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So far on concurrency

• Primitives (synchronized, wait/notify, …)
• Safety

– immutable vs thread-local vs synchronized
– fine-grained vs coarse-grained, safe vs guarded
– documentation

• Concurrent libraries
• Structuring applications

– Producer-Consumer, Fork-Join, Membrane, Thread 
Pool

– Executor Service framework
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Part 1:
Design at a Class Level

Design for Change:
Information Hiding, 

Contracts, Design Patterns, 
Unit Testing

Design for Reuse:
Inheritance, Delegation, 

Immutability, LSP, 
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment, 
Design Patterns, 

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent 

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for 
Concurrency

Distributed Systems in a 
Nutshell

Intro to Java

Git, CI
Static Analysis

GUIsUML More Git

GUIs
Performance

Design
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Learning Goals

• Apply executor services for parallelizing a task

• Understand real-world tradeoffs of concurrent 
computing

• Understand the abstractions of the Actor 
model to concurrency and its tradeoffs

• Pick the right abstractions for the task at hand
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PUTTING THE PIECES TOGETHER:
PARALLELIZING PREFIXSUM
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Vocabulary

• Work: Total number of computation steps

• Depth: Longest sequence of sequential computation 
steps

• Breadth:  extent of simultaneous activity

ti
m

e

parallelism

What are the typical goals in parallel algorithm design?
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Amdahl’s law: How good can the depth get?  

• Ideal parallelism with N processors:
– Speedup = N

• In reality, some work is always
inherently sequential
– Let F be the portion of the total 
task time that is inherently 
sequential

– Speedup =

– Suppose F = 10%.  What is the max speedup? (you choose N)
• As N approaches ∞,  1/(0.1 + 0.9/N) approaches 10.
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Using Amdahl’s law as a design guide

• For a given algorithm, suppose
– N processors
– Problem size M

– Sequential portion F

• An obvious question:
– What happens to speedup as N scales?

• A less obvious, important question:
– What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore’s Law; from now on, it 
will be driven by Amdahl’s Law."

— Doron Rajwan, Intel Corp
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Concurrency at the language level

• Consider:
Collection<Integer> collection = …;

int sum = 0;

for (int i : collection) {

sum += i;

}

• In python:
collection = …

sum = 0

for item in collection:

sum += item
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Parallel quicksort in Nesl

function quicksort(a) =
if (#a < 2) then a
else
let pivot   = a[#a/2];

lesser  = {e in a| e < pivot};
equal   = {e in a| e == pivot}; 
greater = {e in a| e > pivot};  
result  = {quicksort(v): v in [lesser,greater]};

in result[0] ++ equal ++ result[1];
• Operations in {} occur in parallel
• 210-esque questions:  What is total work?  What is depth?
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Prefix sums (a.k.a. inclusive scan, a.k.a. 
scan)

• Goal:  given array x[0…n-1],  compute array of the 
sum of each prefix of x

[ sum(x[0…0]), 

sum(x[0…1]), 

sum(x[0…2]), 

… 

sum(x[0…n-1]) ]

• e.g.,  x = [13,  9, -4, 19, -6,  2,  6,  3]

• prefix sums:        [13, 22, 18, 37, 31, 33, 39, 42]
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Parallel prefix sums

• Intuition:  If we have already computed the 
partial sums sum(x[0…3]) and sum(x[4…7]), 
then we can easily
compute sum(x[0…7])

• e.g.,  x = [13,  9, -4, 19, -6,  2,  6,  3]
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Parallel prefix sums algorithm, 
upsweep

• Compute the partial sums in a more useful 
manner

• [13,    9,   -4,   19,   -6,    2,    6,    3]

• [13,   22,   -4,   15,   -6,   -4,    6,    9]
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Parallel prefix sums algorithm, 
upsweep

• Compute the partial sums in a more useful 
manner

• [13,    9,   -4,   19,   -6,    2,    6,    3]

• [13,   22,   -4,   15,   -6,   -4,    6,    9]

• [13,   22,   -4,   37,   -6,   -4,    6,    5]
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Parallel prefix sums algorithm, 
upsweep

• Compute the partial sums in a more useful 
manner

• [13,    9,   -4,   19,   -6,    2,    6,    3]

• [13,   22,   -4,   15,   -6,   -4,    6,    9]

• [13,   22,   -4,   37,   -6,   -4,    6,    5]

• [13,   22,   -4,   37,   -6,   -4,    6,   42]
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Parallel prefix sums algorithm, 
downsweep

• Now unwind to calculate the other sums

• [13,   22,   -4,   37,   -6,   -4,    6,   42]

• [13,   22,   -4,   37,   -6,   33,    6,   42]



1915-214

Parallel prefix sums algorithm, 
downsweep

• Now unwinds to calculate the other sums

• [13,   22,   -4,   37,   -6,   -4,    6,   42]

• [13,   22,   -4,   37,   -6,   33,    6,   42]

• [13,   22,   18,   37,   31,   33,   39,   42]

• Recall, we started with:
[13,    9,   -4,   19,   -6,    2,    6,    3]
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Doubling array size adds two more 
levels

