Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency:
Structuring Applications

(“Design Patterns for Parallel Computation”)

Christian Kastner Bogdan Vasilescu

School of
Computer Science

w . . [

Institute ror
@ SOFTWARE

RESEARCH oy i
15-214 O | 5 [[Fea

Administrivia

15-214 2 S[SOFTWARE

RRRRRRRRR

= o]
SOFTWARE
RESEARCH

15-214 3

Designing Thread-Safe Objects

* |dentify variables that represent the object’s
state
— may be distributed across multiple objects

* |dentify invariants that constraint the state
variables

— important to understand invariants to ensure
atomicity of operations

* Establish a policy for managing concurrent
access to state

15-214 s [Bl e

Summary of policies:

 Thread-confined. A thread-confined object is owned exclusively by
and confined to one thread, and can be modified by its owning
thread.

 Shared read-only. A shared read-only object can be accessed
concurrently by multiple threads without additional
synchronization, but cannot be modified by any thread. Shared
read-only objects include immutable and effectively immutable
objects.

 Shared thread-safe. A thread-safe object performs
synchronization internally, so multiple threads can freely access
it through its public interface without further synchronization.

e Guarded. A guarded object can be accessed only with a
specific lock held. Guarded objects include those that are
encapsulated within other thread-safe objects and published
objects that are known to be guarded by a specific lock.

15214 s [

Tradeoffs

* Strategies:
— Don't share the state variable across threads;
— Make the state variable immutable; or

— Use synchronization whenever accessing the state
variable.

* Thread-safe vs guarded
e Coarse-grained vs fine-grained synchronization

* When to choose which strategy?
— Avoid synchronization if possible
— Choose simplicity over performance where possible

15-214 o[BI &

Documentation

* Document a class's thread safety guarantees
for its clients

* Document its synchronization policy for its
maintainers.

e @ThreadSafe, @GuardedBy annotations not
standard but useful

15-214 7 B s

Intro to Java

Git, Cl

UML GUis

Static Analysis

Performance

More Git

GUIs

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,
Contracts, Design Patterns,
Unit Testing

Design for Reuse:
Inheritance, Delegation,
Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,
GUI vs Core,
Design Case Studies

(

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent
Systems

Concurrency Primitives,
Synchronization

— L~

Designing Abstractions for

Concurrency
\ /

Distributed Systems in a
Nutshell

D

15-214

-
astibats o
8 SQOFTWARE
RESEARCH

REUSE RATHER THAN BUILD:
KNOW THE LIBRARIES

15214 s

Synchronized Collections

* Are thread safe:
— Vector
— Hashtable
— Collections.synchronizedXXX
* But still require client-side locking to guard
compound actions:

— |teration: repeatedly fetch elements until collection is
exhausted

— Navigation: find next element after this one according
to some order

— Conditional ops (put-if-absent)

15-214 11

Example

e Both methods are thread safe

public static Object getLast(Vector list) {
int lastindex = list.size() - 1;
return list.get(lastindex);

}

public static void deleteLast(Vector list) {
Int lastindex = list.size() - 1;
list.remove(lastindex);

}
* Unlucky interleaving that throws ArrayIndexoutOfBoundsException

\ 4

boom

\ 4

get(9)

A size->10

\ 4

size->10 remove(9)

15-214 12 sormias

Solution: Compound actions on Vector
using client-side locking

* Synchronized collections guard methods with the lock on the
collection object itself

public static Object getLast(Vector list) {
synchronized (list) {
int lastindex = list.size() - 1;
return list.get(lastindex);

}
}

public static void deleteLast(Vector list) {
synchronized (list) {
Int lastindex = list.size() - 1;
list.remove(lastindex);

}
}

15-214 13 IST SOFTWARE

RRRRRRRRR

Another Example

* The size of the list might change between a call to
size and a corresponding call to get

— Will throw ArrayIndexOutOfBoundsException

for (inti=0; i < vector.size(); i++)
doSomething(vector.get(i));

e Note: Vector still thread safe:
— State is valid
— Exception conforms with specification

15-214 14

Solution: Client-side locking

* Hold the Vector lock for the duration of iteration:

— No other threads can modify (+)
— No other threads can access (-)

synchronized (vector) {
for (inti = 0; i <vector.size(); i++)
doSomething(vector.get(i));

15-214 15

Iterators and
ConcurrentModificationException

* Iterators returned by the synchronized collections
are not designed to deal with concurrent
modification =2 fail-fast

* Implementation:

— Each collection has a modification count
— If it changes, hasNext or next throws
ConcurrentModificationException
* Prevent by locking the collection:

— Other threads that need to access the collection will block
until iteration is complete - starvation

— Risk factor for deadlock
— Hurts scalability (remember lock contention in reading)

15-214 16

Alternative to locking the collection
during iteration?

