
1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to networking and
distributed systems

Christian Kästner Bogdan Vasilescu

2 15-214

Administrivia

• HW 6 out tomorrow morning - concurrency

• No reading for next week (Carnival!)

3 15-214

JAVA NETWORKING BASICS

4 15-214

Layers of a network connection

IP

TCP | UDP | …

HTTP | FTP | …

HTML | Text | JPG | GIF | PDF | …

data link layer

physical layer

5 15-214

Internet addresses

• For IP version 4 (IPv4), host address (IP address) is 4 bytes
– e.g., 216.58.217.78

– ~4 billion distinct addresses

• Hostnames mapped to host IP addresses via DNS

• Port is a 16-bit number (0 – 65535), assigned conventionally
– e.g., port 80 is the standard port for web servers

• For IP version 6 (IPv6), IP address is 16 bytes
– e.g., 3601:557:901:ecc0:1180:9217:a491:b6c2

– ~3 × 1038 possible addresses

6 15-214

MAC Addresses

• 48-bit hardware-specific ID
– Associated with the Network Interface “Card” (NIC)

• Centrally administered

• Globally unique*

• Isomorphism from host name to IP address to MAC address
– But don’t count on it!

– MAC address spoofing

– NAT

– etc.

7 15-214

Packet-oriented and stream-oriented connections

• UDP: User Datagram Protocol
– Conectionless

– Discrete packets of data (datagrams)

– Unreliable (but usually pretty reliable)

– Does detect data corruption, via packet checksum

• TCP: Transmission Control Protocol
– Reliable data stream

– Session-oriented

– Ordered sequence of bytes

– Error-checked – a lot going on under the covers!

8 15-214

What is a socket?

• An endpoint in a network connection
– Used to send and/or receive data

• Transport protocol: TCP or UDP (or Raw IP, but not in Java)

• Socket address: local IP address and port number
– And possibly remote address

• Sockets make network I/O feel like file I/O
– Support read, write, open, and close operations

– Consistent with Unix philosophy “Everything’s a file.”

– History: first appeared In Berkeley (BSD) Unix in 1983

• Java model is a bit different from underlying Unix model
– Glosses over socket pairs

– Adds notion of server socket (factory pattern)

9 15-214

TCP networking in Java – java.net

• IP Address – InetAddress
static InetAddress getByName(String host);

static InetAddress getByAddress(byte[] b);

• Ordinary socket – Socket
Socket(InetAddress addr, int port);

InputStream getInputStream();

OutputStream getOutputStream();

void close();

• Server socket – ServerSocket
ServerSocket(int port);

Socket accept();

void close();

…

10 15-214

Crappy socket demo – chat program (1/2)
Main program – client and server

public static void main(String[] args) throws IOException {

 Socket socket;

 if (args.length == 2) { // We're the client

 InetAddress host = InetAddress.getByName(args[0]);

 int port = Integer.parseInt(args[1]);

 socket = new Socket(host, port);

 } else { // We're the server

 int port = Integer.parseInt(args[0]);

 ServerSocket serverSocket = new ServerSocket(port);

 socket = serverSocket.accept();

 }

 InputStream socketIn = socket.getInputStream();

 new Thread(() -> copyLines(socketIn, System.out)).start();

 copyLines(System.in, socket.getOutputStream());

}

11 15-214

Crappy socket demo – chat program (2/2)
Utility function to copy lines from an input stream to an output stream

private static void copyLines(InputStream in, OutputStream out) {

 BufferedReader reader =

 new BufferedReader(new InputStreamReader(in));

 PrintWriter writer = new PrintWriter(out, true);

 // Read a line at a time from reader and copy to writer

 try {

 String line;

 while ((line = reader.readLine()) != null) {

 writer.println(line);

 }

 } catch (IOException e) {

 System.out.println("IO error: " + e);

 }

}

12 15-214

Serialization and Sending Objects

• TODO

13 15-214

CRASH COURSE ON
DISTRIBUTED SYSTEMS

14 15-214

What is a distributed system?

• Multiple system components (computers) communicating via
some medium (the network) to achieve some goal

• “Concurrent” (shared-memory multiprocessing) vs. Distributed
– Agents: Threads vs. Processes

• Processes typically spread across multiple computers

• Can put them on one computer for testing

– Communication: changes to Shared Objects vs. Network Messages

• (remember the Actor model)

15 15-214

What is a distributed system?
Another definition

Received: by jumbo.dec.com (5.54.3/4.7.34) id AA09105
Date: Thu, 28 May 87 12:23:29 PDT
From: lamport (Leslie Lamport)
Message-Id: <8705281923.AA09105@jumbo.dec.com>
To: src-t
Subject: distribution

There has been considerable debate over the years about what
constitutes a distributed system. It would appear that the
following definition has been adopted at SRC:

A distributed system is one in which the failure of a
computer you didn't even know existed can render your
own computer unusable.

[Remainder omitted]

16 15-214

Why build a distributed system?

• Unlimited scaling
– Can be used for capacity or speed

• Geographical dispersion – people and data around the world

• Robustness to failures including physical catastrophes

17 15-214

Challenges

• Scale

• Concurrency

• Geography

• Failures

• Heterogeneity

• Security

18 15-214

Higher levels of abstraction

• Application-level communication protocols
– HTTP, HTTPS, FTP, etc.

• Frameworks for remote computation
– Remote Procedure Call (RPC)

– Java Remote Method Invocation (RMI)

• Common distributed system architectures and primitives
– e.g., distributed consensus, transactions, replication

• Complex computational frameworks
– e.g., distributed map-reduce

19 15-214

Metrics of success

• Reliability – works well
– Often in terms of availability: fraction of time system is working

• 99.999% available is "5 nines of availability"

• Performance – works fast
– Low latency

– High throughput

• Scalability – adapts well to increased demand
– Ability to handle workload growth

20 15-214

21 15-214

Types of failure behaviors

• Fail-stop

• Other halting failures

• Communication failures
– Send/receive omissions

– Network partitions

– Message corruption

• Data corruption

• Performance failures
– High packet loss rate

– Low throughput

– High latency

• Byzantine failures

22 15-214

Common bogus assumptions about failures

• Behavior of others is fail-stop

• Network is reliable

• Network messages are not corrupt

• Failures are independent

• Local data is not corrupt

• Failures are reliably detectable

23 15-214

Some distributed system design principles

• The end-to-end principle
– When possible, implement functionality at the end nodes (rather than

middle nodes) of a distributed system

– Must confirm success at endpoints; little benefit in redundant work along
path

– Build reliable systems from unreliable parts

– Canonical example: TCP atop UDP

• The robustness principle (AKA Postel’s law)
– “Be conservative in what you send, be liberal in what you accept”

• Avoid single points of failure with redundancy
– Data replication

– Error detecting / correcting codes (e.g., checksums, Hamming codes)

• Balance load by sharding

25 15-214

Summary

• Network programming in Java is easy compared to C
– We’ve seen a simple TCP program

– UDP is equally easy

• Distributed systems provide scalability and reliability

• But they also provide complexity and headaches

• Abstractions to reduce the complexity:
– Protocols – UDP, TCP, HTTP

– Computational primitives – RPC, transactions

– Computational frameworks – mapreduce