Upsweep

Downsweep
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Parallel prefix sums

pseudocode:

// Upsweep
prefix_sums(x):

for d in 0 to (lg n)-1: // d is depth
parallelfor i in 2d-1 to n-1, by 2d+1:

x[i+2d] = x[i] + x[i+2d]

// Downsweep
for d in (lg n)-1 to 0:

parallelfor i in 2d-1 to n-1-2d, by 2d+1:
if (i-2d >= 0):

x[i] = x[i] + x[i-2d]
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Parallel prefix sums algorithm, in code

• An iterative Java-esque implementation:
void iterativePrefixSums(long[] a) {

int gap = 1;
for ( ; gap < a.length; gap *= 2) {

parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];

}
}
for ( ; gap > 0; gap /= 2) {

parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);

}
}
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Parallel prefix sums algorithm, in code

• A recursive Java-esque implementation:
void recursivePrefixSums(long[] a, int gap) {

if (2*gap – 1 >= a.length) {
return;

}

parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];

}

recursivePrefixSums(a, gap*2);

parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);

}
}
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Parallel prefix sums algorithm

• How good is this?
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Parallel prefix sums algorithm

• How good is this?

– Work:  O(n)

– Depth: O(lg n)

• See PrefixSums.java, 
PrefixSumsSequentialWithParallelWork.java
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Goal:  parallelize the PrefixSums 
implementation

• Specifically, parallelize the parallelizable loops
parfor(int i = gap-1;  i+gap < a.length;  i += 2*gap) {

a[i+gap] = a[i] + a[i+gap];

}

• Partition into multiple segments, run in 
different threads
for(int i = left+gap-1;  i+gap < right;  i += 2*gap) {

a[i+gap] = a[i] + a[i+gap];

}
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Recall the Java primitive concurrency 
tools

• The java.lang.Runnable interface
– void          run();

• The java.lang.Thread class
– Thread(Runnable r);

– void          start();

– static void   sleep(long millis);

– void          join();

– boolean       isAlive();

– static Thread currentThread();
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Recall the Java primitive concurrency 
tools
• The java.lang.Runnable interface

– void          run();

• The java.lang.Thread class
– Thread(Runnable r);
– void          start();
– static void   sleep(long millis);
– void          join();
– boolean       isAlive();
– static Thread currentThread();

• The java.util.concurrent.Callable<V> interface
– Like java.lang.Runnable but can return a value
– V             call();
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A framework for asynchronous 
computation

• The java.util.concurrent.Future<V> interface

– V          get();

– V          get(long timeout, TimeUnit unit);

– boolean    isDone();

– boolean    cancel(boolean mayInterruptIfRunning);

– boolean    isCancelled();
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A framework for asynchronous 
computation
• The java.util.concurrent.Future<V> interface:

– V          get();
– V          get(long timeout, TimeUnit unit);
– boolean    isDone();
– boolean    cancel(boolean mayInterruptIfRunning);
– boolean    isCancelled();

• The java.util.concurrent.ExecutorService interface:
– Future<?>  submit(Runnable task);
– Future<V>  submit(Callable<V> task);
– List<Future<V>> 
– invokeAll(Collection<? extends Callable<V>> tasks);
– Future<V>       
– invokeAny(Collection<? extends Callable<V>> tasks);
– void shutdown();
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Executors for common computational 
patterns

• From the java.util.concurrent.Executors class

– static ExecutorService newSingleThreadExecutor();

– static ExecutorService newFixedThreadPool(int n);

– static ExecutorService newCachedThreadPool();

– static ExecutorService 
newScheduledThreadPool(int n);
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Fork/Join: another common 
computational pattern

• In a long computation:

– Fork a thread (or more) to do some work

– Join the thread(s) to obtain the result of the work
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Fork/Join: another common 
computational pattern

• In a long computation:
– Fork a thread (or more) to do some work

– Join the thread(s) to obtain the result of the work

• The java.util.concurrent.ForkJoinPool class
– Implements ExecutorService 

– Executes 
java.util.concurrent.ForkJoinTask<V> or 

java.util.concurrent.RecursiveTask<V> or 
java.util.concurrent.RecursiveAction
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The RecursiveAction abstract class

– public class MyActionFoo extends RecursiveAction {
– public MyActionFoo(…) {
– store the data fields we need
– }

– @Override
– public void compute() {
– if (the task is small) {
– do the work here;
– return;
– }

– invokeAll(new MyActionFoo(…),  // smaller
– new MyActionFoo(…),  // tasks
– …);                  // …
– }
– }
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A ForkJoin example

• See PrefixSumsParallelForkJoin.java

• See the processor go, go go!
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Parallel prefix sums algorithm

• How good is this?

– Work: O(n)

– Depth: O(lg n)

• See PrefixSumsParallelArrays.java
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Parallel prefix sums algorithm

• How good is this?