15-214 17 [l

Yet Another Example: Is this safe?

public class Hiddenlterator {
@GuardedBy("this")
private final Set<Integer> set = new HashSet<Integer>();

public synchronized void add(Integer i) { set.add(i); }
public synchronized void remove(Integer i) { set.remove(i); }

public void addTenThings() {
Random r = new Random();
for (inti=0;i<10; i++)
add(r.nextInt());
System.out.printin("DEBUG: added ten elements to " + set);

}
}

15-214 18 [El o

Hidden Iterator

* Locking can prevent ConcurrentModificationException

* But must remember to lock everywhere a shared collection
might be iterated

public class Hiddenlterator {
@GuardedBy("this")
private final Set<Integer> set = new HashSet<Integer>();

public synchronized void add(Integer i) { set.add(i); }
public synchronized void remove(Integer i) { set.remove(i); }

public void addTenThings() {
Random r = new Random();
for (inti=0;1<10; i++)
add(r.nextint());
System.out.printin("DEBUG: added ten elements to " + set);

}
}

15-214 19 sormias

Hidden Iterator

System.out.printin("DEBUG: added ten elements to " + set);

* String concatenation

- StringBuilder.append(Object)

- Set.toString()

—> lterates the collection; calls toString() on each element

- addTenThings() may throw ConcurrentModificationException

* Lesson: Just as encapsulating an object’s state makes
it easier to preserve its invariants, encapsulating its
synchronization makes it easier to enforce its
synchronization policy

15214 o [

Concurrent Collections

e Synchronized collections: thread safety by serializing
all access to state

— Cost: poor concurrency

e Concurrent collections are designed for concurrent
access from multiple threads

— Dramatic scalability improvements

Unsynchronized

HashMap ConcurrentHashMap
HashSet ConcurrentHashSet
TreeMap ConcurrentSkipListMap
TreeSet ConcurrentSkipListSet

- sl .
15-214 21 ot

ConcurrentHashMap

 HashMap.get: traversing a hash bucket to find a specific
object = calling equals on a number of candidate objects

— Can take a long time if hash function is poor and elements are
unevenly distributed

e ConcurrentHashMap uses lock striping (recall reading)
— Arbitrarily many reading threads can access concurrently
— Readers can access map concurrently with writers
— Limited number of writers can modify concurrently

 Tradeoffs:

— size only an estimate
— Can’t lock for exclusive access

15-214 22

You can’t exclude concurrent activity
from a concurrent collection

* This works for synchronized collections...
Map<String, String> syncMap =
Collections.synchronizedMap(new HashMap<>());
synchronized(syncMap) {
if (!syncMap.containsKey("foo"))
syncMap.put("foo", "bar");
}

e But not for concurrent collections
— They do their own internal synchronization
— Never synchronize on a concurrent collection!

15-214 23 IST SOFTWARE

RRRRRRRRR

Concurrent collections have prepackaged
read-modify-write methods

V putIfAbsent(K key, V value)

* boolean remove, (Object key, Object value)
 V replace(K key, V value)

e boolean replace(k key, V oldvalue, V newValue)

* V compute(K key, BiFunction<...> remappingFn);
 V computeIfAbsent(K key, Function<...> mappingFn)

e V computeIfPresent(K key, BiFunction<...> remapFn)

* V merge(K key, V value, BiFunction<...> remapFn)

15-214 24

THE PRODUCER-CONSUMER
DESIGN PATTERN

15-214

25

Pattern Idea

* Decouple dependency of concurrent producer
and consumer of some data

e Effects:

