
Founda'ons	of	So,ware	
Engineering	

Lecture	14	–	Sta-c	Analysis	2,	or:	
the	Hal-ng	Problem	Strikes	Back	
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Learning	goals	
•  Explain	at	a	high	level	why	sta-c	analyses	
cannot	be	sound,	complete,	and	termina-ng.	

•  Give	an	example	of	a	technique	to	increase	
precision,	and	assess	tradeoffs	in	analysis	
design.	

•  Understand	symbolic	execu-on	and	its	
applicability,	especially	when	combined	with	
dynamic	techniques	for	test	case	genera-on.	

•  Characterize	and	choose	between	tools	that	
perform	sta-c	analyses.	
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y > -1

x = 10;

x = x/y

(exit)	

y = y-1;

y = x;

x	à	NZ	

x	à	NZ,	yàNZ	

x	à	NZ,	yàMZ,	z	à	MZ	

z = 0;

x	à	NZ,	yàNZ,	z	à	Z	

z = 5;

x	à	NZ,	yàMZ,	z	à	MZ	

x	à	NZ,	yàMZ,	z	à	MZ	

x	à	NZ,	yàMZ,	z	à	MZ	

x	à	NZ,	yàMZ,	z	àNZ	

Warning!	Possible	division	by	zero	error!	
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Order	doesn’t	actually	ma=er	

•  Can	process	instruc-ons	in	whatever	
order	we	want,	un-l	the	informa-on	
doesn’t	change	over	the	whole	program.	

•  But,	there’s	a	problem…	
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y > -1

x = 10;

x = 10; 
y = x; 
z = 0; 
while (y > -1) { 
  x = x/y; 
  y = y-1; 
  z = 5; 
} 

x = x/y

(exit)	

y = y-1;

y = x;

z = 0;

z = 5;

????	

5	(c)	2016,	Claire	Le	Goues	



WHAT	IS	THE	INPUT	STATE	TO	AN	
INSTRUCTION	THAT	HAS	A	
PREDECESSOR	WE	HAVEN’T	PROCESSED	
YET??	 6	(c)	2016,	Claire	Le	Goues	



Example:	interrupt	checker	

7	

enabled	 disabled	

maybe-enabled	

?	



Complete	laSces	

•  The	?	value:	bo^om,	the	opposite	of	
top.		8	l,	?	t	l	=	l	

•  Join	func-on:	always	moves	up.	

8	(c)	2016,	Claire	Le	Goues	



WHEN	DO	WE	STOP?	

9	(c)	2016,	Claire	Le	Goues	



Termina'on	intui'on	

•  A	fixed	point	of	a	func-on	is	a	data	value	
v	that	a	func-on	maps	to	itself:	
– f(v)	=	v	

•  The	flow	func-on	is	the	mathema-cal	
func-on.	

•  The	dataflow	analysis	state	at	each	fix	
point	is	the	data	values.	

10	(c)	2016,	Claire	Le	Goues	



Simple	algorithm	
1.  for all node indexes i do
2.    input[i] = ? 
3.  input[ firstInstruction ] = initialA 
4.  while not at fixed point
5.    pick an instruction i
6.    output = flow(i, input[i])
7.    for j in succs ( i ) 
8.      input[j] = input[j] t output 

11	(c)	2016,	Claire	Le	Goues	



Example of Worklist 
1.  [a := 0] 
2.  [b := 0] 
3.  while [a < 2] do 
4.      [b := a]; 
5.      [a := a + 1]; 
6.  [a := 0] 
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1.  for all node indexes i do
2.    input[i] = ? 
3.  input[ firstInstruction ] = 

initialA 
4.  while not at fixed point
5.    pick an instruction i
6.    output = flow(i, input[i])
7.    for j in succs ( i ) 
8.      input[j] = input[j] t output 



Kildall’s Worklist Algorithm 

1.  worklist = new Set();
2.  for all node indexes i do
3.    input[i] = ? A; 
4.  input[entry] = initialA;
5.  worklist.add(all nodes);
6.  while (!worklist.isEmpty()) do
7.    i = worklist.pop();
8.    output = flow(input[i], i);
9.    for j ∈succ(i) do
10.     if ! (output v   input[j]) 
11.       input = input[j] t output	
12.  																	worklist.add(j)	

13	(c)	2016,	Claire	Le	Goues	

Note	on	line	5:	it’s	OK	to	just	
add	entry	to	worklist	if	the	
flow	func-ons	cannot	return	
bo^om,	which	is	true	for	our	
example	but	not	generally.	



