Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety

Christian Kastner Bogdan Vasilescu

institute for

SOFTWARE

RESEARCH - Institute [:ar
|S [et

institute f
el
15_2 14 2 RESEARCH

Example: Money-Grab

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

¥

public long balance() {
return balance;
}

™ P
Institute tor
15-214 Ol | S [RS

What would you expect this to print?

public static void main(String[] args) throws InterruptedException

BankAccount bugs = new BankAccount(1090);
BankAccount daffy = new BankAccount(100);

Thread bugsThread = new Thread(()-> {
for (int i = @; i < 1000000; i++)
transferFrom(daffy, bugs, 100);
})s

Thread daffyThread = new Thread(()-> {
for (int i = @; i < 1000000; i++)
transferFrom(bugs, daffy, 100);
1)

bugsThread.start(); daffyThread.start();
bugsThread.join(); daffyThread.join();
System.out.println(bugs.balance() + daffy.balance());

L J ¢
Institute tor
15-214 a [

What went wrong?

e Daffy & Bugs threads were stomping each
other

* Transfers did not happen in sequence

 Constituent reads and writes interleaved
randomly

e Random results ensued

= Institute [: I
15-214 5 [N sore

Fix: Synchronized access (visibility)

@ThreadSafe
public class BankAccount {

@GuardedBy(“this™)
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}

static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

¥

public synchronized long balance() {
return balance;
}

¥

-
institute for
to2la 6 ol

Example: serial number generation
What would you expect this to print?

public class SerialNumber {
private static long nextSerialNumber = 0;

public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int 1 = @; i < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 _000; j++)
generateSerialNumber();

})s
threads[i].start();

}
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());

™ P
Institute tor
15-214 7 [H s

What went wrong?

 The ++ (increment) operator is not atomic!

— |t reads a field, increments value, and writes it
back

* If multiple calls to generateSerialNumber
see the same value, they generate duplicates

L J
Institute I
15-214 O | S [Boavast

Fix: Synchronized access (atomicity)

@ThreadSafe

public class SerialNumber {
@GuardedBy(“this”)
private static int nextSerialNumber = 0;

public static synchronized int generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException{
Thread threads[] = new Thread[5];
for (int i = @; i < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

})s
threads[i].start();

¥
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());

-
% institute for
-2l o g

Intro to Java

Git, Cl

UML GUIs

Static Analysis

Performance

More Git

GUIs

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,
Contracts, Design Patterns,
Unit Testing

Design for Reuse:
Inheritance, Delegation,
Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem
Responsibility Assignment,
Design Patterns,

GUIl vs Core,

Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Concurrency Primitives,
Synchronization

Designing Abstractions for

Concurrency

Distributed Systems in a
Nutshell

15-214

-
institute for
10 SOFTWARE
RESEARCH

Learning Goals

 Understand and use Java primitives for
concurrency: threads, synchronization, volatile,
wait/notify

* Understand problems of undersynchronization
and oversynchronization

* Use information hiding to reduce need for
synchronization

* Decide on strategy to achieve safety, when and
how to synchronize, and use both find-grained
and coarse-grained synchronization as

appropriate

15-214 11 [e

JAVA PRIMITIVES:
WAIT, NOTIFY, AND TERMINATION

= Institute [: I
15-214 12 [Nf o

Guarded Methods

 What to do on a method if the precondition is
not fulfilled (e.g., transfer money from bank
account with insufficient funds)

* throw exception (balking)

e wait until precondition is fulfilled (guarded
suspension)

e wait and timeout (combination of balking and
guarded suspension)

15-214 s [Hl

Example: Balking

* |If there are multiple calls to the job method, only one will
proceed while the other calls will return with nothing.

public class BalkingExample {
private boolean jobInProgress = false;

public void job() {
synchronized (this) {
1f (jobInProgress) { return; }
jobInProgress = true;

}
// Code to execute job goes here
}
void jobCompleted() {
synchronized (this) {
jobInProgress = false;
}
}
}

-
institute for
12l 14 ol

Guarded Suspension

* Block execution until a given condition is true
* For example,

— pull element from queue, but wait on an empty
gueue

— transfer money from bank account as soon
sufficient funds are there

* Blocking as (often simpler) alternative to
callback

15-214 15 [s

Monitor Mechanics in Java

* Object.wait() — suspends the current thread’s
execution, releasing locks

e Object.wait(timeout) — suspends the current
thread’s execution for up to timeout
milliseconds