— Removes code dependencies between producers
and consumers

— Decouples activities that may produce or consume
data at different rates

15-214 26

Blocking Queues

* Provide blocking put and take methods
— If queue full, put blocks until space becomes available
— If queue empty, take blocks until element is available

 (Can also be bounded: throttle activities that
threaten to produce more work than can be handled

15-214 27

Example: Desktop Search (1)

public class FileCrawler implements Runnable {

private final BlockingQueue<File> fileQueue;
private final FileFilter fileFilter;
private final File root;

public void run() {
try {
crawl(root);
} catch (InterruptedException €) {
Thread.currentThread().interrupt();

}
}

private void crawl(File root) throws InterruptedException {
File[] entries = root.listFiles(fileFilter);
if (entries !'= null) {
for (File entry : entries)
if (entry.isDirectory())
crawl(entry);
else if (lalreadylndexed(entry))

fileQueue.put(entry);

} .
15-214 28 sormias

Example: Desktop Search (2)

public class Indexer implements Runnable {
private final BlockingQueue<File> queue;

public Indexer(BlockingQueue<File> queue) {
this.queue = queue;

}

public void run() {
try {
while (true)
indexFile(queue.take());
} catch (InterruptedException e) {
Thread.currentThread().interrupt();

}
}

public void indexFile(File file) {
/I Index the file...
I3
}

15-214 29 sormias

THE FORK-JOIN DESIGN PATTERN

15214 2 [

Pattern Idea

Parallel Task |

* Pseudocode (parallel version of the divide and conquer paradigm)

if (my portion of the work is small enough)
do the work directly
else
split my work into two pieces
invoke the two pieces and wait for the results

vahibals o
15-214 Image from: Wikipedia 31 3?5’[‘,‘&"35

THE MEMBRANE DESIGN PATTERN

15-214 32 [s

Pattern Idea

Multiple rounds of fork-join that need to wait

for previous round to complete.
Parallel Task | Parallel Task Il Parallel Task Il

-

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread /' S N S - N
\ 4 : : r)fi B \ . , _ -
e D e

. oshibats .
15-214 Image from: Wikipedia 33 2?5‘:’;”&15

TASKS AND THREADS

15-214 34

Executing tasks in threads

* Organize program around task execution
— Identify task boundaries; ideally, tasks are independent

* Typical requirements for server applications:
— Good throughput
— Good responsiveness
— Graceful degradation
* Choosing good task boundaries + a sensible task
execution policy can help

— Natural choice of task boundary: individual client
requests

15-214 35 [s

Executing tasks sequentially

public class SingleThreadWebServer {
public static void main(String[] args) throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {
Socket connection = socket.accept();
handleRequest(connection);

}
}

private static void handleRequest(Socket connection) {
/Il request-handling logic here

}
}

* Can only handle one request at a time

 Main thread alternates between accepting connections and
processing the requests

15-214 36 sormust

Explicitly creating threads for tasks

public class ThreadPerTaskWebServer {
public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);

while (true) {
final Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() { handleRequest(connection); }

¢
new Thread(task).start();

}

}

private static void handleRequest(Socket connection) {
Il request-handling logic here

}
}

* Main thread still alternates between accepting connections
and dispatching requests

* But each request is processed in a separate thread

15-214 37 sormimst

Still, what’s wrong?

public class ThreadPerTaskWebServer {
public static void main(String[] args) throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {
final Socket connection = socket.accept();
Runnable task = new Runnable() {
public void run() { handleRequest(connection); }
)
new Thread(task).start();
}
}

private static void handleRequest(Socket connection) {
Il request-handling logic here

}
}

15-214

38

IST

] ! I §
SQOFTWARE
RESEARCH

Disadvantages of unbounded thread
creation

* Thread lifecycle overhead
— Thread creation and teardown are not free

* Resource consumption

— When there are more runnable threads than available
processors, threads sit idle

— Many idle threads can tie up a lot of memory
* Stability
— There is a limit to how many threads can be created

(varies by platform)
* OutOfMemory error

15-214 I | S [B

THE THREAD POOL
DESIGN PATTERN

15214 o [El

Pattern Idea

* A thread pool maintains multiple threads waiting
for tasks to be allocated for concurrent execution by
the supervising program

