Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency:
More Design Tradeoffs

Christian Kastner Bogdan Vasilescu

omputer Science

w . . [
Institute ror
SOFTWARE
RESEARCH R
15-214 S | 5 | et



= o ]
SOFTWARE
RESEARCH

15-214 2



So far on concurrency

* Primitives (synchronized, wait/notify, ...)
e Safety
— immutable vs thread-local vs synchronized

— fine-grained vs coarse-grained, safe vs guarded
— documentation

e Concurrent libraries

e Structuring applications

— Producer-Consumer, Fork-Join, Membrane, Thread
Pool

— Executor Service framework

15-214 s [ e



Intro to Java

Git, Cl

UML GUis

Static Analysis

Performance

More Git

GUIs

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,
Contracts, Design Patterns,
Unit Testing

Design for Reuse:
Inheritance, Delegation,
Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,
GUI vs Core,
Design Case Studies

(

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent
Systems

Concurrency Primitives,
Synchronization

— L~

Designing Abstractions for

Concurrency
\ /

Distributed Systems in a
Nutshell

D

15-214

-
astibats o
SQOFTWARE
4 RESEARCH



Learning Goals

* Apply executor services for parallelizing a task

e Understand real-world tradeoffs of concurrent
computing

* Understand the abstractions of the Actor
model to concurrency and its tradeoffs

* Pick the right abstractions for the task at hand

15-214 s [ s



PUTTING THE PIECES TOGETHER:
PARALLELIZING PREFIXSUM

15-214 6



Sylabus  Schedule  Staff  Library Resources  Autolab  [EIIICEIRES F16 516

Sorting Competition

Opentoall Carnedie Mellon students.

The goal of this competition is to help develop the fastest parallel algorithmsfimplementations of sorting, especially for memaory
manadged (garbage collected) languages, and to better understand how languages compare. Deadline for submissions is May 4,

2017 (11:59pm) EST

The Prizes:

MAIN PRIZE: The fastest code on a garbage-collected language (see below) will receive a new 13-inch MacBool pro.

LANGUAGE PRIZES: For each of the languages C/C++, Rust, Java, OCaml, Haskell, Go, Swift, Erlang, Scala, Python, Clojure,
the fastest submission will win a $100 gift certificate to a local restaurant of your choice. However, the submission has to be at least
10 faster than the (best) sequential sorting library available in the language, and within a factor of 50 of the winner of the main
prize. Maore languages can be considered by suggestion.

ELEGANCE PRIZE: The most elegant solution that is within a factor of 10 of our SML solution will receive a $100 gift certificate to
the restaurant of your choice. This will be judged by a small committes, and will be based on how concise and clean the algorithm
implementation is in the language of choice.

And you can always add these prizes to your resume.

The General Rules:

Forthe main prize wou can use any language which garbage collects by default (except for SML, since we give the code for this).
Examples of languages that count are: Java, Haskell, Go, Swift, Scala, and OCaml. Examples that do not are Fortran, C, C++ {and
variants), and rust. Mote that the participants can use non-garbage-collected languages for the language prizes.

You are free to use any standard libraries for the language. This includes, for example, pthreads, opentP, Cilk (in C++), Forkddoin
(in Java) for parallelism.

L = T B T B | T e e [ | Ty I S e o a e e B I



Vocabulary

* Work: Total number of computation steps

* Depth: Longest sequence of sequential computation
steps

* Breadth: extent of simultaneous activity

N N N N

N
7

time

N

parallelism

\'4

Vv

Vv

What are the typical goals in parallel algorithm design?