* Object.notify() — resumes one of the waiting
threads

e See documentation for exact semantics

-
Institute for
15-214 16 [SIN sove

Example: Guarded Suspension

* Loop until condition is satisfied

— wasteful, since it executes continuously while waiting

public void guardedJoy() {

// Simple loop guard. Wastes

// processor time. Don't do this!
while (!joy) {

¥

System.out.println("Joy has been achieved!");

. institute for
15-214 17 ol

Example: Guarded Suspension

 More efficient: invoke Object.wait to suspend current thread

public synchronized guardedlJoy() {
while(!joy) {
try {
wait();

} catch (InterruptedException e) {}
¥

System.out.println("Joy and efficiency have been achieved!");

}

e When wait is invoked, the thread releases the lock and suspends execution.
The invocation of wait does not return until another thread has issued a
notification

public synchronized notifyJoy() {
joy = true;
notifyAll(Q);

-
institute for
15-214 18 sormst

Never invoke wait outside a loop!
* Loop tests condition before and after waiting

e Test before skips wait if condition already holds

— Necessary to ensure liveness
— Without it, thread can wait forever!

* Testing after wait ensures safety
— Condition may not be true when thread wakens
— If thread proceeds with action, it can destroy invariants!

15-214 1o (B s

All of your waits should look like this

synchronized (obj) {
while (<condition does not hold>) {
obj.wait();
}

. // Perform action appropriate to condition

-
institute tor
15-214 20 MBIl s

Why can a thread wake from awailt
when condition does not hold?

* Another thread can slip in between notify & wake

* Another thread can invoke notify accidentally or
maliciously when condition does not hold

— This is a flaw in java locking design!
— Can work around flaw by using private lock object

* Notifier can be liberal in waking threads
— Using notifyAll is good practice, but causes this

* Waiting thread can wake up without a notify(!)
— Known as a spurious wakeup

15-214 W | S sorTuARE

Guarded Suspension vs Balking

* Guarded suspension:

— Typically only when you know that a method call

will be suspended for a finite and reasonable
period of time

— If suspended for too long, the overall program will
slow down

* Balking:

— Typically only when you know that the method
call suspension will be indefinite or for an
unacceptably long period

15-214 i

Monitor Example

class SimpleBoundedCounter {
protected long count = MIN;
public synchronized long count() { return count; }

public synchronized void inc() throws InterruptedException {
awaitUnderMax(); setCount(count + 1); }

public synchronized void dec() throws InterruptedException {
awaitOverMin(); setCount(count - 1); }

protected void setCount(long newValue) { // PRE: lock held
count = newValue;
notifyAll(); // wake up any thread depending on new value }

protected void awaitUnderMax() throws InterruptedException {
while (count == MAX) wait(); }

protected void awaitOverMin() throws InterruptedException {
while (count == MIN) wait(); }

institute for
15-214 23 sofisas

Interruption

 Difficult to kill threads once started, but may
oolitely ask to stop (thread.interrupt())

* Long-running threads should regularly check
whether they have been interrupted

* Threads waiting with wait () throw exceptions
if interrupted

e Read public class Thread {
. public void interrupt() { ... }
documentatlon public boolean isInterrupted() { ... }
}

15-214 .+ [Hi sorTuARE

Interruption Example

class PrimeProducer extends Thread {

}

private final BlockingQueue<BigInteger> queue;
PrimeProducer(BlockingQueue<BigInteger> queue) {
this.queue = queue;

}
public void run() {
try {
BigInteger p = BigInteger.ONE;
while (!Thread.currentThread().1isInterrupted())
queue.put(p = p.nextProbablePrime());
} catch (InterruptedException consumed) {
/* Allow thread to exit */
}
}

public void cancel() { interrupt(); }

For details, see Java Concurrency In Practice, Chapter 7

15-214

-
institute for
25 SOFTWARE
RESEARCH

BUILDING HIGHER LEVEL
CONCURRENCY MECHANISMS

= Institute [: I
15-214 26 [BY) sorrvare

Beyond Java Primitives

* Java Primitives (synchronized, wait, notify) are
ow level mechanisms

* For most tasks better higher-level abstractions
exist

* Writing own abstractions is possible, but

potentially dangerous — use libraries written
by experts

= Institute [: I
15-214 27 M)} sorrvare

Example: read-write locks (API)
Also known as shared/exclusive mode locks

* If multiple threads are accessing an object for reading data, no
need to use a synchronized block (or other mutually exclusive locks)

private final RwLock lock = new RwLock();

lock.readLock();

try {
// Do stuff that requires read (shared) lock
} finally {

lock.unlock();
}

lock.writelLock();

try {
// Do stuff that requires write (exclusive) lock

} finally {
lock.unlock();
}
f

-
institute tor
15-214 28 sormst

Example: read-write locks (Impl. 1/2)

public class RwLock {
// State fields are protected by RwLock's intrinsic lock

/** Num threads holding lock for read. */
@GuardedBy (“this”)
private int numReaders = 9;

