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Introduction to networking and
distributed systems
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Administrivia

* HW 6 out tomorrow morning - concurrency
* No reading for next week (Carnival!)
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Layers of a network connection
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Internet addresses

For IP version 4 (IPv4), host address (IP address) is 4 bytes

— e.g.,216.58.217.78
— ~4 billion distinct addresses

* Hostnames mapped to host IP addresses via DNS

Port is a 16-bit number (0 — 65535), assigned conventionally
— e.g., port 80 is the standard port for web servers

For IP version 6 (IPv6), IP address is 16 bytes
— e.g.,3601:557:901:ecc0:1180:9217:a491:b6c2
— ~3 x 1038 possible addresses
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MAC Addresses

e 48-bit hardware-specific ID
— Associated with the Network Interface “Card” (NIC)

e Centrally administered
* Globally unique*

* |somorphism from host name to IP address to MAC address
— But don’t count on it!
— MAC address spoofing
— NAT
— etc.
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Packet-oriented and stream-oriented connections

e UDP: User Datagram Protocol
— Conectionless
— Discrete packets of data (datagrams)
— Unreliable (but usually pretty reliable)
— Does detect data corruption, via packet checksum

 TCP: Transmission Control Protocol
— Reliable data stream
— Session-oriented
— Ordered sequence of bytes
— Error-checked — a lot going on under the covers!
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What is a socket?

* An endpoint in a network connection
— Used to send and/or receive data

* Transport protocol: TCP or UDP (or Raw IP, but not in Java)

* Socket address: local IP address and port number
— And possibly remote address

* Sockets make network 1/0 feel like file 1/O
— Support read, write, open, and close operations
— Consistent with Unix philosophy “Everything’s a file.”
— History: first appeared In Berkeley (BSD) Unix in 1983

* Java model is a bit different from underlying Unix model
— Glosses over socket pairs
— Adds notion of server socket (factory pattern)
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TCP networking in Java — java.net

 |P Address — InetAddress
static InetAddress getByName(String host);
static InetAddress getByAddress(byte[] b);

 Ordinary socket — Socket
Socket(InetAddress addr, int port);
InputStream getInputStream();
OutputStream getOutputStream();
void close();

* Server socket — ServerSocket
ServerSocket(int port);

Socket accept();
void close();
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Crappy socket demo — chat program (1/2)

Main program — client and server

public static void main(String[] args) throws IOException {

Socket socket;

if (args.length == 2) { // We're the client
InetAddress host = InetAddress.getByName(args[0]);
int port = Integer.parselnt(args[1l]);
socket = new Socket(host, port);

} else { // We're the server
int port = Integer.parselnt(args[0]);
ServerSocket serverSocket = new ServerSocket(port);
socket = serverSocket.accept();

}

InputStream socketIn = socket.getInputStream();
new Thread(() -> copylLines(socketIn, System.out)).start();

copylLines(System.in, socket.getOutputStream());
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Crappy socket demo — chat program (2/2)

Utility function to copy lines from an input stream to an output stream

private static void copylLines(InputStream in, OutputStream out) {
BufferedReader reader =

new BufferedReader(new InputStreamReader(in));
PrintWriter writer = new PrintWriter(out, true);

// Read a line at a time from reader and copy to writer

try {
String line;
while ((line = reader.readlLine()) != null) {
writer.println(line);

}
} catch (IOException e) {

System.out.println("IO error: " + e);

}
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Serialization and Sending Objects

* TODO
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CRASH COURSE ON
DISTRIBUTED SYSTEMS
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What is a distributed system?

* Multiple system components (computers) communicating via
some medium (the network) to achieve some goal

e “Concurrent” (shared-memory multiprocessing) vs. Distributed

— Agents: Threads vs. Processes
* Processes typically spread across multiple computers
e Can put them on one computer for testing
— Communication: changes to Shared Objects vs. Network Messages

 (remember the Actor model)
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What is a distributed system?
Another definition

Received: by jumbo.dec.com (5.54.3/4.7.34) id AA@9105
Date: Thu, 28 May 87 12:23:29 PDT

From: lamport (Leslie Lamport)

Message-Id: <8705281923.AA09105@jumbo.dec.com>

To: src-t

Subject: distribution

There has been considerable debate over the years about what
constitutes a distributed system. It would appear that the
following definition has been adopted at SRC:

A distributed system is one in which the failure of a
computer you didn't even know existed can render your
own computer unusable.

[Remainder omitted]
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Why build a distributed system?

e Unlimited scaling
— Can be used for capacity or speed

* Geographical dispersion — people and data around the world
* Robustness to failures including physical catastrophes
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Challenges

e Scale

* Concurrency
 Geography

* Failures

* Heterogeneity
* Security
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Higher levels of abstraction

* Application-level communication protocols
— HTTP, HTTPS, FTP, etc.

* Frameworks for remote computation

— Remote Procedure Call (RPC)
— Java Remote Method Invocation (RMI)

Common distributed system architectures and primitives
— e.g., distributed consensus, transactions, replication

Complex computational frameworks
— e.g., distributed map-reduce
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Metrics of success

e Reliability — works well
— Often in terms of availability: fraction of time system is working
* 99.999% available is "5 nines of availability"
* Performance — works fast
— Low latency
— High throughput
e Scalability — adapts well to increased demand
— Ability to handle workload growth
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Types of failure behaviors

e Fail-stop

e Other halting failures

 Communication failures
— Send/receive omissions

— Network partitions
— Message corruption

* Data corruption
* Performance failures
— High packet loss rate

— Low throughput
— High latency

Byzantine failures
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Common bogus assumptions about failures

* Behavior of others is fail-stop

* Network is reliable

* Network messages are not corrupt
* Failures are independent

* Local datais not corrupt

* Failures are reliably detectable
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Some distributed system design principles

 The end-to-end principle

— When possible, implement functionality at the end nodes (rather than
middle nodes) of a distributed system

— Must confirm success at endpoints; little benefit in redundant work along
path

— Build reliable systems from unreliable parts
— Canonical example: TCP atop UDP

* The robustness principle (AKA Postel’s law)

— “Be conservative in what you send, be liberal in what you accept”

e Avoid single points of failure with redundancy
— Data replication
— Error detecting / correcting codes (e.g., checksums, Hamming codes)

* Balance load by sharding
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Summary

Network programming in Java is easy compared to C
— We've seen a simple TCP program
— UDP is equally easy

Distributed systems provide scalability and reliability

But they also provide complexity and headaches

Abstractions to reduce the complexity:
— Protocols — UDP, TCP, HTTP
— Computational primitives — RPC, transactions
— Computational frameworks — mapreduce
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