The	Bad	News:	Rice's	Theorem	

Every	sta-c	analysis	is	necessarily	incomplete	or	unsound	or	
undecidable	(or	mul-ple	of	these)	

"Any	nontrivial	property	about	the	
language	recognized	by	a	Turing	
machine	is	undecidable.“	
	

Henry	Gordon	Rice,	1953	
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WHAT	DOES	THAT	MEAN,	AND	
ALSO,	WHY?		
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Let’s	translate…	

"Any	nontrivial	property	about	the	
language	recognized	by	a	Turing	
machine	is	undecidable.“	
	

Henry	Gordon	Rice,	1953	
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Computer	

Program	

Anything	
interes-ng	



Why?Infinite	loops.	
•  I	have	a	program,	and	it	takes	input.	
•  That	program	is	wri^en	in	a	reasonable	
programming	language,	so	it	has	loops.	

•  One	way	a	program	with	loops	can	go	
horrifically	awry	is	that	it	can	loop	infinitely.		

•  It’s	oken	hard	to	tell	the	difference	between	
a	program	that	just	takes	a	long	-me	to	
execute,	and	a	program	that’s	stuck	in	an	
infinite	loop.		
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Computability	theory	says…	
•  Hal'ng	problem:	the	problem	of	determining	
whether	a	given	program	will	halt/terminate	on	
a	given	input.	

•  A	general	algorithm	that	solves	this	problem	is	
impossible.	
– More	specifically:	it’s	undecidable	(it’s	possible	to	
get	a	yes	answer,	but	not	a	no	answer).	

–  (some-mes	you	can	use	heuris-cs,	but	solving	it	
generally	for	all	programs	is	s-ll	out.)	

•  The	proof	here	is	very	elegant.		But	trust	me:	
this	problem	is	extremely	impossible.			
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OK,	so?	
•  If	you	could	always	sta-cally	tell	if	any	
program	had	a	non-trivial	property	(never	
dereferences	null,	always	releases	all	file	
handles,	etc,	etc),	you	could	also	generally	
solve	the	hal-ng	problem.		

•  …but	the	hal-ng	problem	is	definitely		
impossible.	

•  So:	no	sta-c	analysis	is	perfect.		They	will	
always	have	false	posi-ves	or	false	nega-ves	
(or	both).		

•  All	tools	make	tradeoffs.	
19	



Error	exists	 No	error	exists	

Error	Reported	 True	posi-ve	
(correct	analysis	result)	

False	posi-ve	

No	Error	Reported	 False	nega-ve	 True	nega-ve	
(correct	analysis	result)	

Sound	Analysis:		
	reports	all	defects	
	->	no	false	nega-ves	
	typically	overapproximated	

	
Complete	Analysis:	

	every	reported	defect	is	an	actual	defect		
	->	no	false	posi-ves	
	typically	underapproximated	
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Sound Analysis 

All Defects 

Complete 
Analysis 

Unsound 
and 
Incomplete 
Analysis 

21	



Soundness	and	precision	

Program	state	covered	in	actual	execu-on	

Program	state	covered	by	abstract	
execu-on	with	analysis	

unsound	
(false	nega-ve)	

imprecise	
(false	posi-ve)	
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Sound	vs.	Heuris'c	Analysis	
•  Heuris-c	Analysis		

– FindBugs,	checkstyle,	…	
– Follow	rules,	approximate,	avoid	some	checks	
to	reduce	false	posi-ves	