/** Whether lock is held for write. */
@GuardedBy(“this™)
private boolean writelLocked = false;

public synchronized void readLock() throws InterruptedException {
while (writelLocked) {
wait();
}

numReaders++;

-
institute for
12l 29 ol

Example: read-write locks (Impl. 2/2)

public synchronized void writelLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {
wait();
}

writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {
numReaders--;
} else if (writelLocked) {
writeLocked = false;
} else {
throw new IllegalStateException("Lock not held");
}

notifyAll(); // Wake any waiters

-
institute for
12l 30 sofisas

Caveat: RwLock is just a toy!

* |t has poor fairness properties
— Readers can starve writers!

 java.util.concurrent provides an
industrial strength ReadWritelock

* More generally, avoid wait/notify
— In the early days it was all you had
— Nowadays, higher level concurrency utils are better

15-214 s [Hl

Summary

* Concurrency for exploiting multiple processors,
simplifying modeling, simplifying asynchronous
events

e Safety, liveness and performance hazards matter

* Synchronization on any Java object; volatile
ensures visibility

* Wait/notify for guards, interruption for
cancelation — building blocks for higher level
abstractions

15-214 2 [Hl

THREAD SAFETY:
DESIGN TRADEOFFS

z Institute [: I
15-214 33 |BY sormae

Recall: Synchronization for Safety

* If multiple threads access the same mutable state
variable without appropriate synchronization, the

program is broken.

* There are three ways to fix it:
— Don't share the state variable across threads;

— Make the state variable immutable; or
— Use synchronization whenever accessing the state variable.

5t
SSSSSSSS

15-214 34 [H o

Thread Confinement

* Ensure variables are not shared across threads
(concurrency version of encapsulation)

e Stack confinement:

— Object only reachable through local variables (never
leaves method) = accessible only by one thread

— Primitive local variables always thread-local

 Confinement across methods/in classes needs
to be done carefully (see immutability)

15-214 s [H i

Example: Thread Confinement

e Shared ark object
* TreeSet is not thread safe but it’s local 2 can’t leak

* Defensive copying on AnimalPair

public int loadTheArk(Collection<Animal> candidates) {
SortedSet<Animal> animals;
int numPairs = 0;
Animal candidate = null;

// animals confined to method, don't let them escape!
animals = new TreeSet<Animal>(nhew SpeciesGenderComparator());
animals.addAl1l(candidates);

for (Animal a : animals) {

1f (candidate == null || !candidate.isPotentialMate(a))
candidate = a;

else {
ark.load(hew AnimalPair(candidate, a));
++numPairs;

candidate = null;
¥
¥
return numPairs;

institute for
15-214 36 sormst

Confinement with ThreadLocal

 ThreadlLocal holds a separate value for each
cache (essentially Map<Thread,T>)
— create variables that can only be read and written
by the same thread

— if two threads are executing the same code, and
the code has a reference to a ThreadlLocal
variable, then the two threads cannot see each

other's ThreadLocal variables

rrrrrrrrrrrrrr
SSSSSSSS

15-214 37 ININ o :

Example: ThreadlLocal

public static class MyRunnable implements Runnable {
private ThreadLocal<Integer> threadlLocal = new ThreadLocal<Integer>();

@0verride
public void run() {
threadlLocal .set((int) (Math.random() * 100D));

System.out.println(threadlLocal.get());
}

public static void main(String[] args) throws InterruptedException {
MyRunnable sharedRunnableInstance = new MyRunnable();

Thread threadl = new Thread(sharedRunnablelInstance);
Thread thread2 = new Thread(sharedRunnablelInstance);

threadl.start(Q);
thread2.start(Q);

threadl.join(); // wait for thread 1 to terminate
thread2.j0in(); // wait for thread 2 to terminate

institute for
15-214 From: http://tutorials.jenkov.com/java-concurrency/threadlocal.html 38 |Sr SOFTWARE

Immutable Objects

 Immutable objects can be shared freely

* Remember:

— Fields initialized in constructor
— Fields final

— Defensive copying if mutable objects used internally

15-214 30 [Hl i

Synchronization

* Thread-safe objects vs guarded:

— Thread-safe objects perform synchronization
internally (clients can always call safely)

— Guarded objects require clients to acquire lock
for safe calls

 Thread-safe objects are idiot-proof to use,
but guarded objects can be more flexible

15-214 w0 [Hizw

Designing Thread-Safe Objects

* |dentify variables that represent the object’s
state
— may be distributed across multiple objects

* |dentify invariants that constraint the state

variables

— important to understand invariants to ensure
atomicity of operations

e Establish a policy for managing concurrent
access to state

15-214 P (S En

What would you change here?

