Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to networking and
distributed systems

Christian Kastner Bogdan Vasilescu

Computer Science

L J
institute for
I S SOFTWARE
RESEARCH

= institut
15-214 I | S [t

Administrivia

* HW 6 out tomorrow morning - concurrency
* No reading for next week (Carnival!)

ite for

= institL)
15-214 2 sormse

JAVA NETWORKING BASICS

- institute for
15-214 I | S [Fuvt

Layers of a network connection

=gy institute for
o) | SOFTWARE
RESEARCH

15-214 a

Internet addresses

For IP version 4 (IPv4), host address (IP address) is 4 bytes

— e.g.,216.58.217.78
— ~4 billion distinct addresses

* Hostnames mapped to host IP addresses via DNS

Port is a 16-bit number (0 — 65535), assigned conventionally
— e.g., port 80 is the standard port for web servers

For IP version 6 (IPv6), IP address is 16 bytes
— e.g.,3601:557:901:ecc0:1180:9217:a491:b6c2
— ~3 x 1038 possible addresses

ite for

= institL C
15-214 5 sorTinse

MAC Addresses

e 48-bit hardware-specific ID
— Associated with the Network Interface “Card” (NIC)

e Centrally administered
* Globally unique*

* |somorphism from host name to IP address to MAC address
— But don’t count on it!
— MAC address spoofing
— NAT
— etc.

ite for

= institL C
15-214 6 sorTinse

Packet-oriented and stream-oriented connections

e UDP: User Datagram Protocol
— Conectionless
— Discrete packets of data (datagrams)
— Unreliable (but usually pretty reliable)
— Does detect data corruption, via packet checksum

 TCP: Transmission Control Protocol
— Reliable data stream
— Session-oriented
— Ordered sequence of bytes
— Error-checked — a lot going on under the covers!

ite for

= institL C
15-214 7 sorTinse

What is a socket?

* An endpoint in a network connection
— Used to send and/or receive data

* Transport protocol: TCP or UDP (or Raw IP, but not in Java)

* Socket address: local IP address and port number
— And possibly remote address

* Sockets make network 1/0 feel like file 1/O
— Support read, write, open, and close operations
— Consistent with Unix philosophy “Everything’s a file.”
— History: first appeared In Berkeley (BSD) Unix in 1983

* Java model is a bit different from underlying Unix model
— Glosses over socket pairs
— Adds notion of server socket (factory pattern)

ite for

= institL C
15-214 8 sorTinse

TCP networking in Java — java.net

 |P Address — InetAddress
static InetAddress getByName(String host);
static InetAddress getByAddress(byte[] b);

 Ordinary socket — Socket
Socket(InetAddress addr, int port);
InputStream getInputStream();
OutputStream getOutputStream();
void close();

* Server socket — ServerSocket
ServerSocket(int port);

Socket accept();
void close();
15-214

te f

institute tor
9 I s r SOFTWARE
RESEARCH

Crappy socket demo — chat program (1/2)

Main program — client and server

public static void main(String[] args) throws IOException {

Socket socket;

if (args.length == 2) { // We're the client
InetAddress host = InetAddress.getByName(args[0]);
int port = Integer.parselnt(args[1l]);
socket = new Socket(host, port);

} else { // We're the server
int port = Integer.parselnt(args[0]);
ServerSocket serverSocket = new ServerSocket(port);
socket = serverSocket.accept();

}

InputStream socketIn = socket.getInputStream();
new Thread(() -> copylLines(socketIn, System.out)).start();

copylLines(System.in, socket.getOutputStream());

ite for

= institL
15-214 10 sormse

Crappy socket demo — chat program (2/2)

Utility function to copy lines from an input stream to an output stream

private static void copylLines(InputStream in, OutputStream out) {
BufferedReader reader =

new BufferedReader(new InputStreamReader(in));
PrintWriter writer = new PrintWriter(out, true);

// Read a line at a time from reader and copy to writer

try {
String line;
while ((line = reader.readlLine()) != null) {
writer.println(line);

}
} catch (IOException e) {

System.out.println("IO error: " + e);

}

= institute for
15-214 11

Serialization and Sending Objects

* TODO

te for

= institute
15-214 12 sormse

CRASH COURSE ON
DISTRIBUTED SYSTEMS

- institute for
15-214 13 AN s

What is a distributed system?

* Multiple system components (computers) communicating via
some medium (the network) to achieve some goal

e “Concurrent” (shared-memory multiprocessing) vs. Distributed

— Agents: Threads vs. Processes
* Processes typically spread across multiple computers
e Can put them on one computer for testing
— Communication: changes to Shared Objects vs. Network Messages

 (remember the Actor model)

institute for

15-214 14 [BYN sormase

What is a distributed system?
Another definition

Received: by jumbo.dec.com (5.54.3/4.7.34) id AA@9105
Date: Thu, 28 May 87 12:23:29 PDT

From: lamport (Leslie Lamport)

Message-Id: <8705281923.AA09105@jumbo.dec.com>

To: src-t

Subject: distribution

There has been considerable debate over the years about what
constitutes a distributed system. It would appear that the
following definition has been adopted at SRC:

A distributed system is one in which the failure of a
computer you didn't even know existed can render your
own computer unusable.