— Tightly bound to a work queue

* Advantages:

— Reusing an existing thread instead of creating a new one
* Amortizes thread creation/teardown over multiple requests
* Thread creation latency does not delay task execution

— Tune size of thread pool

* Enough threads to keep processors busy while not having too
many to run out of memory

15214 o [ElEs

EXECUTOR SERVICES

15-214

42

The Executor framework

* Recall: bounded queues prevent an overloaded
application from running out of memory

* Thread pools offer the same benefit for thread
management

— Thread pool implementation part of the Executor
framework in java.util.concurrent

— Primary abstraction is Executor, not Thread

public interface Executor {
void execute(Runnable command);

}

— Using an Executor is usually the easiest way to
implement a producer-consumer design

15214 o [Elis

Executors — your one-stop shop for
executor services

 Executors.newSingleThreadExecutor()
— A single background thread

 newFixedThreadPool(int nThreads)
— A fixed number of background threads

 Executors.newCachedThreadPool()
— Grows in response to demand

15-214 aa [Hl e

Web server using Executor

public class TaskExecutionWebServer {
private static final int NTHREADS = 100;

private static final Executor exec
= Executors.newFixedThreadPool(NTHREADS);

public static void main(String[] args) throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {
final Socket connection = socket.accept();
Runnable task = new Runnable() {
public void run() {
handleRequest(connection);

}
¥
exec.execute(task);
}
}

private static void handleRequest(Socket connection) {
Il request-handling logic here

}

}
15-214

45

btz o
SQOFTWARE
RESEARCH

Easy to specify / change execution policy

 Thread-per-task server:

public class ThreadPerTaskExecutor implements Executor {
public void execute(Runnable r) {
new Thread(r).start();
I3
}

* Single thread server:

public class WithinThreadExecutor implements Executor {
public void execute(Runnable r) {
r.run();
I3
}

15-214 46 sormias

Execution policies

* Decoupling submission from execution
e Specify:

— In what thread will tasks be executed?

— In what order (FIFO, LIFO, ...)?

— How many tasks may execute concurrently?
— How many tasks may be queued pending execution?

* Notice the strategy/template method pattern:
general mechanism but highly customizable

15-214 47

Task granularity and structure

* Maximize parallelism

— The smaller the task, the more opportunities for parallelism
- better CPU utilization, load balancing, locality, scalability;
greater throughput

e Minimize overhead

— Intrinsically more costly to create and use task objects than
stack-frames = coarse-grained tasks

* Minimize contention

— Maintain as much independence as possible between tasks
- ideally, no shared resources, global (static) variables, locks

— Some synchronization is unavoidable in fork/join designs
 Maximize locality

— When parallel tasks all access different parts of a data set
(e.g., different regions of a matrix), use partitioning
strategies that reduce the need to coordinate across

15214 S T

Finding exploitable parallelism

 Executor framework makes it easy to specify
an execution policy if you can describe your
task as a Runnable

— A single client request is a natural task boundary
in server applications

e Task boundaries are not always obvious

15-214 a0 [BJH scrmians

Example: HTML page renderer

void renderPage(CharSequence source) {
renderText(source);
List<iImageData> imageData = new ArrayList<lmageData>();
for (Imagelnfo imagelnfo : scanForimagelnfo(source))
ImageData.add(imagelnfo.downloadimage());
for (ImageData data : imageData)
renderimage(data);

* [ssues:
— Underutilize CPU while waiting for I/0
— User waits long time for page to finish loading

15-214 50 sormust

Result bearing tasks: Callable and Future

e Runnable.run cannot return value or throw checked
exceptions (although it can have side effects)

 Many tasks are deferred computations (e.g., fetching a
resource over a network) 2 Callable is a better
abstraction

— Callable.call will return a value and anticipates that it might
throw an exception

 Runnable and Callable describe abstact computational tasks

* Future represents the lifecycle of a task (created, submitted,
started, completed)

15-214 51

Callable and Future interfaces

public interface Callable<V> {
V call() throws Exception;

}

public interface Future<V> {

boolean cancel(boolean mayinterruptifRunning);

boolean isCancelled();

boolean isDone();

