Foundations of Software
Engineering

Lecture 14 — Static Analysis 2, or:
the Halting Problem Strikes Back

. . .
institute for
1 I S SOFTWARE
RESEARCH

Learning goals

* Explain at a high level why static analyses
cannot be sound, complete, and terminating.

* Give an example of a technique to increase
precision, and assess tradeoffs in analysis
design.

* Understand symbolic execution and its

applicability, especially when combined with
dynamic techniques for test case generation.

e Characterize and choose between tools that
perform static analyses.

institute for
2 I S SOFTWARE
RESEARCH

Warning! Possible division by zero error!

x = 10;
lx%NZ
y = x;
lx%NZ,y%NZ
z = 0;

X2>NZ,y2>NZ,z>Z

VX2 NZ,y>MZ,z > MZ
y > -1

lx > NZ, y>MZ, 2> MZ
x = x/y
lx 2> NZ,y=2>MZ,z> M

y = y-1;
lx 2> NZ, y2>MZ,z> M

z = 5;

x > NZ, y>MZ, z DNZ

(exif)

institute for
SOFTWARE
RESEARCH

Order doesn’t actually matter

e Can process instructions in whatever
order we want, until the information
doesn’t change over the whole program.

e But, there’s a problem...

. . .
institute For
4 I S SOFTWARE
RESEARCH

<
I

10
Xy

z = 0;
while
X =
y =
z =

4

(y > -1) {

x/y;
y-1;

y = Xj
|
z = 0;
v| 2???
y > -1
l
x = x/y
l
y = y-1;
l
z = 5;
(c) 2016, Claire Le Goues (exif)

institute for
SOFTWARE
RESEARCH

WHAT IS THE INPUT STATE TO AN
INSTRUCTION THAT HAS A

PREDECESSOR WE HAVEN’T PROCESSED
YET?? (c) 2016, Claire Le Goues 6 gi%i{%

Example: interrupt checker

T

enabled disabled

\/

maybe-enabled

. . .
institute For
7 I S SOFTWARE
RESEARCH

Complete lattices

 The L value: bottom, the opposite of
top. VI, LUI=]

* Join function: always moves up.

®
institute for
(c) 2016, Claire Le Goues 8 I S SOFTWARE
RESEARCH

WHEN DO WE STOP?

®
institute for
(c) 2016, Claire Le Goues 9 I S SOFTWARE
RESEARCH

Termination intuition

* A fixed point of a function is a data value
v that a function maps to itself:

—flv) =v
e The flow function is the mathematical
function.

* The dataflow analysis state at each fix
point is the data values.

®
institute for
(c) 2016, Claire Le Goues 10 I S SOFTWARE
RESEARCH

Simple algorithm

1. for all node indexes 1 do

2. input[1i] = L

3. input[firstInstruction] = 1initial,
4. while not at fixed point

5. pick an instruction i

6. output = flow(i, i1nput[i])

7. for j in succs (1)

8. input[J] = input[j] U output

®
institute for
(c) 2016, Claire Le Goues 11 I S SOFTWARE
RESEARCH

Example of Worklist

o kb~

[a := 0]

[b := 0]

while [a < 2] do
[b:=a];
[a:=a+ 1]

[a := 0]

1.

0 N o U b
e e e e e

for all node indexes 1 do
input[i] = L
input[firstInstruction] =
initial,
while not at fixed point
pick an instruction i
output = flow(i, input[i])
for j in succs (1)
input[j] = input[j] L output

institute for
12 I S SOFTWARE
RESEARCH

Kildall’ s Worklist Algorithm

0 4 & U1 & W N -

11.
12.

worklist = new Set();
for all node indexes i do
input[i] = L 4
input[entry] = initial,;
worklist.add(all nodes);
while (!worklist.isEmpty()) do
1 = worklist.pop();
output = flow(input[i], 1i);
for j E€succ(i) do
if ! (output C input[j])
input = input[j] L output
worklist.add(j)

(c) 2016, Claire Le Goues

Note on line 5: it’s OK to just
add entry to worklist if the
flow functions cannot return
bottom, which is true for our
example but not generally.

institute for
13 I S SOFTWARE
RESEARCH

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

Every static analysis is necessarily incomplete or unsound or

undecidable (or multiple of these)
[]
institute for
O

WHAT DOES THAT MEAN, AND
ALSO, WHY?

