
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:	
Objects,	Design,	and	Concurrency

Version	control	with	git

Christian	Kästner Bogdan	Vasilescu

(Adapted from Christopher Parnin/NCSU & Prem
Devanbu/UC Davis & Kenneth Anderson/CU Boulder)

215-214

Part	1:
Design	at	a	Class	Level

Design	for	Change:
Information	Hiding,	

Contracts,	Design	Patterns,	
Unit	Testing

Design	for	Reuse:
Inheritance,	Delegation,	

Immutability,	LSP,	
Design	Patterns

Part	2:
Designing	(Sub)systems

Understanding	the	Problem

Responsibility	Assignment,	
Design	Patterns,	
GUI	vs	Core,

Design	Case	Studies

Testing	Subsystems

Design	for	Reuse	at	Scale:
Frameworks	and	APIs

Part	3:
Designing	Concurrent	

Systems

Concurrency	Primitives,
Synchronization

Designing	Abstractions	for	
Concurrency

Distributed	Systems	in	a	
Nutshell

Intro	to	Java

Git,	CI
Static	Analysis

GUIsUML
More	GitGUIs

Performance

Design

Config management

315-214

Administrivia

• Homework	6	due	tonight,	11:59	p.m.

• Final	exam	Thursday,	11	May,	1pm-4pm	in	
GHC	4401

• Review	session	in	Wednesday,	10	May,	
6pm-9pm	in	GHC	4401

415-214

The	Modern	World	

• Which Version?
• How to recreate?
• How to fix?
• Where to apply the fix?
• How/when to

Redistribute?

515-214

The	Modern	World	

Version
Control
+

Workflows

Build
Managers

Package
Managers

Deployment
Managers

+
VMs
+

Containers

App Markets
+

Update
Managers

615-214

Components	of	Modern	
Configuration	Management

Version	Control:	Branches/Forks/Workflow
Task	and	Build managers
Build machines,	virtual	environments	(dev	stacks)
Package managers
Containers,	VMs,	in	the	Cloud
Deployment	–Infrastructure	as	Code.	
Data migration

Other	issues:	orchestration,	inventory,	compliance

715-214

Task	and	Build	Managers
Analyze	dependencies,	and	efficiently	build	
(only)	what	needs	to	be	built	or	rebuilt.	

Tools:	make,	ivy,	ant, maven,	gradle,	…

815-214

Make	dependency	graph
• A	makefile can	be	modeled	as	a	dependency	graph.

The	make	algorithm	performs	a	traversal	over	the	graph.	
Each	node	is	checked	after	all	of	its	children,	and	the	actions	
are	run	if	any	child	has	a	timestamp	greater	than	its	parent	

915-214

Good	things	about	make

• Available	on	pretty	much	every	darn	platform.	
• Very	fast.	
• Fully	featured	programming	language	(but	weird)
• First	mover	advantage

1015-214

Bad	things	about	make
• Weird	syntax	(indent	is	tab,	NOT	space)
• Has	only	global	variables.	
• Where	shell	can	be	used,	and	where	make	commands?	
Weird.	

• No	standards	for	anything.	E.g.,:	recursion,	dependency	
analysis,	file	lists.

• No	“reuse”	or	inheritance	of	makefiles.	
• Not	portable	across	OS,	even	across	Unix	flavors.	
• Debugging?	Yeah,	good	luck	with	that.	
• Can’t	guarantee	consistency/reproducibility.	

1115-214

Ant

1215-214

Ant	vs	make

• Make	file	in	XML.	
• Replace	weird	indentations	with	weird	angle	brackets.	
• Replace	“variables”	with	<property	/>
• Replace	“targets”	with	<target	name=“jar”	/>
• Replace	“rules”	with	<target	name	=“jar”,	

depends=“init,	classes”	/>”
• Replace	“recipes	in	shell”	with	tasks.	

“<javac />”,	
“<mkdir />”,	
“<jar	/>”

1315-214

Ant’s	model
• Everything	is	a	Task		(sort	of)
– A	task	has	an	associated	XML	element	in	Ant	build	
files	and	an	associated	Java	class	that	implements	the	
task.

