
115-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency:
More Design Tradeoffs

Christian Kästner Bogdan Vasilescu

215-214

315-214

So far on concurrency

• Primitives (synchronized, wait/notify, …)
• Safety

– immutable vs thread-local vs synchronized
– fine-grained vs coarse-grained, safe vs guarded
– documentation

• Concurrent libraries
• Structuring applications

– Producer-Consumer, Fork-Join, Membrane, Thread
Pool

– Executor Service framework

415-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Design Patterns,
Unit Testing

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Distributed Systems in a
Nutshell

Intro to Java

Git, CI
Static Analysis

GUIsUML More Git

GUIs
Performance

Design

515-214

Learning Goals

• Apply executor services for parallelizing a task

• Understand real-world tradeoffs of concurrent
computing

• Understand the abstractions of the Actor
model to concurrency and its tradeoffs

• Pick the right abstractions for the task at hand

615-214

PUTTING THE PIECES TOGETHER:
PARALLELIZING PREFIXSUM

715-214

815-214

Vocabulary

• Work: Total number of computation steps

• Depth: Longest sequence of sequential computation
steps

• Breadth: extent of simultaneous activity

ti
m

e

parallelism

What are the typical goals in parallel algorithm design?

915-214

Amdahl’s law: How good can the depth get?

• Ideal parallelism with N processors:
– Speedup = N

• In reality, some work is always
inherently sequential
– Let F be the portion of the total
task time that is inherently
sequential

– Speedup =

– Suppose F = 10%. What is the max speedup? (you choose N)
• As N approaches ∞, 1/(0.1 + 0.9/N) approaches 10.

1015-214

Using Amdahl’s law as a design guide

• For a given algorithm, suppose
– N processors
– Problem size M

– Sequential portion F

• An obvious question:
– What happens to speedup as N scales?

• A less obvious, important question:
– What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore’s Law; from now on, it
will be driven by Amdahl’s Law."

— Doron Rajwan, Intel Corp

1115-214

Concurrency at the language level

• Consider:
Collection<Integer> collection = …;

int sum = 0;

for (int i : collection) {

sum += i;

}

• In python:
collection = …

sum = 0

for item in collection:

sum += item

1215-214

Parallel quicksort in Nesl

function quicksort(a) =
if (#a < 2) then a
else
let pivot = a[#a/2];

lesser = {e in a| e < pivot};
equal = {e in a| e == pivot};
greater = {e in a| e > pivot};
result = {quicksort(v): v in [lesser,greater]};

in result[0] ++ equal ++ result[1];
• Operations in {} occur in parallel
• 210-esque questions: What is total work? What is depth?

1315-214

Prefix sums (a.k.a. inclusive scan, a.k.a.
scan)

• Goal: given array x[0…n-1], compute array of the
sum of each prefix of x

[sum(x[0…0]),

sum(x[0…1]),

sum(x[0…2]),

…

sum(x[0…n-1])]

• e.g., x = [13, 9, -4, 19, -6, 2, 6, 3]

• prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]

1415-214

Parallel prefix sums

• Intuition: If we have already computed the
partial sums sum(x[0…3]) and sum(x[4…7]),
then we can easily
compute sum(x[0…7])

• e.g., x = [13, 9, -4, 19, -6, 2, 6, 3]

1515-214

Parallel prefix sums algorithm,
upsweep

• Compute the partial sums in a more useful
manner

• [13, 9, -4, 19, -6, 2, 6, 3]

• [13, 22, -4, 15, -6, -4, 6, 9]

1615-214

Parallel prefix sums algorithm,
upsweep

• Compute the partial sums in a more useful
manner

• [13, 9, -4, 19, -6, 2, 6, 3]

• [13, 22, -4, 15, -6, -4, 6, 9]

• [13, 22, -4, 37, -6, -4, 6, 5]

1715-214

Parallel prefix sums algorithm,
upsweep

• Compute the partial sums in a more useful
manner

• [13, 9, -4, 19, -6, 2, 6, 3]

• [13, 22, -4, 15, -6, -4, 6, 9]

• [13, 22, -4, 37, -6, -4, 6, 5]

• [13, 22, -4, 37, -6, -4, 6, 42]

1815-214

Parallel prefix sums algorithm,
downsweep

• Now unwind to calculate the other sums

• [13, 22, -4, 37, -6, -4, 6, 42]

• [13, 22, -4, 37, -6, 33, 6, 42]

1915-214

Parallel prefix sums algorithm,
downsweep

• Now unwinds to calculate the other sums

• [13, 22, -4, 37, -6, -4, 6, 42]

• [13, 22, -4, 37, -6, 33, 6, 42]

• [13, 22, 18, 37, 31, 33, 39, 42]

• Recall, we started with:
[13, 9, -4, 19, -6, 2, 6, 3]

2015-214

Doubling array size adds two more
levels

Upsweep

Downsweep

2115-214

Parallel prefix sums

pseudocode:

// Upsweep
prefix_sums(x):

for d in 0 to (lg n)-1: // d is depth
parallelfor i in 2d-1 to n-1, by 2d+1:

x[i+2d] = x[i] + x[i+2d]