@ThreadSafe
public class PersonSet {
@GuardedBy("this™)
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public synchronized void addPerson(Person p) {
mySet.add(p);
¥

public synchronized boolean containsPerson(Person p) {
return mySet.contains(p);
¥

public synchronized void setlLast(Person p) {
this.last = p;
}

- ¢
institute tor
15-214 a2 [Hieme

Coarse-Grained Thread-Safety

* Synchronize all access to all state with the object

@ThreadSafe
public class PersonSet {
@GuardedBy("this™)
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this™)
private Person last = null;

public synchronized void addPerson(Person p) {
mySet.add(p);
¥

public synchronized boolean containsPerson(Person p) {
return mySet.contains(p);
¥

public synchronized void setlLast(Person p) {
this.last = p;
}

-
institute for
12l a3 ol

Fine-Grained Thread-Safety

* “Lock splitting”: Separate state into independent regions with
different locks

15-214

@ThreadSafe

public class PersonSet {
@GuardedBy(“myset")

private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public void addPerson(Person p) {
synchronized (mySet) {
mySet.add(p);
}

}

public boolean containsPerson(Person p) {
synchronized (mySet) {
return mySet.contains(p);
}

}

public synchronized void setLast(Person p) {
this.last = p;
}

institute for
44 I S SOFTWARE
RESEARCH

Private Locks

* Any object can serve as lock

15-214

@ThreadSafe
public class PersonSet {

@GuardedBy(“myset™)
private final Set<Person> mySet = new HashSet<Person>();

private final Object myLock = new Object();
@GuardedBy(“myLock™)
private Person last = null;

public void addPerson(Person p) {
synchronized (mySet) {
mySet.add(p);

}

public synchronized boolean containsPerson(Person p) {
synchronized (mySet) {
return mySet.contains(p);
ks

}

public void setLast(Person p) {
synchronized (myLock) {
this.last = p;
ks

=, N
institute for

SOFTWARE
45 I S r RESEARCH

Delegating thread-safety to well
designed classes

* Recall previous CountingFactorizer

@NotThreadSafe
public class CountingFactorizer implements Servlet {

private long count = 0;
public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

-
institute for
15-214 a6 ol

Delegating thread-safety to well
designed classes

* Replace long counter with an AtomiclLong

@ThreadSafe
public class CountingFactorizer implements Servlet {
private final AtomicLong count = new AtomiclLong(Q);

public long getCount() { return count.get(); }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger 1 = extractFromRequest(req);
BigInteger[] factors = factor(i);
count.incrementAndGet();
encodeIntoResponse(resp, factors);

-
institute for
15-214 47 ol

Synchronize only relevant method parts

* Design heuristic:

— Get in, get done, and get out
* Obtain lock
* Examine shared data
* Transform as necessary
* Drop lock

— If you must do something slow, move it outside
synchronized region

15-214 s [Hlzw

Example: What to synchronize?

@ThreadSafe
public class AttributeStore {
@GuardedBy("this™)
private final Map<String, String>
attributes = new HashMap<String, String>(Q);

public synchronized boolean userlLocationMatches(String name,
String regexp) {
String key = "users." + name + ".location";
String location = attributes.get(key);
if (location == null)
return false;
else

return Pattern.matches(regexp, location);

= institute for
15-214 SR | S [i

Narrowing lock scope

@ThreadSafe
public class BetterAttributeStore {
@GuardedBy("this")
private final Map<String, String>
attributes = new HashMap<String, String>(Q);

public boolean userLocationMatches(String name, String regexp) {
String key = "users." + name + ".location";
String location;
synchronized (this) {
location = attributes.get(key);
¥

1f (location == null)
return false;

else
return Pattern.matches(regexp, location);

ste fe

m institt o1
15-214 50 S

Fine-Grained vs Coarse-Grained Tradeoffs

* Coarse-Grained is simpler

* Fine-Grained allows concurrent access to different
parts of the state

* When invariants span multiple variants, fine-grained
locking needs to ensure that all relevant parts are
using the same lock or are locked together