Let’s translate. Anything
Interesting
"Any nontrivial property=e
language recognized by a Turing
machine is UM pnislalk

[]
institute for
16 I S SOFTWARE
RESEARCH

Why?Infinite loops.

| have a program, and it takes input.

That program is written in a reasonable
programming language, so it has loops.
One way a program with loops can go
horrifically awry is that it can loop infinitely.

It’s often hard to tell the difference between
a program that just takes a long time to
execute, and a program that’s stuck in an
infinite loop.

©
institute for
17 I S SOFTWARE
RESEARCH

Computability theory says...

* Halting problem: the problem of determining
whether a given program will halt/terminate on

a given input.
* A general algorithm that solves this problem is
impossible.

— More specifically: it’s undecidable (it’s possible to
get a yes answer, but not a no answer).

— (sometimes you can use heuristics, but solving it
generally for all programs is still out.)

 The proof here is very elegant. But trust me:
this problem is extremely impossible.

institute for
18 I S SOFTWARE
RESEARCH

OK, so?

If you could always statically tell if any
program had a non-trivial property (never
dereferences null, always releases all file
handles, etc, etc), you could also generally
solve the halting problem.

...but the halting problem is definitely
impossible.

So: no static analysis is perfect. They will
always have false positives or false negatives

(or both).
All tools make tradeoffs.

©

institute for

19 I S SOFTWARE
RESEARCH

Error Reported True positive
(correct analysis result)

No Error Reported False negative

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

False positive

True negative
(correct analysis result)

institute for
20 I S SOFTWARE
RESEARCH

Sound Analysis

institute for
21 | S SOFTWARE
RESEARCH

Soundness and precision

Rl

.A Program state covered in actual execution

- Program state covered by abstract
execution with analysis

unsound imprecise
(false negative) (false positive)

institute for
22 I S SOFTWARE
RESEARCH

Sound vs. Heuristic Analysis

* Heuristic Analysis
— FindBugs, checkstyle, ...

— Follow rules, approximate, avoid some checks
to reduce false positives

— May report false positives and false negatives

* Sound Static Analysis

— Type checking, Not-Null, ... (specific fault
classes)

— Sound abstraction, precise analysis to reduce
false positives

©
institute for
23 I S SOFTWARE
RESEARCH

Integer x = new Integer(6);

Null pointers

|

1.in
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.}

t foo() {
Integer x = new Integer(6);
Integer y = bar();
int z;
if (y I= null)
z = x.intVal() + y.intval();
} else {
z = x.intVal();
y = X;
X = null;
}

return z + x.intVal();

Integer y = bar();

int z;

if (y != null)

z = X.intval() +

y.intVal();

= null;

Pl
I

z = X.intVval();

return z + x.intVval();

24 I!;II

institute for
SOFTWARE
RESEARCH

What about that function call?

1. If you’'re worried about totally wacky
control flow (exceptions, longjumps), they
can be modeled in wackier/more
complicated control flow graphs.

2. lgnore it by assuming that all functions

return and tempering your claim:
“assuming the program terminates, the
analysis soundly computes...”

— Most people don’t bother; this is basically
assumed.

. . .
institute For
25 I S SOFTWARE
RESEARCH

File open/close

* Abstract domain: file open, file closed,
file maybe-open.

* Transfer and joins left as exercise to the
reader...

. . .
institute For
26 I S SOFTWARE
RESEARCH

1. public class StreamDemo {

2. public static void main(String[] args) throws Exception {
3. OutputStream os = null;

4. InputStream is = new FileInputStream("in.txt");
5. int i;

6. try {

7. os = new FileOutputStream("out.txt");

8. System.out.println("Copying in progress...");
9. while ((i = is.read()) != -1) {

10. os.write(i);

11. }

12. if (os != null) {

13. os.close();

14. }

15. } catch (IOException e) {

16. e.printStackTrace();

17. }

18. is.close();

19. }

20. }

institute for
27 I S SOFTWARE
RESEARCH

Design choices: representation and
abstract domain

* What if we don’t model the try/catch?

. .
institute for
28 I S SOFTWARE
RESEARCH

Entry

I

OutputStream os = null;

InputStream is = new ..
int 1i;

OS = new ..
System.out.println(”..”);

while ((i = is.read()) != -1)

os.write(i);

if (os != null)

/‘1

os.close();

\

is.close();

T []
- institute for
: 9 | S SOFTWARE
Exit RESEARCH

Design choices: representation and
abstract domain

* What if we don’t model the try/catch?
* |f we do...how should we include it?