– May	report	false	posi-ves	and	false	nega-ves	
•  Sound	Sta-c	Analysis	

– Type	checking,	Not-Null,	…	(specific	fault	
classes)	

– Sound	abstrac-on,	precise	analysis	to	reduce	
false	posi-ves	
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Null pointers 
1. int	foo()	{	
2. 			Integer	x	=	new	Integer(6);	
3. 			Integer	y	=	bar();	
4. 			int	z;	
5. 			if	(y	!=	null)	
6. 						z	=	x.intVal()	+	y.intVal();	
7. 			}	else	{	
8. 						z	=	x.intVal();	
9. 						y	=	x;	
10. 					x	=	null;	
11. 			}	
12. 			return	z	+	x.intVal();	
13. }	

Integer x = new Integer(6);

int z; 
if (y != null) 

 z = x.intVal() + 
y.intVal();

 z = x.intVal();
 y = x;
 x = null;

 return z + x.intVal();

Integer y = bar();
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What	about	that	func'on	call?	
1.  If	you’re	worried	about	totally	wacky	

control	flow	(excep-ons,	longjumps),	they	
can	be	modeled	in	wackier/more	
complicated	control	flow	graphs.	

2.  Ignore	it	by	assuming	that	all	func-ons	
return	and	tempering	your	claim:	
“assuming	the	program	terminates,	the	
analysis	soundly	computes…”	

–  Most	people	don’t	bother;	this	is	basically	
assumed.	

25	



File	open/close	

•  Abstract	domain:	file	open,	file	closed,	
file	maybe-open.	

•  Transfer	and	joins	lek	as	exercise	to	the	
reader…	

26	



1.  public class StreamDemo {
2.    public static void main(String[] args) throws Exception {
3.       OutputStream os = null;
4.       InputStream is = new FileInputStream("in.txt");
5.       int i;
6.       try {
7.        os = new FileOutputStream("out.txt");
8.        System.out.println("Copying in progress...");
9.        while ((i = is.read()) != -1) {
10.          os.write(i);
11.       }
12.       if (os != null) {
13.         os.close();
14.        }
15.      } catch (IOException e) {
16.         e.printStackTrace();
17.      }
18.       is.close();
19.     }
20. }
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Design	choices:	representa'on	and	
abstract	domain	
• What	if	we	don’t	model	the	try/catch?	

28	
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Design	choices:	representa'on	and	
abstract	domain	
• What	if	we	don’t	model	the	try/catch?	
•  If	we	do…how	should	we	include	it?	

30	
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Design	choices:	representa'on	and	
abstract	domain	
• What	if	we	don’t	model	the	try/catch?	
•  If	we	do…how	should	we	include	it?	
•  …what	about	non-IOExcep-ons?	
•  Broader	ques-on:	How	precisely	should	
we	model	seman-cs?	
– E.g.,	Of	instruc-ons,	of	condi-onal	checks,	
etc.	
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Upshot:	analysis	as	approxima'on	
•  Analysis	must	approximate	in	prac-ce	

–  False	posi-ves:	may	report	errors	where	there	are	really	none	
–  False	nega-ves:	may	not	report	errors	that	really	exist	
–  All	analysis	tools	have	either	false	nega-ves	or	false	posi-ves	

•  Approxima-on	strategy	
–  Find	a	pa^ern	P	for	correct	code	

•  which	is	feasible	to	check	(analysis	terminates	quickly),	
•  covers	most	correct	code	in	prac-ce	(low	false	posi-ves),	
•  which	implies	no	errors	(no	false	nega-ves)	

•  Analysis	can	be	pre^y	good	in	prac-ce	
–  Many	tools	have	low	false	posi-ve/nega-ve	rates	
–  A	sound	tool	has	no	false	nega-ves	

•  Never	misses	an	error	in	a	category	that	it	checks	
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Symbolic	Execu'on	
•  Execute	program	with	symbolic	inputs.	