– The	XML	element	can	have	various	attributes	and	sub-
elements,	converted	into	parameters	and	passed	to	
the	Java	class.

– Build	file	called	build.xml by	convention
• First	task	executed	by	invoking	its	associated	Java	class	and	
passing	it	its	input	parameters	(if	any).

• What’s	the	difference	between	tasks	as	shell	
commands	vs	tasks	as	Java?

1415-214

Ant	Project	Format
• build.xml

• Project	Name
• Property	Values
• Paths
• Tasks
• Targets

1515-214

Construction	of	Ant	Build	Files

• The	default	name	for	a	Ant	build	file	is	build.xml

• The	xml	root	element	must	be	the	‘project’	element
– The	‘default’	attribute	of	the	project	element	is	required	and	
specifies	the	default	target	to	use

• Targets	contain	zero	or	more	AntTasks
– The	‘name’	attribute	is	required

• AntTasks are	the	smallest	units	of	the	build	process

1615-214

% ant
Buildfile: build.xml
hello: [echo] Hello, World
BUILD SUCCESSFUL
Total time: 2 seconds

Ant	Build	File	Example

<project default="hello">
<target name="hello">

<echo message="Hello, World"/>
</target>

</project>

Execution
of build file:

1715-214

Ant	Build	File	Example

<project default="hello">
<target name="hello">

<echo message="Hello, World"/>
</target>
<target name=”bye">

<echo message=”goodbye, World"/>
</target>

</project>

1815-214

Ant	Properties
• <property	name="lib.dir"	value="lib"/>
• From	command	line
• In	build.xml
• From	external	XML
• From	external	property	files
• From	environment

1915-214

Ant	Path,	Ant	Target/Task
<path id="classpath">

<fileset dir="${lib.dir}"
includes="**/*.jar"/>

</path>

<target name="compile">
<mkdir dir="${classes.dir}"/>
<javac srcdir="${src.dir}"

destdir="${classes.dir}"
classpathref="classpath"/>

</target>

2015-214

Ant	Target
• Name
• Description
• Dependencies
• Conditionals
• <antcall>	task

2115-214

Ant	Tasks
• Core	Tasks

• Optional	Tasks

• Custom	Tasks

2215-214

Dependencies

2315-214

• Version Compatibility?
• Tracking bug/security

fixes?
• Transitive

dependencies?
• Consistency?

2415-214

Imperfect	techniques	to	manage	
dependencies
• Placing	all	dependent	projects	(JAR	files)	in	a	
directory	that's	checked	into	the	project's	
version-control	repository.

• Allocating	dependent	JARs	to	a	common	file	
server

• Copying	JAR	files	manually	to	a	specific	location	
on	each	developer's	workstation.	

• Performing	an	HTTP	Get	to	download	files	to	a	
developer's	workstation,	either	manually	or	as	
part	of	the	automated	build.	

2515-214

Ivy

2615-214

Defining	dependencies	in	ivy.xml

• Note:	no	indication	of	file	locations	or	URLs
• Convention:	dependency name="cobertura"
rev="1.9" translates	to	cobertura-1.9.jar	

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="./config/ivy/ivy-
doc.xsl"?>
<ivy-module version="1.0">
<info organisation="com" module="integratebutton" />
<dependencies>
<dependency name="hsqldb" rev="1.8.0.7" />
<dependency name="pmd" rev="2.0" />
<dependency name="cobertura" rev="1.9"/>
<dependency name="checkstyle" rev="4.1" />
<dependency name="junitperf" rev="1.9.1" />
<dependency name="junit" rev="3.8.1" />

</dependencies>
</ivy-module>

2715-214

Specifying	dependencies	in	Ivy

• Note:	no	indication	of	file	locations	or	URLs
• Convention:	dependency name="cobertura"
rev="1.9" translates	to	cobertura-1.9.jar	

2815-214

Ivy	settings	file

2915-214

Depending	on	dependencies

3015-214

Use
ivy.xml
within an
ANT
build.xml

3115-214

Maven

3215-214

Main	Ideas	of	Maven

• “Convention	over	Configuration”
• DESCRIBE,	don’t	IMPLEMENT.
• Reuse	build	logic	&	standards	whenever	possible	
(mostly	done	as	“Maven	plugins”)

• Organize	dependencies	clearly,	logically,	aesthetically

3315-214

Main	Benefits	of	Maven

• Reuse	across	multiple	projects	on	the	same	platform.