. .
institute for
30 I S SOFTWARE
RESEARCH

Entry

I

int i;

OutputStream os = null;
InputStream is = new ..

Y

OS = new ..
System.out.println(“..”);
while ((i = is.read()) != -1)

I

os.write(i);

if (os != null)

/ﬂ

os.close();

\

e.printStackTrace();

is.close();

T

Exit

institute for
SOFTWARE
RESEARCH

Design choices: representation and
abstract domain

* What if we don’t model the try/catch?
* |f we do...how should we include it?
e ...what about non-IOExceptions?

* Broader question: How precisely should
we model semantics?

—E.g., Of instructions, of conditional checks,
etc.

. . .
institute For
32 I S SOFTWARE
RESEARCH

Upshot: analysis as approximation

* Analysis must approximate in practice
— False positives: may report errors where there are really none
— False negatives: may not report errors that really exist
— All analysis tools have either false negatives or false positives

* Approximation strategy
— Find a pattern P for correct code
* which is feasible to check (analysis terminates quickly),
* covers most correct code in practice (low false positives),
* which implies no errors (no false negatives)
* Analysis can be pretty good in practice
— Many tools have low false positive/negative rates

— A sound tool has no false negatives
* Never misses an error in a category that it checks

institute for
33 I S SOFTWARE
RESEARCH

Symbolic Execution

e Execute program with symbolic inputs.

y = read() y = a

y =2%*y y = 2*a

if (y == 12) |Successful path
fail() condition:

print("0OK") y = 2*a

* Used for verification, test generation.

. . .
institute For
34 I S SOFTWARE
RESEARCH

Symbolic Execution

* Exploring all paths
if (x<MAX) {
if (x>0)

else

} elge {
if (x>3)

L J
institute for
35 I S SOFTWARE
RESEARCH

Symbolic Execution: Limitations

* Path explosion
* Undecidable Path Constraints (a*B<10)

* Nontermination with unlimited loop
bounds (while (x<y))

Practical scalability today: ~10,000 lines of code

. . .
institute For
36 I S SOFTWARE
RESEARCH

Dynamic Symbolic Execution

* Mixing Concrete and Symbolic Values
e Unsound -> Test Case Generation

* Given Unsolvable Constraint or Loop
Bound: just guess one variable and

continue

a*B<10
a*2<10

°
institute for
37 I S SOFTWARE
RESEARCH

Automatic white-box test

generation

* Dynamic Symbolic
Execution to guide Fuzz
Testing

e Microsoft SAGE

— In production on Office,
Windows

— 200+ machines

— 3 B+ constraints

38

institute for
SOFTWARE
RESEARCH

The general procedure

e Start with random inputs.
e Execute the program.

— |dentify the paths/decisions/statements
covered by the test case.

— Collect path constraints corresponding to the
execution.

* Flip one of the constraints, ask a constraint
solver to give new inputs to force the
execution down a different path.

©
institute for
39 I S SOFTWARE
RESEARCH

Making things better: termination

e Secret weapon: define your abstraction such
that it is finite.

* If you come to a statement and you’ve already
explored a given state for that statement, stop.

— The analysis depends on the code and the current
state; continuing the analysis from this program
point and state would yield the same results.

* If the number of possible states isn’t finite,
you're stuck.

— Your analysis may not terminate.

 Common solution: cap the number of paths/
loop iterations to O, 1, or 2.

institute for
40 I S SOFTWARE
RESEARCH

Check out...

 PEX: Automated White Box Testing
for NET

—Technique out of Microsoft Research
— Extension to Visual Studio

* Pex4Fun: educational programming web

game based on PEX.

. . .
institute For
41 I S SOFTWARE
RESEARCH

Why do Static Analysis

problem has been detected and windows has been shut down to prevent damage
0 your computer.

he problem seems to be caused by the following file: SPCMDCON.SYS
PAGE_FAULT_IN_NONPAGED_AREA

[this is the first time you've seen this Stop error screen,
estart your computer. If this screen appears again, follow
hese steps:

heck to make sure any new hardware or software is properly installed.
[this is a new installation, ask your hardware or software manufacturer
or any Windows updates you might need.