•  Used	for	verifica-on,	test	genera-on.	

y	=	read()	
y	=	2	*	y	
if	(y	==	12)	
			fail()	
print("OK")	

y	=	α	
y	=	2*α	
Successful	path		
condition:	
		y	=	2*α	
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Symbolic	Execu'on	

•  Exploring	all	paths	
if	(x<MAX)	{	
	if	(x>0)	
	 	…	
	else	
	 	…	

}	else	{		
	if	(x>3)	
	 	…	

α<MAX	
α<MAX	&&	α>0	
	
α<MAX	&&	!(α>0)	
	
!(α<MAX)	
!(α<MAX)	&&	α>3	
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Symbolic	Execu'on:	Limita'ons	

•  Path	explosion	
•  Undecidable	Path	Constraints	(α*β<10)	
•  Nontermina-on	with	unlimited	loop	
bounds	(while	(x<y))	

Prac-cal	scalability	today:	~10,000	lines	of	code	
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Dynamic	Symbolic	Execu'on	

•  Mixing	Concrete	and	Symbolic	Values	
•  Unsound	->	Test	Case	Genera-on	
•  Given	Unsolvable	Constraint	or	Loop	
Bound:	just	guess	one	variable	and	
con-nue	

α*β<10 
α*2<10 
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Automa'c	white-box	test	
genera'on	
•  Dynamic	Symbolic	
Execu-on	to	guide	Fuzz	
Tes-ng	

•  Microsok	SAGE	
–  In	produc-on	on	Office,	
Windows	

–  200+	machines	
–  3	B+	constraints	
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The	general	procedure	
•  Start	with	random	inputs.	
•  Execute	the	program.			

– Iden-fy	the	paths/decisions/statements	
covered	by	the	test	case.	

– Collect	path	constraints	corresponding	to	the	
execu-on.	

•  Flip	one	of	the	constraints,	ask	a	constraint	
solver	to	give	new	inputs	to	force	the	
execu-on	down	a	different	path.	

39	



Making	things	be=er:	termina'on	

•  Secret	weapon:	define	your	abstrac-on	such	
that	it	is	finite.	

•  If	you	come	to	a	statement	and	you’ve	already	
explored	a	given	state	for	that	statement,	stop.	
– The	analysis	depends	on	the	code	and	the	current	
state;	con-nuing	the	analysis	from	this	program	
point	and	state	would	yield	the	same	results.	

•  If	the	number	of	possible	states	isn’t	finite,	
you’re	stuck.	
– Your	analysis	may	not	terminate.	

•  Common	solu-on:	cap	the	number	of	paths/
loop	itera-ons	to	0,	1,	or	2.	
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Check	out…	

•  PEX:	Automated	White	Box	Tes-ng	
for	.NET	
– Technique	out	of	Microsok	Research	
– Extension	to	Visual	Studio	

•  Pex4Fun:	educa-onal	programming	web	
game	based	on	PEX.	

41	



Why	do	Sta'c	Analysis	

Static Analysis 18Analysis of Software Artifacts
© 2009 Jonathan Aldrich
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Quality	assurance	at	Microso,	
•  Original	process:	manual	code	inspec-on		

–  Effec-ve	when	system	and	team	are	small		
–  Too	many	paths	to	consider	as	system	grew		

•  Early	1990s:	add	massive	system	and	unit	tes-ng		
–  Tests	took	weeks	to	run		

•  Diversity	of	pla~orms	and	configura-ons		
•  Sheer	volume	of	tests		

–  Inefficient	detec-on	of	common	pa^erns,	security	holes		
•  Non-local,	intermi^ent,	uncommon	path	bugs	
Was	treading	water	in	Windows	Vista	development		

•  Early	2000s:	add	sta-c	analysis	
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Impact at Microsoft 
•  Thousands of bugs caught monthly 
•  Significant observed quality improvements 

–  e.g. buffer overruns latent in codebaes 

•  Widespread developer acceptance 
–  Check-in gates 
–  Writing specifications 
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Tools:	Compilers	
•  Type	checking,	proper	ini-aliza-on	API,	
correct	API	usage	