• Smaller,	more	standardized,	reusable,	build	procedures.	

• Spend	less	time	on	Build,	more	time	Coding	Apps

3415-214

A	simple	Java	app	

• mvn archetype:generate -DgroupId=edu.cmu.cs -
DartifactId=hello -DarchetypeArtifactId=maven-
archetype-quickstart -DinteractiveMode=false
– What’s	in	the	directory	structure?	

• Mvn compile

• Run: java -cp target/classes edu.cmu.cs.App

• mvn clean

• Mvn test (see	test	results)
• Mvn package
• Java –cp target/*jar edu.cmu.cs.App

3515-214

Gradle

3615-214

Task-Based	Managers:	Gradle
• Combines	the	best	of	Ant	and	Maven
• From	Ant	keep:

• Portability:	Build	commands	described	platform-independently
• Flexibility:	Describe	almost	any	sequence	of	processing	steps

• …	but	drop:
• XML	as	build	language,	inability	to	express	simple	control	flow

• From	Maven	keep:
• Dependency	management
• Standard	directory	layouts	&	build	conventions	for	common	project	types

• …	but drop:
• XML,	inflexibility,	inability	to	express	simple	control	flow

3715-214

Summary

3815-214

What	every	build	system	must	do:
• Manage	dependencies	within-project.
• Manage	dependencies	for	outside	libraries.
• Maintain	consistency	and	versioning.
• Know	tasks	that	”complete”	the	dependencies.
• Deal	with	complex	directory	structures	and	many	types	of	files.
• Be	as	simple	as	possible,	but	no	simpler.

• How	do	each	of	the	build	systems	we	discussed	do	at	all	this?	

3915-214

Building	a	project	should	be	repeatable	
and	automated
• All	but	the	smallest	projects	have	a	nontrivial	
build	process	

• You	want	to	capture	and	automate	the	
knowledge	of	how	to	build	your	system,	ideally	in	
a	single	command	

• Build	scripts	are	code	(executable	specifications)	
that	need	to	be	managed	just	like	other	pieces	of	
code	

• Use	a	build	tool	to	script	building,	packaging,	
testing,	and	deploying	your	system	
– Most	IDEs	have	an	integrated	build	system	

4015-214

Versioning	entire	projects

4115-214

Which	files	to	manage

• All	code	and	noncode	files
– Java	code
– Build	scripts
– Documentation

• Exclude	generated	files	(.class,	…)
• Most	version	control	systems	have	a	
mechanism	to	exclude	files	(e.g.,	.gitignore)

4215-214

COLLABORATION

4315-214

Collaborating	on	Files

• How	to	exchange	files
– Send	changes	by	email
– Manual	synchronization	at	project	meeting
– All	files	on	shared	network	directory

• Permission	models
– Each	file	has	an	owner;	only	person	allowed	to	change	it
– Everybody	may	change	all	files	(collective	ownership)

4415-214

Concurrent	Modifications

• Allowing	concurrent	modifications	is	
challenging

• Conflicts	(accidental	overwriting)	may	occur
• Common	strategies
– Locking	to	change
– Detecting	conflicts	(optimistic	model)

4515-214

Change	Conflicts

source „Version Control with Subversion“

4615-214

Locking	Files Practical	problems	of	
locking	model?