// Downsweep
for d in (lg n)-1 to 0:

parallelfor i in 2d-1 to n-1-2d, by 2d+1:
if (i-2d >= 0):

x[i] = x[i] + x[i-2d]

2215-214

Parallel prefix sums algorithm, in code

• An iterative Java-esque implementation:
void iterativePrefixSums(long[] a) {

int gap = 1;
for (; gap < a.length; gap *= 2) {

parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];

}
}
for (; gap > 0; gap /= 2) {

parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);

}
}

2315-214

Parallel prefix sums algorithm, in code

• A recursive Java-esque implementation:
void recursivePrefixSums(long[] a, int gap) {

if (2*gap – 1 >= a.length) {
return;

}

parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];

}

recursivePrefixSums(a, gap*2);

parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);

}
}

2415-214

Parallel prefix sums algorithm

• How good is this?

2515-214

Parallel prefix sums algorithm

• How good is this?

– Work: O(n)

– Depth: O(lg n)

• See PrefixSums.java,
PrefixSumsSequentialWithParallelWork.java

2615-214

Goal: parallelize the PrefixSums
implementation

• Specifically, parallelize the parallelizable loops
parfor(int i = gap-1; i+gap < a.length; i += 2*gap) {

a[i+gap] = a[i] + a[i+gap];

}

• Partition into multiple segments, run in
different threads
for(int i = left+gap-1; i+gap < right; i += 2*gap) {

a[i+gap] = a[i] + a[i+gap];

}

2715-214

Recall the Java primitive concurrency
tools

• The java.lang.Runnable interface
– void run();

• The java.lang.Thread class
– Thread(Runnable r);

– void start();

– static void sleep(long millis);

– void join();

– boolean isAlive();

– static Thread currentThread();

2815-214

Recall the Java primitive concurrency
tools
• The java.lang.Runnable interface

– void run();

• The java.lang.Thread class
– Thread(Runnable r);
– void start();
– static void sleep(long millis);
– void join();
– boolean isAlive();
– static Thread currentThread();

• The java.util.concurrent.Callable<V> interface
– Like java.lang.Runnable but can return a value
– V call();

2915-214

A framework for asynchronous
computation

• The java.util.concurrent.Future<V> interface

– V get();

– V get(long timeout, TimeUnit unit);

– boolean isDone();

– boolean cancel(boolean mayInterruptIfRunning);

– boolean isCancelled();

3015-214

A framework for asynchronous
computation
• The java.util.concurrent.Future<V> interface:

– V get();
– V get(long timeout, TimeUnit unit);
– boolean isDone();
– boolean cancel(boolean mayInterruptIfRunning);
– boolean isCancelled();

• The java.util.concurrent.ExecutorService interface:
– Future<?> submit(Runnable task);
– Future<V> submit(Callable<V> task);
– List<Future<V>>
– invokeAll(Collection<? extends Callable<V>> tasks);
– Future<V>
– invokeAny(Collection<? extends Callable<V>> tasks);
– void shutdown();

3115-214

Executors for common computational
patterns

• From the java.util.concurrent.Executors class

– static ExecutorService newSingleThreadExecutor();

– static ExecutorService newFixedThreadPool(int n);

– static ExecutorService newCachedThreadPool();

– static ExecutorService
newScheduledThreadPool(int n);

3215-214

Fork/Join: another common
computational pattern

• In a long computation:

– Fork a thread (or more) to do some work

– Join the thread(s) to obtain the result of the work

3315-214

Fork/Join: another common
computational pattern

• In a long computation:
– Fork a thread (or more) to do some work

– Join the thread(s) to obtain the result of the work

• The java.util.concurrent.ForkJoinPool class
– Implements ExecutorService

– Executes
java.util.concurrent.ForkJoinTask<V> or

java.util.concurrent.RecursiveTask<V> or
java.util.concurrent.RecursiveAction

3415-214

The RecursiveAction abstract class

– public class MyActionFoo extends RecursiveAction {
– public MyActionFoo(…) {
– store the data fields we need
– }

– @Override
– public void compute() {
– if (the task is small) {
– do the work here;
– return;
– }

– invokeAll(new MyActionFoo(…), // smaller
– new MyActionFoo(…), // tasks
– …); // …
– }
– }

3515-214

A ForkJoin example

• See PrefixSumsParallelForkJoin.java

• See the processor go, go go!

3615-214

Parallel prefix sums algorithm

• How good is this?

– Work: O(n)

– Depth: O(lg n)

• See PrefixSumsParallelArrays.java

3715-214

Parallel prefix sums algorithm

• How good is this?

