
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:	
Objects,	Design,	and	Concurrency

Concurrency:	Safety

Christian	Kästner Bogdan	Vasilescu



215-214



315-214

Example:	Money-Grab
public class BankAccount {

private long balance;

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {

source.balance -= amount;
dest.balance += amount;

}

public long balance() {
return balance;

}
}



415-214

What	would	you	expect	this	to	print?	
public static void main(String[] args) throws InterruptedException

{
BankAccount bugs = new BankAccount(100);
BankAccount daffy = new BankAccount(100);

Thread bugsThread = new Thread(()-> {
for (int i = 0; i < 1000000; i++)

transferFrom(daffy, bugs, 100);
});

Thread daffyThread = new Thread(()-> {
for (int i = 0; i < 1000000; i++)

transferFrom(bugs, daffy, 100);
});

bugsThread.start(); daffyThread.start();
bugsThread.join(); daffyThread.join();
System.out.println(bugs.balance() + daffy.balance());

}



515-214

What	went	wrong?

• Daffy	&	Bugs	threads	were	stomping	each	
other

• Transfers	did	not	happen	in	sequence
• Constituent	reads	and	writes	interleaved	
randomly

• Random	results	ensued



615-214

Fix:	Synchronized	access	(visibility)
@ThreadSafe
public class BankAccount {

@GuardedBy(“this”)
private long balance;

public BankAccount(long balance) {
this.balance = balance;

}

static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {

source.balance -= amount;
dest.balance += amount;

}

public synchronized long balance() {
return balance;

}
}



715-214

Example:	serial	number	generation
What	would	you	expect	this	to	print?
public class SerialNumber {

private static long nextSerialNumber = 0;

public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = 0; i < threads.length; i++) {

threads[i] = new Thread(() -> {
for (int j = 0; j < 1_000_000; j++)

generateSerialNumber();
});
threads[i].start();

}
for(Thread thread : threads) thread.join();
System.out.println(generateSerialNumber());

}
}



815-214

What	went	wrong?

• The	++	(increment)	operator	is	not	atomic!
– It	reads	a	field,	increments	value,	and	writes	it	
back

• If	multiple	calls	to	generateSerialNumber
see	the	same	value,	they	generate	duplicates



915-214

Fix:	Synchronized	access	(atomicity)
@ThreadSafe
public class SerialNumber {

@GuardedBy(“this”)
private static int nextSerialNumber = 0;

public static synchronized int generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException{
Thread threads[] = new Thread[5];
for (int i = 0; i < threads.length; i++) {

threads[i] = new Thread(() -> {
for (int j = 0; j < 1_000_000; j++)

generateSerialNumber();
});
threads[i].start();

}
for(Thread thread : threads) thread.join();
System.out.println(generateSerialNumber());

}
}



1015-214

Part	1:
Design	at	a	Class	Level

Design	for	Change:
Information	Hiding,	

Contracts,	Design	Patterns,	
Unit	Testing

Design	for	Reuse:
Inheritance,	Delegation,	

Immutability,	LSP,	
Design	Patterns

Part	2:
Designing	(Sub)systems

Understanding	the	Problem

Responsibility	Assignment,	
Design	Patterns,	
GUI	vs	Core,

Design	Case	Studies

Testing	Subsystems

Design	for	Reuse	at	Scale:
Frameworks	and	APIs

Part	3:
Designing	Concurrent	

Systems

Concurrency	Primitives,
Synchronization

Designing	Abstractions	for	
Concurrency

Distributed	Systems	in	a	
Nutshell

Intro	to	Java

Git,	CI
Static	Analysis

GUIsUML More	Git

GUIs
Performance

Design



1115-214

Learning	Goals
• Understand	and	use	Java	primitives	for	
concurrency:	threads,	synchronization,	volatile,	
wait/notify

• Understand	problems	of	undersynchronization
and	oversynchronization

• Use	information	hiding	to	reduce	need	for	
synchronization

• Decide	on	strategy	to	achieve	safety,	when	and	
how	to	synchronize,	and	use	both	find-grained	
and	coarse-grained	synchronization	as	
appropriate



1215-214

JAVA	PRIMITIVES:
WAIT,	NOTIFY,	AND	TERMINATION



1315-214

Guarded	Methods

• What	to	do	on	a	method	if	the	precondition	is	
not	fulfilled	(e.g.,	transfer	money	from	bank	
account	with	insufficient	funds)
• throw	exception	(balking)
• wait	until	precondition	is	fulfilled	(guarded
suspension)