[T problems continue, disable or remove any newly installed hardware
pr software. Disable BIOS memory options such as caching or shadowing.
[f you need to use Safe Mode to remove or disable components, restart
yOUur computer, press F8 to select Advanced Startup Options, and then
select safe mode.

echnical information:

¥ STOP: Ox00000050 (OxFD3094C2, 0x00000001, OXFBFE76EL17, 0x00000000)

“uw SPCMDCON. SYS - Address FBFE76Ll7 base at FBFES000, DateStamp 3déddé7c

Institute Fc-r
SOFTWARE
RESEARCH

Quality assurance at Microsoft

* Original process: manual code inspection
— Effective when system and team are small
— Too many paths to consider as system grew

Early 1990s: add massive system and unit testing

— Tests took weeks to run
e Diversity of platforms and configurations
e Sheer volume of tests

— Inefficient detection of common patterns, security holes

Non-local, intermittent, uncommon path bugs
Was treading water in Windows Vista development

Early 2000s: add static analysis

institute for
43 I S SOFTWARE
RESEARCH

Impact at Microsoft

« Thousands of bugs caught monthly

 Significant observed quality improvements
— e.g. buffer overruns latent in codebaes

* Widespread developer acceptance
— Check-in gates
— Writing specifications

©

institute for

44 I S SOFTWARE
RESEARCH

Tools: Compilers

* Type checking, proper initialization API,
correct APl usage

Program Compiler output
int add(int x,int y) { $> error: too few arguments to
return x+y; function ‘int add(int, int)’

}

void main () {
add (2) ;
}

 Compile at a high warning level
—$>gcc -Wall

institute for
45 I S SOFTWARE
RESEARCH

Tools: lint and splint

Lint was originally a static checker for C code

— Flagged suspicious and non-portable constructs in C
— Stronger checking than typical compiler

— Also uses embedded annotations

— Creates internal structures to analyze program state and detect
problematic arrangements

* Parse program and analyze state of variables, functions, etc.

Splint (Secure Programming Lint) is modern version of
lint

“Lint-like” or “Lint” tools now refers to any tool that flags
suspicious code usage.

Some companies run such checkers at checkin.
— (Ed note: except Apple, apparently??)

http://www.splint.org/ s

institute for
46 I S SOFTWARE
RESEARCH

Splint Example

Code (ex.c)

Splint output

int main() {

char c;
while (¢ '= 'x');
{

c = getchar()
if (¢ = 'x')
return 1;

}

return 0;

S> splint ex.c
Splint 3.1.1 --- 19 Jul 2006

ex.c:3:10: Variable c used before definition. An rvalue is used that

may not be initialized to a value on some execution path. (Use -
usedef to inhibit warning)

ex.c:3:10: Suspected infinite loop. No value used in loop test (c) is
modified by test or loop body. This appears to be an infinite loop.
Nothing in the body of the loop or the loop test modifies the
value of the loop test. Perhaps the specification of a function
called in the loop body is missing a modification. (Use -infloops to
inhibit warning)

ex.c:5:5: Assignment of int to char: ¢ = getchar()
To make char and int types equivalent, use +charint.

Splint is extendable

institute for
47 I S SOFTWARE
RESEARCH

Extending Splint to Analyze Taintedness

* Tainting marks data as
untrusted
— Tainted data originates

from the user/external
environment

— Mark (taint) data as
untrusted and analyze
program to determine
how/where it is used

 We can extend splint to
analyze taintedness at
compile time

http://www.splint.org/manual/html/sec10.html

Tainted character pointers

(attribute taintedness
context reference char *
oneof untainted, tainted
annotations Attribute

tainted reference ==> tainted i ent
untainted reference ==> untainted
ransfers
tainted as untainted ==> error “taint error...
merge

Associate taint attribute
with char* type

\ tainted + untainted ==> tainted

defaults
reference ==> tainted
)) Transfer rules
literal ==> untainted

null ==> untainted
end

Using the new definition in annotations

int printf (/*Quntainted@*/ char *fmt, ...);

institute for
48 I S SOFTWARE
RESEARCH

Learning goals

* Explain at a high level why static analyses
cannot be sound, complete, and terminating.

* Give an example of a technique to increase
precision, and assess tradeoffs in analysis
design.

* Understand symbolic execution and its

applicability, especially when combined with
dynamic techniques for test case generation.

e Characterize and choose between tools that
perform static analyses.

institute for
49 I S SOFTWARE
RESEARCH