– Work: O(n)

– Depth: O(lg n)

• See PrefixSumsParallelArrays.java

• See PrefixSumsSequential.java

3815-214

Parallel prefix sums algorithm

• How good is this?
– Work: O(n)
– Depth: O(lg n)

• See PrefixSumsParallelArrays.java
• See PrefixSumsSequential.java

– n-1 additions
– Memory access is sequential

• For PrefixSumsSequentialWithParallelWork.java
– About 2n useful additions, plus extra additions for the loop indexes
– Memory access is non-sequential

• The punchline:
– Don't roll your own
– Cache and constants matter

3915-214

THE ACTOR MODEL

4015-214

Concurrency Challenges

• Java’s shared-memory model “is unnatural for
developers”, error-prone & unscalable

• Requires careful tracking of how state is
shared and how it is synchronized

• Faults difficult to detect

4115-214

The Actor Model

• Actors: independent concurrent entities,
communicating over asynchronous message
passing

• Local mutable state; no synchronization required
(think thread-confined state)

• No shared state (“shared nothing”, think
processes, not threads)

• Message queue for incoming messages; one
message processed at a time

• Messages contain only pure values, no references
(“call by value”)

4215-214

Actors – Mental Model

• People communicating over email

• May send email; reply later by another email

• Read and process one email at a time without
multitasking

• People have memory but cannot access each
other’s memories

4315-214

4415-214

public class MyActor extends AbstractActor {
private final LoggingAdapter log =

Logging.getLogger(context().system(), this);

public MyActor() {
receive(ReceiveBuilder.
match(String.class, s -> {
log.info("Received String message: {}", s);

}).
matchAny(o -> log.info("received unknown message")).build()

);
}

}

Akka Example

4515-214

public class DemoMessagesActor extends AbstractLoggingActor {
static public class Greeting {
private final String from;
public Greeting(String from) { this.from = from; }
public String getGreeter() { return from; }

}
DemoMessagesActor() {
receive(ReceiveBuilder.
match(Greeting.class, g -> {
log().info("I was greeted by {}", g.getGreeter());

}).build()
);

};
}

Akka Example

4615-214

Akka sending messages

• tell(): “fire-and-forget”, e.g. send a message
asynchronously and return immediately.

• ask(): sends a message asynchronously and
returns a Future representing a possible reply.

try {
String result = operation();
sender().tell(result, self());

} catch (Exception e) {
sender().tell(new akka.actor.Status.Failure(e), self());
throw e;

}

4715-214

Actor Frameworks

• Actors are simple, but frameworks can provide
much shared functionality

• Transparent distributed computations on one
or multiple machines

• Fair scheduling, error recovery, load balancing
and scaling (horizontal and vertical)

• Abstractions for common tasks, synchronous
messages

4815-214

Fault Tolerance with Actors

• “let it crash” philosophy

supervisor

actor actor actor

4915-214

Actor model – Properties

• Encapsulation

• Fair scheduling

• Location transparency

• Locality of reference

• Transparent migration

• Failure isolation

5015-214

Build your own actor framework

• One thread per actor

• Producer-consumer pattern with queue for incoming
messages

• Thread-local state for each actor

• Actors communicate only with queues not with other actors

• Only add immutable objects as parameters to messages or
use defensive copying

• Write own request-reply mechanism (include unique ID in
message and reply, wrap in future or use wait/notify)

As usual: don’t build your own, but use one built
by experts

5115-214

Actors in Java

• Many frameworks

• No built-in language support

• State encapsulation, call-by-value etc often
just conventions, not enforced (easy to cheat,
easy to make mistakes)

5215-214

Design Discussion

• Shared memory (Java default) vs shared
nothing (Actors)
– performance vs simplicity, robustness

– some functionality delegated to frameworks (eg.,
akka, executor services)

• Gateway to distributed systems and remote
procedure calls
– Includes distributed system problems (lost

messages, timing issues, …)

5315-214

DESIGN DISCUSSIONS:
WHY ARE GUIS SINGLE THREADED?

5415-214

Concurrency and GUIs

• Earliest GUIs were programmed from main
thread

• Modern GUI frameworks have single event
dispatch thread

• Why not more concurrency, e.g., thread per
button event?

5515-214

Coarse-grained concurrency in GUIs

• Fine-grained concurrency is difficult to get right.
Lots of deadlock and race problems in attempts

• Difficult to decide what to lock and when
• Environment-driven events (e.g., button clicked)

and application-driven actions (update screen
with computation results) interact at runtime

• Model-view-controller: Who interacts with whom
and who holds the locks?

• Framework would expose all locking details to
users

5615-214

Single-threaded GUI

• Assumption: Thread confinement

• No locking required, since all access from
event dispatch thread

• Pushes burden to developers to perform all
actions on that event thread (i.e., GUI objects
are confined to event dispatch thread)

5715-214

Summary

• Apply concurrent design patterns for
parallelizing computations

• Be mindful of real overhead of concurrent
computations

• The Actor Model provides an alternative
approach to Java’s shared memory model
– Many tradeoffs, including performance and

simplicity and robustness

– Mostly retrofitted on JVM

5815-214

Recommended Readings

• Goetz et al. Java Concurrency In Practice.
Pearson Education, 2006

• Karmani, Rajesh K., Amin Shali, and Gul Agha.
"Actor frameworks for the JVM platform: a
comparative analysis." Proceedings of the 7th
International Conference on Principles and
Practice of Programming in Java. ACM, 2009.