15-214 8 SarTinst



Amdahl’s law: How good can the depth get?

e |deal para”elism with N Processors: Speedup by Amdahl's Law (P=1024)

— Speedup =N 120000
* |n reality, some work is always 100050 9

inherently sequential 0000 -

— Let F be the portion of the total 00,00 -

task time that is inherently 40000 |
sequential 20000 ]

1
— Speedup= 77 _ YA

£ OF
¥ &
o o

0.00 %
0.05 %
o15% 4
o25% 4
oy DLE5%
065% 4
0.75% 4
oe5s% 4
0.95% 4
1.05%

erial Percent

— Suppose F =10%. What is the max speedup? (you choose N)
* As N approaches oo, 1/(0.1 + 0.9/N) approaches 10.

15-214 9



Using Amdahl’s law as a design guide

* For a given algorithm, suppose WERREEE I ¢
— N processors AT =2 T
— Problem size M . ‘;/; | |
— Sequential portion F RNl
- - oL | ] |
* An obvious question: S R EE R

— What happens to speedup as N scales? s == m—_“"

* Aless obvious, important question:
— What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore’s Law; from now on, it
will be driven by Amdahl’s Law."

— Doron Rajwan, Intel Corp

15-214 10 sormias



Concurrency at the language level

* Consider:
Collection<Integer> collection = ...;

int sum = 0;
for (int i : collection) {
sum += i;
}
* |In python:
collection = ...
sum =0

for item in collection:
sum += item

15214 o [



Parallel quicksort in Nesl

function quicksort(a) =
if (#a < 2) then a
else
let pivot = a[#a/2];
lesser ={ein a| e < pivot};
equal ={einal| e == pivot};
greater = {e in a| e > pivot};
result = {quicksort(v): vin [lesser,greater]};
in result[0] ++ equal ++ result[1];
* QOperationsin {} occur in parallel
 210-esque questions: What is total work? What is depth?

15-214 12



Prefix sums (a.k.a. inclusive scan, a.k.a.
scan)

* Goal: given array x[0...n-1], compute array of the
sum of each prefix of x

[ sum(x[0...0]),

sum(x[0...1]),

sum(x[0...2]),

sum(x[0...n-1]) ]
e e.g, Xx= [13, 9,-4,19,-6, 2, 6, 3]
* prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]

15-214 13



Parallel prefix sums

* |ntuition: If we have already computed the
partial sums sum(x[0...3]) and sum(x[4...7]),
then we can easily
compute sum(x[0...7])

« eg., x= [13, 9,-4,19,-6, 2, 6, 3]

15214 o [



Parallel prefix sums algorithm,
upsweep

 Compute the partial sums in a more useful
manner

e [13, 9, 4, 19, -6, 2, 6, 3]

NN N N

e [13, 22, -4, 15, -6, -4, 6, 9]

15-214 ST

15



Parallel prefix sums algorithm,
upsweep

 Compute the partial sums in a more useful
manner

e [13, 9, 4, 19, -6, 2, 6, 3]

NN N N

e [13, 22, -4, 15, -6, -4, 6, 9]

.

e [13, 22, -4, 37, -6, -4, 6, 5]

15-214 16 [EJH v



Parallel prefix sums algorithm,
upsweep

 Compute the partial sums in a more useful
manner

 [13, 9, 4, 19, -6, 2, 6, 3]

NN N N

e [13, 22, -4, 15, -6, 4, 6, 9]

T~

e [13, 22, -4, 37, -6, 4, 6, 5]

R

e [13, 22, -4, 37, -6, 4, 6, 42]

15-214 17



Parallel prefix sums algorithm,
downsweep

e Now unwind to calculate the other sums
e [13, 22, -4, 37, -6, -4, 6, 42]

T~

e [13, 22, -4, 37, -6, 33, 6, 42]

15-214 18



Parallel prefix sums algorithm,
downsweep

* Now unwinds to calculate the other sums
e [13, 22, -4, 37, -6, -4, 6, 42]

e [13, 22, -4, 37, -6, 33, 6, 42]

NN N

e [13, 22, 18, 37, 31, 33, 39, 42]

 Recall, we started with:
[13, 9, -4, 19, -6, 2, 6, 3]