• wait	and	timeout	(combination of	balking	and	
guarded	suspension)



1415-214

Example:	Balking
• If	there	are	multiple	calls	to	the	job	method,	only	one	will	

proceed	while	the	other	calls	will	return	with	nothing.

public class BalkingExample {
private boolean jobInProgress = false;

public void job() {
synchronized (this) {

if (jobInProgress) { return; }
jobInProgress = true;

}
// Code to execute job goes here

}

void jobCompleted() {
synchronized (this) {

jobInProgress = false;
}

}
}



1515-214

Guarded	Suspension

• Block	execution	until	a	given	condition	is	true
• For	example,	
– pull	element	from	queue,	but	wait	on	an	empty	
queue

– transfer	money	from	bank	account	as	soon	
sufficient	funds	are	there

• Blocking	as	(often	simpler)	alternative	to	
callback



1615-214

Monitor	Mechanics	in	Java

• Object.wait()	– suspends	the	current	thread’s	
execution,	releasing	locks

• Object.wait(timeout)	– suspends	the	current	
thread’s	execution	for	up	to	timeout	
milliseconds

• Object.notify()	– resumes	one	of	the	waiting	
threads

• See	documentation	for	exact	semantics



1715-214

Example:	Guarded	Suspension

public void guardedJoy() {
// Simple loop guard. Wastes
// processor time. Don't do this!
while (!joy) {
}
System.out.println("Joy has been achieved!");

}

• Loop	until	condition	is	satisfied
– wasteful,	since	it	executes	continuously	while	waiting



1815-214

public synchronized guardedJoy() { 
while(!joy) {

try {
wait();

} catch (InterruptedException e) {} 
}
System.out.println("Joy and efficiency have been achieved!"); 

}

public synchronized notifyJoy() { 
joy = true;
notifyAll(); 

}

Example:	Guarded	Suspension
• More	efficient:	invoke	Object.wait to	suspend	current	thread

• When	wait	is	invoked,	the	thread	releases	the	lock	and	suspends	execution.	
The	invocation	of	wait	does	not	return	until	another	thread	has	issued	a	
notification



1915-214

Never invoke	wait	outside	a	loop!

• Loop	tests	condition	before	and	after	waiting

• Test	before	skips	wait if	condition	already	holds
– Necessary	to	ensure	liveness
– Without	it,	thread	can	wait	forever!

• Testing	after	wait ensures	safety
– Condition	may	not	be	true	when	thread	wakens
– If	thread	proceeds	with	action,	it	can	destroy	invariants!



2015-214

All of	your	waits	should	look	like	this
synchronized (obj) {

while (<condition does not hold>) {
obj.wait();

}

... // Perform action appropriate to condition
}



2115-214

Why	can	a	thread	wake	from	a	wait
when	condition	does	not	hold?
• Another	thread	can	slip	in	between	notify&	wake

• Another	thread	can	invoke	notify accidentally	or	
maliciously	when	condition	does	not	hold
– This	is	a	flaw	in	java	locking	design!
– Can	work	around	flaw	by	using	private	lock	object

• Notifier can	be	liberal	in	waking	threads
– Using	notifyAll is	good	practice,	but	causes	this

• Waiting	thread	can	wake	up	without	a	notify(!)
– Known	as	a	spurious	wakeup



2215-214

Guarded	Suspension	vs	Balking

• Guarded	suspension:	
– Typically	only	when	you	know	that	a	method	call	
will	be	suspended	for	a	finite	and	reasonable	
period	of	time

– If	suspended	for	too	long,	the	overall	program	will	
slow	down

• Balking:
– Typically	only	when	you	know	that	the	method	
call	suspension	will	be	indefinite	or	for	an	
unacceptably	long	period



2315-214

Monitor	Example
class SimpleBoundedCounter {

protected long count = MIN;
public synchronized long count() { return count; }

public synchronized void inc() throws InterruptedException {
awaitUnderMax(); setCount(count + 1);  }

public synchronized void dec() throws InterruptedException {
awaitOverMin(); setCount(count - 1);  }

protected void setCount(long newValue) { // PRE: lock held
count = newValue;
notifyAll(); // wake up any thread depending on new value }

protected void awaitUnderMax() throws InterruptedException {
while (count == MAX) wait();  }

protected void awaitOverMin() throws InterruptedException {
while (count == MIN) wait();  }

}



2415-214

Interruption

• Difficult	to	kill	threads	once	started,	but	may	
politely	ask	to	stop	(thread.interrupt())

• Long-running	threads	should	regularly	check	
whether	they	have	been	interrupted

• Threads	waiting	with	wait() throw	exceptions	
if	interrupted

• Read
documentation

public class Thread {
public void interrupt() { ... }
public boolean isInterrupted() { ... }
...