V get() throws InterruptedException,
ExecutionException, CancellationException;

V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException,
CancellationException, TimeoutException;

15-214 52 sormimst

Creating a Future to describe a task

e submit a RunnableorCallabletoan
executor and get back a Future that can be
used to retrieve the result or cancel the task

e Explicitly instantiate a FutureTask for a given
Runnable or Callable

15-214 53 [EYH s

Example: Page renderer with Future

* Divide into two tasks
— Render text (CPU-bound)
— Download all images (I/0-bound)
* Steps:
— Create a Callable for download subtask
— Submit Callable to ExecutorService

— ExecutorService returns Future describing the
task’s execution

— When main task reaches point where it needs the
images, it waits for the result by calling Future. get
* If lucky, images already downloaded
* If not, at least we got a head start

15-214 54

Future renderer (1)

public abstract class FutureRenderer {
private final ExecutorService executor = ...;

void renderPage(CharSequence source) {
final List<imagelnfo> imagelnfos = scanForimagelnfo(source);
Callable<List<lmageData>> task =
new Callable<List<imageData>>() {
public List<imageData> call() {
List<imageData> result = new ArrayList<lmageData>();
for (Imagelnfo imagelnfo : imagelnfos)
result.add(imagelnfo.downloadimage());
return result;

}
J

Future<List<imageData>> future = executor.submit(task);
renderText(source);

/I Continued below

15-214 55 sorvias

Future renderer (2)

public abstract class FutureRenderer {

try {
List<iImageData> imageData = future.get();

for (ImageData data : imageData)
renderlmage(data);

} catch (InterruptedException e) {
/| Re-assert the thread's interrupted status
Thread.currentThread().interrupt();
/' We don't need the result, so cancel the task too
future.cancel(true);

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}
}
}

15-214 56 sarrias

Future renderer analysis

* Allows text to be rendered concurrently with
downloading data

* When all images are downloaded, they are
rendered onto the page

e Can we do better?

15-214 s7 [i

Limitations of parallelizing heterogeneous tasks

 We tried to execute two different types of tasks in
parallel—downloading images, rendering page

 Does not scale well
— How can we use more than two threads?
— Tasks may have disparate sizes

* If rendering text is much faster than downloading images,
performance is not much different from sequential version

* Lesson: real performance payoff of dividing a
program’s workload into tasks comes when there
are many independent, homogeneous tasks that
can be processed concurrently

15-214 58

Example: Page renderer with CompletionService

« CompletionService combines the
functionality of an Executor and a
BlockingQueue
— submit Callable tasks to CompletionService

— use queue-like methods take and poll to retrieve
completed results, packaged as Futures, as they
become available

15-214 5o [BRf s

Page renderer with CompletionService
Download images in parallel (1)

public abstract class Renderer {
private final ExecutorService executor;

void renderPage(CharSequence source) {
final List<imagelnfo> info = scanForlmagelnfo(source);

CompletionService<lmageData> completionService =
new ExecutorCompletionService<lmageData>(executor);

for (final Imagelnfo imagelnfo : info)
completionService.submit(new Callable<imageData>() {

public ImageData call() {
return imagelnfo.downloadimage();

}
D;

renderText(source);
I/l Continued below

15-214 60 sortuir

Page renderer with CompletionService
Download images in parallel (2)

public abstract class Renderer {

try {
for (intt =0, n = info.size(); t < n; t++) {
Future<imageData> f = completionService.take();
ImageData imageData = f.get();
renderlmage(imageData);

}

} catch (InterruptedException €) {
Thread.currentThread().interrupt();

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}
}
}

15-214 61 sormimst

Summary

e Structuring applications around the execution of
tasks can simplify development and facilitate
concurrency

 The Executor framework permits you to decouple
task submission from execution policy

* To maximize benefit of decomposing an
application into tasks, identify sensible task
boundaries

— Not always obvious

15-214 62 [BNN s

Recommended Readings

* Goetz et al. Java Concurrency In Practice.
Pearson Education, 2006, Chapters 5-6

* Lea, Douglas. Concurrent programming in
Java: design principles and patterns. Addison-
Wesley Professional, 2000, Chapter 4.4

15-214 63 [BNf s