15-214 19



Doubling array size adds two more
levels

MMM N AN oo
T
\(\@
N N[
LR

+ >\<+ Downsweep
* %r] +



Parallel prefix sums

pseudocode:

// Upsweep
prefix_sums(x):
fordin O to (lg n)-1: // d is depth
parallelforiin 2d-1 to n-1, by 2d+1:
x[i+2d] = x[i] + x[i+2d]

// Downsweep
fordin (Ig n)-1 to O:

parallelforiin 2d-1 to n-1-2d, by 2d+1:

if (i-2d >= 0):
X[i] = x[i] + x[i-2d]

15-214

21

sttt fo
SOFTWARE
RESEARCH



Parallel prefix sums algorithm, in code

e An iterative Java-esque implementation:
void iterativePrefixSums(long[] a) {
int gap =1;
for (; gap < a.length; gap *=2) {
parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}
}
for (; gap >0; gap /=2){
parfor(int i=gap-1; i < a.length; i += 2*gap) {
ali] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);
}
}

15-214 22



Parallel prefix sums algorithm, in code

* Arecursive Java-esque implementation:
void recursivePrefixSums(long([] a, int gap) {
if (2*gap — 1 >= a.length) {
return;

}

parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
ali+gap] = a[i] + a[i+gap];
}

recursivePrefixSums(a, gap*2);

parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);
}
}

15-214

23

sttt fo
SOFTWARE
RESEARCH



Parallel prefix sums algorithm

* How good is this?

15-214 24



Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Depth: O(lg n)

e See PrefixSums.java,
PrefixSumsSequentialWithParallelWork.java

15-214 25 [ s



Goal: parallelize the PrefixSums
implementation

* Specifically, parallelize the parallelizable loops
parfor(int i = gap-1; i+gap < a.length; i+=2*gap) {
a[i+gap] = ali] + a[i+gap];
}

* Partition into multiple segments, run in
different threads

for(int i = left+gap-1; i+gap <right; i +=2*gap) {
a[i+gap] = ali] + a[i+gap];
}

15-214 26 [BFY v



Recall the Java primitive concurrency
tools

* The java.lang.Runnable interface
— void run();

 The java.lang.Thread class
— Thread(Runnable r);
— void start();
— static void sleep(long millis);
— void join();
— boolean  isAlive();
— static Thread currentThread();

15-214 27 [ sormies



Recall the Java primitive concurrency
tools

* The java.lang.Runnable interface
— void run();

 The java.lang.Thread class
— Thread(Runnable r);
— void start();
— static void sleep(long millis);
— void join();
— boolean  isAlive();
— static Thread currentThread();

* The java.util.concurrent.Callable<V> interface

— Like java.lang.Runnable but can return a value
-V call();

15214 o [



A framework for asynchronous
computation

* The java.util.concurrent.Future<V> interface
-V
-V

15-214

D00
D00

D00

get();
get(long timeout, TimeUnit unit);

ean isDone();
ean cancel(boolean maylinterruptlfRunning);
ean isCancelled();

-
vahilals o
29 I Sr SQOFTWARE
RESEARCH



A framework for asynchronous

computation

* The java.util.concurrent.Future<V> interface:

* The java.util.concurrent.ExecutorService interface:
— Future<?> submit(Runnable task);
Future<V> submit(Callable<V> task);

15-214

Vv get();

V get(long timeout, TimeUnit unit);

boolean

boolean cancel(boolean mayinterruptlfRunning);

boolean

isDone();

isCancelled();

List<Future<V>>

invokeAll(Collection<? extends Callable<V>> tasks);

Future<V>

invokeAny(Collection<? extends Callable<V>> tasks);

void

shutdown();

30

vahibals o
SQOFTWARE
RESEARCH



Executors for common computational
patterns

* From the java.util.concurrent.Executors class
— static ExecutorService newSingleThreadExecutor();
— static ExecutorService newFixedThreadPool(int n);
— static ExecutorService newCachedThreadPool();