4715-214

Locking	Problems

• How	to	lock?
– Central	system	vs	announcement	on	mailing	list
– Forgetting	to	unlock	common

• Unnecesary	sequentializing
– Cannot	work	on	different	concepts	in	same	file

• False	sense	of	security
– Changing	dependant	files	can	cause	conflicts	not	
prevented	by	locking

4815-214

Merging	(1/2)

4915-214

Merging	(2/2)

5015-214

Example

5115-214

Example

5215-214

Example

Einführung in die
Softwaretechnik 52System	cannot	decide	order

5315-214

3-way	merge
• File	changed	in	two	ways
– Overlapping	changes	->	conflicts
– Merge	combines	non-conflicting	changes	from	both

• Merging	not	always	automatic
– diff	tool	to	show	changes
– Manual	resolution	of	conflicts	during	merge	(potentially	
requires	additional	communication)

• Automatic	merge	potentially	dangerous	
->	syntactic	notion	of	conflicts

• Merging	of	binary	files	difficult
• In	practice:	most	merges	are	conflict	free

5415-214

BRANCHING

5515-214

Branching
• Parallel	copies	of	the	source	tree
• Can	be	changed	independently,	versioned	
separately,	and	merged	later	(or	left	separate)

• Often	used	for	exploratory	changes	or	to	isolate	
development	activities

• Many	usage	patterns,	common:
– Main	branch	for	maintenance	OR	main	development
– New	branches	for	experimental	features;	merge	when	
successful

– New	branches	for	nontrivial	maintenance	work
– Branches	for	maintenance	of	old	versions

5615-214

Release	management	with	branches

5715-214

Variants	and	Revisions
• Revision replaces	prior	revision	(temporal)
• Variant coexists	with	other	variants	
• Version describes	both
• Release:	Published	and	named	version

V1.0 V2.0 V3.0V1.1

Base system (Windows)

Extension for customer A

Extension for customer B

Linux variant

Server variant

X X X X
X X

X X
X X X

X

5815-214

Semantic	Versioning	for	Releases
• Given	a	version	number	MAJOR.MINOR.PATCH,	
increment	the:
– MAJOR	version	when	you	make	incompatible	API	
changes,

– MINOR	version	when	you	add	functionality	in	a	
backwards-compatible	manner,	and

– PATCH	version	when	you	make	backwards-compatible	
bug	fixes.

• Additional	labels	for	pre-release	and	build	
metadata	are	available	as	extensions	to	the	
MAJOR.MINOR.PATCH	format.

http://semver.org/

5915-214

Variants	and	Revisions

[Staples&Hill, APSEC’04]

6015-214

Managing	variants
• Branching	for	variants	does	not	scale	well
• Requires	special	planning	or	tooling

• Many	solutions
– Configuration	files
– OO	polymorphism
– Preprocessors
– Build	systems
– DSLs
– Software	product	
lines

– …

6115-214

CENTRALIZED VERSION	CONTROL	
(E.G.,	SVN)

6215-214

Classes	of	version	control	systems
• Systems	supporting	merging	and/or	locking
• Local	version	control
– Local	history	of	files:	SCCS	(1970s),	RCS	(1982)

• Central	version	control
– Versions	stored	on	central	master	server
– Clients	synchronize	with	server	(update,	commit)
– CVS	(1990),	SVN	(2004),	Perforce,	Visual	SourceSafe

• Distributed	version	control
– Many	repositories;	synchronization	among	
repositories	(push,	pull)

– Git	(2005),	Mercurial,	Bitkeeper,	ClearCase

6315-214

Centralized	Version	Control

Server
(all	versions)

Client
(version	5,
branch	M)

Client
(version	5,
branch	M)

Client
(revision	4,	
branch	B)

checkout/
update/
commit

access control

6415-214
Taentzer

Typical	work	cycle
• Once:	Create	local	workspace

– svn	checkout

• Update	workspace:	
– svn	update

• Perform	changes	in	workspace:
– svn	add	
– svn	delete	
– svn	copy	
– svn	move	

• Show	workspace	changes:
– svn	status
– svn	diff

• Revert	changes	in	workspace:	
– svn	revert

• Update	and	merge	conflicts:
– svn	update
– svn	resolved

• Push	workspace	changes	to	
server:
– svn	commit

6515-214

CVS	vs.	SVN

CVS SVN
• Improvement	over	RCS	in	

tracking	entire	directories
• Revision	number	per	file
• Text	files	(binary	files	

possible)

• Revision	numbers	for	
project

• Atomic	commits	(commiting	
multiple	files	at	once)

• Tracking	files	and	directories
• Support	renaming
• Tracking	of	Metadata

6615-214

DISTRIBUTED	VERSION	CONTROL	
(E.G.,	GIT)

6715-214

Git
• Distributed	version	control
• No	central	server	necessary	(but	possible)
• Local	copies	of	repositories	(containing	all	history)
– Locally	SVN	like	functionality:	checkout,	update,	commit,	
branch,	diff

• Nonlinear	development:	each	local	copy	can	evolve	
independently

• Synchronization	among	repositories	(push/fetch/pull)
• Fast	local	operations	(branch,	commit,	diff,	...)