[Remainder omitted]

ite for

= institL C
15-214 15 sorTinse

Why build a distributed system?

e Unlimited scaling
— Can be used for capacity or speed

* Geographical dispersion — people and data around the world
* Robustness to failures including physical catastrophes

ite for

= institL C
15-214 16 sorTinse

Challenges

e Scale

* Concurrency
 Geography

* Failures

* Heterogeneity
* Security

ite for

= institL)
15-214 17 sormse

Higher levels of abstraction

* Application-level communication protocols
— HTTP, HTTPS, FTP, etc.

* Frameworks for remote computation

— Remote Procedure Call (RPC)
— Java Remote Method Invocation (RMI)

Common distributed system architectures and primitives
— e.g., distributed consensus, transactions, replication

Complex computational frameworks
— e.g., distributed map-reduce

- institute for
15-214 18 s

Metrics of success

e Reliability — works well
— Often in terms of availability: fraction of time system is working
* 99.999% available is "5 nines of availability"
* Performance — works fast
— Low latency
— High throughput
e Scalability — adapts well to increased demand
— Ability to handle workload growth

- institute for
15-214 19

.' PowerPoint File Edit

View

Committed revision 2034.

erebus$ vim todo.txt

erebus$ svn up
Updating '."':

svn: E210002: Unable to ¢ ¢
ri.cmu.edu/usr@/home/char L

svn: E210002: To better
'ssh' in the [tunnels] s
svn: E210002: Network con

erebus$ svn up

& Home Themes Tabl

Slides
L+

v

New Slide

=Y

Insert

Format Arrange Tools Slide Show Window # Help N5 & O 3 2« 100% (= Tue 11:38 AM

etc — bash — 80x24 26-distributed-systems — bash — 80x24

806

A Home Themes Tables Charts SmartArt Transitions Animations Slide Show » A B
Slides

v =

code-draft/ concurrency.pptx svn-commit.tmp
concurrency-whole.pptx concurrency2.pdf
!

Arahiind anan /10 srancureanculsancurerancy nn +v

distributed-systems1.pptx

Ho | = gl v v 0og v (v reh in Dracantationr
| i &Y H lg.‘) B = L% 42% *) Q~ (Search in Presentation Juted-systems/

toncurrency4.pptx
Font Paragraph Insert

v AZ v S

=" (il m ributed-systems

| New Slide =7 ‘[L‘J' E' Arrang

You need to restart your computer. Hold down the Power
button for several seconds or press the Restart button.

Veuillez redémarrer votre ordinateur. Maintenez la touche
de démarrage enfoncée pendant plusieurs secondes ou bien
appuyez sur le bouton de réinitialisation.

Sie mussen lhren Computer neu starten. Halten Sie dazu
die Einschalttaste einige Sekunden gedruckt oder driicken
Sie die Neustart-Taste.

AVE1—7=BENT SUENBDET, /NT—RI V%
BUMBLEDS . VEYRRIZZHLTIEZ W,

dvl=# \q

, could not save history to file "/afs/cs/usr/charlie/.psql_history": Permission d
enied

transit$ logout

Connection to transit.apt.ri closed.

garrod-dell$ logout

Connection to garrod.isri.cmu.edu closed.

erebus$

Charles Garrod Q =

Screen Shot
2012..2 AM

Screen Shot
2012...5 AM

Types of failure behaviors

e Fail-stop

e Other halting failures

 Communication failures
— Send/receive omissions

— Network partitions
— Message corruption

* Data corruption
* Performance failures
— High packet loss rate

— Low throughput
— High latency

Byzantine failures

ite for

= institL C
15-214 21 sorTinse

Common bogus assumptions about failures

* Behavior of others is fail-stop

* Network is reliable

* Network messages are not corrupt
* Failures are independent

* Local datais not corrupt

* Failures are reliably detectable

ite for

= institL C
15-214 22 sorTinse

Some distributed system design principles

 The end-to-end principle

— When possible, implement functionality at the end nodes (rather than
middle nodes) of a distributed system

— Must confirm success at endpoints; little benefit in redundant work along
path

— Build reliable systems from unreliable parts
— Canonical example: TCP atop UDP

* The robustness principle (AKA Postel’s law)

— “Be conservative in what you send, be liberal in what you accept”

e Avoid single points of failure with redundancy
— Data replication
— Error detecting / correcting codes (e.g., checksums, Hamming codes)

* Balance load by sharding

ite for

= institL C
15-214 23 sorTinse

Summary

Network programming in Java is easy compared to C
— We've seen a simple TCP program
— UDP is equally easy

Distributed systems provide scalability and reliability

But they also provide complexity and headaches

Abstractions to reduce the complexity:
— Protocols — UDP, TCP, HTTP
— Computational primitives — RPC, transactions
— Computational frameworks — mapreduce

ite for

= institL C
15-214 25 sorTinse

