
@ []} CommonDragAdapter.java 1.7 (ASCII -kkv) 172'22.565%203006 5i15:3 . - b []
= : : ####<Dac 29, 115:32 PM IST> <nOtice> <Server> <svaidyan02» <xbusserver> <[STANDBY
‘i Uj CommonDragAdapterassistant.java 1.5 (ASCII -kkv) 7 ExecuteThread: '5' for queue: 'weblogic.kernel.pefault (self-tuning)'> <<WLS Kernel>> <> <>
F-lR i B <1167381932753> <BEA-002613> <Channel "pefault[2]" is now Tistening on 127.0.0.1:7021 for

* |terative
* Interpretive

 |Interactive

institute for
67 15-313 Software Engineering I S SOFTWARE
RESEARCH

Reconstruction steps

* Extract raw views
—Tool assistance, static & dynamic analysis

e Construct a database

— Aggregate large volumes of data

* View fusion
—Synthesize a hypothetical view

 Check for violations

©

institute for

68 15-313 Software Engineering I S SOFTWARE
RESEARCH

69

|Connectors

‘mm

Source: BCK13