6815-214

Overview

GH

M2 M1

clone, push, pull checkout / update

commit

M3

6915-214

Distributed	Versions
• Versions	not	globally	coordinated/sorted
• Unique	IDs	through	hashes,	relationships	tracked	in	successor	graph

– e.g.,	52a0ff44aba8599f43a5d821c421af316cb7305
– Possible	to	merge	select	changes	(cherry	picking)
– Possible	to	rewrite	the	history	as	long	as	not	shared	remotely	(git	

rebase	etc)
• Cloning	creates	copy	of	repository	(including	all	versions)

– Tracks	latest	state	when	cloned,	relevant	for	updating	and	merging
– Normal	checkout	and	commit	operations	locally
– Commits	don't	change	original	repository

• Fetch	and	pull	get	missing	versions	from	remote	repository	(one	or	
more)

• Push	operations	sends	local	changes	to	remote	repository	(one	or	
more),	given	access	rights

7015-214

Example	workflow

Linux

Linux

Kernel developer

clone / pull

checkout / update

commit
push

Linux

New developer

clone checkout

commit

edit

edit

pull & merge

7115-214

Pull	Requests

71

Linux

Linux

Kernel developer

clone / pull

checkout / update

commit
push

Linux

New developer

clone checkout

commit

edit

edit

pull & merge

Pull	request:	Github	feature	to	ask	developer	to	pull	a	specific	
change	(alternative	to	sending	email);	integration	with	Travis	CI

7215-214

Forks

72

Linux
(GH)

Linux
(local)

Kernel developer

clone / pull
checkout / update

commit

push

Linux
(local)

New developer

clone checkout

commit

edit

edit

pull & merge

Fork:	Github	feature	to	clone	repository	on	Github	(own	copy	
with	full	rights)

Linux
fork
(GH)

fork

push

pull & merge

7315-214

Forks

73

Linux
(GH)

Linux
(local)

Kernel developer

clone / pull
checkout / update

commit

push

Linux
(local)

New developer

clone checkout

commit

edit

edit

pull & merge

Fork:	Github	feature	to	clone	repository	on	Github	(own	copy	
with	full	rights)

Linux
fork
(GH)

fork

push

pull & merge

Caution:
Please	to	not	fork	214	repositories.

214	Collaboration	Policy:	"Here	are	some	examples	of	behavior	that	are	
inappropriate:	Making	your	work	publicly	available	in	a	way	that	other	
students	(current	or	future)	can	access	your	solutions,	even	if	others’	
access	is	accidental	or	incidental	to	your	goals."

7415-214

Repositories	in	mustache.js

7515-214

Git	History

7615-214

Git	and	Central	Repositories

76

© Scott Chacon “Pro Git”

7715-214

Social	Coding

7815-214

Git	Internals

© Scott Chacon “Pro Git”

7915-214

Git	Internals

© Scott Chacon “Pro Git”

8015-214

Git	Internals

© Scott Chacon “Pro Git”

8115-214

Git	Internals

© Scott Chacon “Pro Git”

8215-214

Summary

• Version	control	has	many	advantages
– History,	traceability,	versioning
– Collaborative	and	parallel	development

• Locking	vs.	merging	and	merge	conflicts
• Collaboration	with	branches
• From	local	to	central	to	distributed	version	
control

8315-214

Lessons	(reprise)
• Keep	it	simple
• Use	all	the	tools	you	know:
– A	good	IDE
– Static	analysis	tools	like	FindBugs
– Verification	tools	for	critical	code
– Unit	tests
– Assert	statements	for	known	invariants
– Code	review	for	all	code	intended	for	other	developers	
or	users

– Continuous	integration	testing	for	any	project	with	
multiple	developers