– Work: O(n)

– Depth: O(lg n)

• See PrefixSumsParallelArrays.java

• See PrefixSumsSequential.java 
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Parallel prefix sums algorithm

• How good is this?
– Work: O(n)
– Depth: O(lg n)

• See PrefixSumsParallelArrays.java
• See PrefixSumsSequential.java

– n-1 additions
– Memory access is sequential

• For PrefixSumsSequentialWithParallelWork.java
– About 2n useful additions, plus extra additions for the loop indexes
– Memory access is non-sequential

• The punchline:
– Don't roll your own
– Cache and constants matter
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THE ACTOR MODEL
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Concurrency Challenges

• Java’s shared-memory model “is unnatural for 
developers”, error-prone & unscalable

• Requires careful tracking of how state is 
shared and how it is synchronized

• Faults difficult to detect
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The Actor Model

• Actors: independent concurrent entities, 
communicating over asynchronous message 
passing

• Local mutable state; no synchronization required 
(think thread-confined state)

• No shared state (“shared nothing”, think 
processes, not threads)

• Message queue for incoming messages; one 
message processed at a time

• Messages contain only pure values, no references 
(“call by value”)
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Actors – Mental Model

• People communicating over email

• May send email; reply later by another email

• Read and process one email at a time without 
multitasking

• People have memory but cannot access each 
other’s memories
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public class MyActor extends AbstractActor {
private final LoggingAdapter log = 

Logging.getLogger(context().system(), this);

public MyActor() {
receive(ReceiveBuilder.
match(String.class, s -> {
log.info("Received String message: {}", s);

}).
matchAny(o -> log.info("received unknown message")).build()

);
}

}

Akka Example
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public class DemoMessagesActor extends AbstractLoggingActor {
static public class Greeting {
private final String from;
public Greeting(String from) {      this.from = from;    }
public String getGreeter() {      return from;    }

}
DemoMessagesActor() {
receive(ReceiveBuilder.
match(Greeting.class, g -> {
log().info("I was greeted by {}", g.getGreeter());

}).build()
);

};
}

Akka Example
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Akka sending messages

• tell(): “fire-and-forget”, e.g. send a message 
asynchronously and return immediately.

• ask(): sends a message asynchronously and 
returns a Future representing a possible reply.

try {
String result = operation();
sender().tell(result, self());

} catch (Exception e) {
sender().tell(new akka.actor.Status.Failure(e), self());
throw e;

}
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Actor Frameworks

• Actors are simple, but frameworks can provide 
much shared functionality

• Transparent distributed computations on one 
or multiple machines

• Fair scheduling, error recovery, load balancing 
and scaling (horizontal and vertical)

• Abstractions for common tasks, synchronous 
messages
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Fault Tolerance with Actors

• “let it crash” philosophy

supervisor

actor actor actor
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Actor model – Properties 

• Encapsulation

• Fair scheduling

• Location transparency

• Locality of reference

• Transparent migration

• Failure isolation
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Build your own actor framework

• One thread per actor

• Producer-consumer pattern with queue for incoming 
messages

• Thread-local state for each actor

• Actors communicate only with queues not with other actors

• Only add immutable objects as parameters to messages or 
use defensive copying

• Write own request-reply mechanism (include unique ID in 
message and reply, wrap in future or use wait/notify)

As usual: don’t build your own, but use one built
by experts
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Actors in Java

• Many frameworks

• No built-in language support

• State encapsulation, call-by-value etc often 
just conventions, not enforced (easy to cheat, 
easy to make mistakes)
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Design Discussion

• Shared memory (Java default) vs shared 
nothing (Actors)
– performance vs simplicity, robustness

– some functionality delegated to frameworks (eg., 
akka, executor services)

• Gateway to distributed systems and remote 
procedure calls
– Includes distributed system problems (lost 

messages, timing issues, …)
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DESIGN DISCUSSIONS:
WHY ARE GUIS SINGLE THREADED?
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Concurrency and GUIs

• Earliest GUIs were programmed from main 
thread

• Modern GUI frameworks have single event 
dispatch thread

• Why not more concurrency, e.g., thread per 
button event?
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Coarse-grained concurrency in GUIs

• Fine-grained concurrency is difficult to get right. 
Lots of deadlock and race problems in attempts

• Difficult to decide what to lock and when
• Environment-driven events (e.g., button clicked) 

and application-driven actions (update screen 
with computation results) interact at runtime

• Model-view-controller: Who interacts with whom 
and who holds the locks?

• Framework would expose all locking details to 
users
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Single-threaded GUI

• Assumption: Thread confinement

• No locking required, since all access from 
event dispatch thread

• Pushes burden to developers to perform all 
actions on that event thread (i.e., GUI objects 
are confined to event dispatch thread)
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Summary

• Apply concurrent design patterns for 
parallelizing computations

• Be mindful of real overhead of concurrent 
computations

• The Actor Model provides an alternative 
approach to Java’s shared memory model
– Many tradeoffs, including performance and 

simplicity and robustness

– Mostly retrofitted on JVM
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Recommended Readings

• Goetz et al. Java Concurrency In Practice. 
Pearson Education, 2006

• Karmani, Rajesh K., Amin Shali, and Gul Agha. 
"Actor frameworks for the JVM platform: a 
comparative analysis." Proceedings of the 7th 
International Conference on Principles and 
Practice of Programming in Java. ACM, 2009.