— static ExecutorService
newScheduledThreadPool(int n);

15-214 31 [BRf s



Fork/Join: another common
computational pattern

* |n a long computation:
— Fork a thread (or more) to do some work
— Join the thread(s) to obtain the result of the work

15-214 32 [ s



Fork/Join: another common
computational pattern

* |n a long computation:

— Fork a thread (or more) to do some work

— Join the thread(s) to obtain the result of the work
* The java.util.concurrent.ForkJoinPool class

— Implements ExecutorService

— Executes
java.util.concurrent.ForkJoinTask<V> or

java.util.concurrent.RecursiveTask<V> or
java.util.concurrent.RecursiveAction

15-214 33 [ s



The RecursiveAction abstract class

— public class MyActionFoo extends RecursiveAction {
— public MyActionFoo(...) {
— store the data fields we need

-}

— @Override

— public void compute() {
— if (the task is small) {
— do the work here;

— return;

- }

- invokeAll(new MyActionFoo(...), // smaller
— new MyActionFoo(...), // tasks

- ); /] ...

15-214 34



A ForkJoin example

* See PrefixSumsParallelForkJoin.java
* See the processor go, go go!

15-214

35



Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Depth: O(lg n)
* See PrefixSumsParallelArrays.java

15-214 36



Parallel prefix sums algorithm

* How good is this?

— Work: O(n)

— Depth: O(lg n)
* See PrefixSumsParallelArrays.java
* See PrefixSumsSequential.java

15-214

37



Parallel prefix sums algorithm

How good is this?

— Work: O(n)

— Depth: O(lg n)

e See PrefixSumsParallelArrays.java

* See PrefixSumsSequential.java
— n-1 additions
— Memory access is sequential

* For PrefixSumsSequentialWithParallelWork.java
— About 2n useful additions, plus extra additions for the loop indexes
— Memory access is non-sequential

* The punchline:

— Don't roll your own

— Cache and constants matter

15214 s



THE ACTOR MODEL

15-214 39



Concurrency Challenges

* Java’s shared-memory model “is unnatural for
developers”, error-prone & unscalable

* Requires careful tracking of how state is
shared and how it is synchronized

e Faults difficult to detect

15-214 a0 [BJf scrmian



The Actor Model

e Actors: independent concurrent entities,
communicating over asynchronous message
passing

* Local mutable state; no synchronization required
(think thread-confined state)

* No shared state (“shared nothing”, think
processes, not threads)

* Message queue for incoming messages; one
message processed at a time

 Messages contain only pure values, no references
(“call by value”)

15-214 a1 Bl e



Actors — Mental Model

* People communicating over email
* May send email; reply later by another email

 Read and process one email at a time without
multitasking

* People have memory but cannot access each
other’s memories

15-214 a2 [BJf s



Mailbox

etttz o
|| o [l sorTwar
' = S RESEARCH

15-214 43



Akka Example

public class MyActor extends AbstractActor {
private final LoggingAdapter log =
Logging.getLogger(context().system(), this);

public MyActor() {
receive(ReceiveBuilder.
match(String.class, s -> {
log.info("Received String message: {}", s);

}.

matchAny(o -> log.info("received unknown message")).build()

15214 o [ElEs



Akka Example

public class DemoMessagesActor extends AbstractLoggingActor {
static public class Greeting {
private final String from;
public Greeting(String from) { this.from =from; }
public String getGreeter() { return from; }
}
DemoMessagesActor() {
receive(ReceiveBuilder.
match(Greeting.class, g -> {
log().info("l was greeted by {}", g.getGreeter());
}).build()

);

15-214 a5 sorvias



Akka sending messages

 tell(): “fire-and-forget”, e.g. send a message
asynchronously and return immediately.

e ask(): sends a message asynchronously and
returns a Future representing a possible reply.

try {
String result = operation();

sender().tell(result, self());
} catch (Exception e) {

sender().tell(new akka.actor.Status.Failure(e), self());
throw e;