* Acquiring multiple locks requires care to avoid
deadlocks

15-214 s [Hl

Over vs Undersynchronization

* Undersynchronization -> safety hazard

* Oversynchronization -> liveness hazard and
reduced performance

15:214 sz [Fll e

Guards and Client-Side Locking

Where is the issue?

public class ListHelper<E> {
public List<E> list =
Collections.synchronizedList(new ArrayList<E>());

public synchronized boolean putIfAbsent(E x) {
boolean absent = !list.contains(x);
if (absent)
list.add(x);
return absent;

L J ¢
institute ror
15-214 53 [H e

Guards and Client-Side Locking

* Synchronize on target:

public class ListHelper<E> {
public List<E> list =
Collections.synchronizedList(new ArrayList<E>());

public boolean putIfAbsent(E x) {
synchronize(list) {
boolean absent = !list.contains(x);
if (absent)
list.add(x);
return absent;

- institute for
15-214 54 sormst

Avoiding deadlock

* Deadlock caused by a cycle in waits-for graph
— T1: synchronized(a){ synchronized(b){ .. } }
— T2: synchronized(b){ synchronized(a){ .. } }

G,

 To avoid these deadlocks:

— When threads have to hold multiple locks at the same
time, all threads obtain locks in same order

L J
Institute tor
15-214 s5 YA sormae

Summary of policies:

 Thread-confined. A thread-confined object is owned exclusively by

and confined to one thread, and can be modified by its owning
thread.

 Shared read-only. A shared read-only object can be accessed
concurrently by multiple threads without additional
synchronization, but cannot be modified by any thread. Shared
read-only objects include immutable and effectively immutable
objects.

 Shared thread-safe. A thread-safe object performs
synchronization internally, so multiple threads can freely access
it through its public interface without further synchronization.

* Guarded. A guarded object can be accessed only with a
specific lock held. Guarded objects include those that are
encapsulated within other thread-safe objects and published
objects that are known to be guarded by a specific lock.

- Institute for
15-214 56 bk

Tradeoffs

* Strategies:
— Don't share the state variable across threads;
— Make the state variable immutable; or

— Use synchronization whenever accessing the state
variable.

* Thread-safe vs guarded
e Coarse-grained vs fine-grained synchronization

 When to choose which strategy?
— Avoid synchronization if possible
— Choose simplicity over performance where possible

15-214 s7 [Hl i

Documentation

* Document a class's thread safety guarantees
for its clients

* Document its synchronization policy for its
maintainers.

e @ThreadSafe, @GuardedBy annotations not
standard but useful

15-214 se [Hl it

REUSE RATHER THAN BUILD:
KNOW THE LIBRARIES

z Institute [: I
15-214 s9 |BYf sorma

java.util.concurrent is BIG (1)

e Atomic vars - java.util.concurrent.atomic
— Support various atomic read-modify-write ops

 Executor framework
— Tasks, futures, thread pools, completion service, etc.
* Locks - java.util.concurrent.locks

— Read-write locks, conditions, etc.

* Synchronizers

— Semaphores, cyclic barriers, countdown latches, etc.

15-214 so [l

java.util.concurrent is BIG (2)

* Concurrent collections
— Shared maps, sets, lists

* Data Exchange Collections
— Blocking queues, deques, etc.

* Pre-packaged functionality - java.util.arrays

— Parallel sort, parallel prefix

15-214 o1 [Hlis

Parallel Collections

e Java 1.2: Collections.synchronizedMap(map)

* Java 5: ConcurrentMap
— putlfAbsent, replace, ... built in
— Fine-grained synchronization

* BlockingQueue, CopyOnWriteArraylList, ...

5t
SSSSSSSS

15-214 62 [o

Summary

 Three design strategies for achieving safety:
"hread locality, immutability and synchronization
* Tradeoffs for synchronization

— thread-safe vs guarding

— fine-grained vs coarse-grained
— simplicity vs performance

* Avoiding deadlocks

 Reuse rather than build abstractions; know the
libraries

15-214 os [0

Recommended Readings

* Goetz et al. Java Concurrency In Practice.
Pearson Education, 2006, Chapters 2-5, 11

* Lea, Douglas. Concurrent programming in
Java: design principles and patterns. Addison-
Wesley Professional, 2000.

15-214 os [H0 i