•  Compile	at	a	high	warning	level	
– $>gcc -Wall 

Program	 Compiler	output	
int add(int x,int y) { 
  return x+y; 
} 
 
void main() { 
  add(2); 
} 

$> error: too few arguments to 
function ‘int add(int, int)’ 
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Tools:	lint	and	splint	
•  Lint	was	originally	a	sta-c	checker	for	C	code	

–  Flagged	suspicious	and	non-portable	constructs	in	C	
–  Stronger	checking	than	typical	compiler	
–  Also	uses	embedded	annota-ons	
–  Creates	internal	structures	to	analyze	program	state	and	detect	
problema-c	arrangements	

•  Parse	program	and	analyze	state	of	variables,	func-ons,	etc.	
•  Splint	(Secure	Programming	Lint)	is	modern	version	of	

lint	
•  “Lint-like”	or	“Lint”	tools	now	refers	to	any	tool	that	flags	

suspicious	code	usage.		
•  Some	companies	run	such	checkers	at	checkin.		

–  (Ed	note:	except	Apple,	apparently??)	
h^p://www.splint.org/	
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Splint	Example	
Code	(ex.c)	 Splint	output	
int main() {  
  char c; 
  while (c != 'x');  
  { 
    c = getchar(); 
    if (c = 'x') 
      return 1; 
  } 
  return 0; 
} 

$>	splint	ex.c	
	
Splint	3.1.1	---	19	Jul	2006	
	
ex.c:3:10:	Variable	c	used	before	defini-on.	An	rvalue	is	used	that	
may	not	be	ini-alized	to	a	value	on	some	execu-on	path.	(Use	-
usedef	to	inhibit	warning)		
	
ex.c:3:10:	Suspected	infinite	loop.		No	value	used	in	loop	test	(c)	is	
modified	by	test	or	loop	body.	This	appears	to	be	an	infinite	loop.	
Nothing	in	the	body	of	the	loop	or	the	loop	test	modifies	the	
value	of	the	loop	test.	Perhaps	the	specifica-on	of	a	func-on	
called	in	the	loop	body	is	missing	a	modifica-on.	(Use	-infloops	to	
inhibit	warning)	
	
ex.c:5:5:	Assignment	of	int	to	char:	c	=	getchar()	
		To	make	char	and	int	types	equivalent,	use	+charint.	
…	

Splint	is	extendable	 47	



Extending	Splint	to	Analyze	Taintedness	

•  Tain-ng	marks	data	as	
untrusted	
–  Tainted	data	originates	

from	the	user/external	
environment	

–  Mark	(taint)	data	as	
untrusted	and	analyze	
program	to	determine	
how/where	it	is	used	

•  We	can	extend	splint	to	
analyze	taintedness	at	
compile	-me	

a=ribute	taintedness	
			context	reference	char	*	
			oneof	untainted,	tainted	
			annota'ons	
					tainted	reference	==>	tainted	
					untainted	reference	==>	untainted	
			transfers	
					tainted	as	untainted	==>	error	”taint	error…	
			merge	
						tainted	+	untainted	==>	tainted	
			defaults	
						reference	==>	tainted	
						literal	==>	untainted	
						null	==>	untainted	
end	

Tainted	character	pointers	

Associate	taint	a^ribute	
with	char*	type	

A^ribute	
assignment	

Transfer	rules	

h^p://www.splint.org/manual/html/sec10.html	

int printf  (/*@untainted@*/ char *fmt, ...); 

Using	the	new	defini-on	in	annota-ons	
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Learning	goals	
•  Explain	at	a	high	level	why	sta-c	analyses	
cannot	be	sound,	complete,	and	termina-ng.	

•  Give	an	example	of	a	technique	to	increase	
precision,	and	assess	tradeoffs	in	analysis	
design.	

•  Understand	symbolic	execu-on	and	its	
applicability,	especially	when	combined	with	
dynamic	techniques	for	test	case	genera-on.	

•  Characterize	and	choose	between	tools	that	
perform	sta-c	analyses.	
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