}

15-214 as [BFJ v




Actor Frameworks

* Actors are simple, but frameworks can provide
much shared functionality

* Transparent distributed computations on one
or multiple machines

* Fair scheduling, error recovery, load balancing
and scaling (horizontal and vertical)

* Abstractions for common tasks, synchronous
messages

15-214 a7 [BJH sormias



Fault Tolerance with Actors

e “letit crash” philosophy

supervisor

15-214




Actor model — Properties

* Encapsulation
* Fair scheduling
* Location transparency

* Locality of reference
* Transparent migration

e Failure isolation

15-214 49



Build your own actor framework

* One thread per actor

* Producer-consumer pattern with queue for incoming
messages

* Thread-local state for each actor
e Actors communicate only with queues not with other actors

 Only add immutable objects as parameters to messages or
use defensive copying

* Write own request-reply mechanism (include unique ID in
message and reply, wrap in future or use wait/notify)

As usual: don’t build your own, but use one built
by experts

15-214 50



Actors In Java

* Many frameworks

* No built-in language support

* State encapsulation, call-by-value etc often
just conventions, not enforced (easy to cheat,
easy to make mistakes)

SALSA

Scala Actors

Kilim

Actor Architec-

JavAct

ActorFoundry

Jetlang

(v1.1.2) (v2.7.3) (v0.6) ture (v0.1.3) (v1.5.3) (v1.0) (v0.1.7)
State [';11(";||).\l|— Yes No No Yes Yes Yes Yes
lation
Safe Message- | Yes No No Yes No Yes No
passing
Fair Scheduling | Yes Yes No Yes No Yes No
Location Trans- Yes No N Yes Yes Yes Yes
parency
Mobility Yes No No Yes Yes Yes No
skt o
15-214 51 sorious




Design Discussion

* Shared memory (Java default) vs shared
nothing (Actors)

— performance vs simplicity, robustness

— some functionality delegated to frameworks (eg.,
akka, executor services)

* Gateway to distributed systems and remote
procedure calls

— Includes distributed system problems (lost
messages, timing issues, ...)

15-214 52 [BRf s



DESIGN DISCUSSIONS:
WHY ARE GUIS SINGLE THREADED?

15-214 53 [EYH s



Concurrency and GUIs

* Earliest GUIs were programmed from main
thread

* Modern GUI frameworks have single event
dispatch thread

 Why not more concurrency, e.g., thread per
button event?

15-214 Y | S [ B



Coarse-grained concurrency in GUIs

* Fine-grainec
ots of deac

concurrency is difficult to get right.
lock and race problems in attempts

e Difficultto d

ecide what to lock and when

* Environment-driven events (e.g., button clicked)
and application-driven actions (update screen
with computation results) interact at runtime

e Model-view-controller: Who interacts with whom
and who holds the locks?

* Framework would expose all locking details to

USers

15-214

-
astibats o
55 I Sr SQOFTWARE
RESEARCH



Single-threaded GUI

* Assumption: Thread confinement

* No locking required, since all access from
event dispatch thread

* Pushes burden to developers to perform all
actions on that event thread (i.e., GUI objects
are confined to event dispatch thread)

15-214 56  [BR s



Summary

* Apply concurrent design patterns for
parallelizing computations

e Be mindful of real overhead of concurrent
computations

 The Actor Model provides an alternative
approach to Java’s shared memory model

— Many tradeoffs, including performance and
simplicity and robustness

— Mostly retrofitted on JVM

15-214 57  [BRN s



Recommended Readings

* Goetz et al. Java Concurrency In Practice.
Pearson Education, 2006

 Karmani, Rajesh K., Amin Shali, and Gul Agha.
"Actor frameworks for the JVM platform: a
comparative analysis." Proceedings of the 7th
International Conference on Principles and
Practice of Programming in Java. ACM, 20009.

15-214 sg  [EYH s