}



2515-214

Interruption	Example

For details, see Java Concurrency In Practice, Chapter 7

class PrimeProducer extends Thread {
private final BlockingQueue<BigInteger> queue;
PrimeProducer(BlockingQueue<BigInteger> queue) {

this.queue = queue;
}
public void run() {

try {
BigInteger p = BigInteger.ONE;
while (!Thread.currentThread().isInterrupted())

queue.put(p = p.nextProbablePrime());
} catch (InterruptedException consumed) {
/* Allow thread to exit */

}
}
public void cancel() { interrupt(); }

}



2615-214

BUILDING	HIGHER	LEVEL	
CONCURRENCY	MECHANISMS



2715-214

Beyond	Java	Primitives

• Java	Primitives	(synchronized,	wait,	notify)	are	
low	level	mechanisms

• For	most	tasks	better	higher-level	abstractions	
exist

• Writing	own	abstractions	is	possible,	but	
potentially	dangerous	– use	libraries	written	
by	experts



2815-214

Example:	read-write	locks	(API)
Also	known	as	shared/exclusive	mode	locks

private final RwLock lock = new RwLock();

lock.readLock();
try {

// Do stuff that requires read (shared) lock
} finally {

lock.unlock();
}

lock.writeLock();
try {

// Do stuff that requires write (exclusive) lock
} finally {

lock.unlock();
}

• If	multiple	threads	are	accessing	an	object	for	reading	data,	no	
need	to	use	a	synchronized block	(or	other	mutually	exclusive	locks)



2915-214

Example:	read-write	locks	(Impl.	1/2)

public class RwLock {
// State fields are protected by RwLock's intrinsic lock

/** Num threads holding lock for read. */
@GuardedBy(“this”)

private int numReaders = 0;      

/** Whether lock is held for write. */
@GuardedBy(“this”)

private boolean writeLocked = false;

public synchronized void readLock() throws InterruptedException { 
while (writeLocked) {

wait();
}
numReaders++;

}



3015-214

Example:	read-write	locks	(Impl.	2/2)

public synchronized void writeLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {

wait();
}
writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {

numReaders--;
} else if (writeLocked) {

writeLocked = false;
} else {

throw new IllegalStateException("Lock not held");
}
notifyAll(); // Wake any waiters

}
}



3115-214

Caveat:	RwLock is	just	a	toy!

• It	has	poor	fairness	properties
– Readers	can	starve	writers!

• java.util.concurrent provides	an	
industrial	strength	ReadWriteLock

• More	generally,	avoid	wait/notify
– In	the	early	days	it	was	all	you	had
– Nowadays,	higher	level	concurrency	utils are	better



3215-214

Summary

• Concurrency	for	exploiting	multiple	processors,	
simplifying	modeling,	simplifying	asynchronous	
events

• Safety,	liveness	and	performance	hazards	matter
• Synchronization	on	any	Java	object;	volatile	
ensures	visibility

• Wait/notify	for	guards,	interruption	for	
cancelation	– building	blocks	for	higher	level	
abstractions



3315-214

THREAD	SAFETY:	
DESIGN	TRADEOFFS



3415-214

Recall:	Synchronization	for	Safety

• If	multiple	threads	access	the	same	mutable	state	
variable	without	appropriate	synchronization,	the	
program	is	broken.	

• There	are	three	ways	to	fix	it:	
– Don't	share	the	state	variable	across	threads;	
– Make	the	state	variable	immutable;	or	
– Use	synchronization	whenever	accessing	the	state	variable.	



3515-214

Thread	Confinement

• Ensure	variables	are	not	shared	across	threads	
(concurrency	version	of	encapsulation)

• Stack	confinement:
– Object	only	reachable	through	local	variables	(never	
leaves	method)	à accessible	only	by	one	thread

– Primitive	local	variables	always	thread-local

• Confinement	across	methods/in	classes	needs	
to	be	done	carefully	(see	immutability)



3615-214

Example:	Thread	Confinement

public int loadTheArk(Collection<Animal> candidates) {
SortedSet<Animal> animals;
int numPairs = 0;
Animal candidate = null;
// animals confined to method, don't let them escape!
animals = new TreeSet<Animal>(new SpeciesGenderComparator());
animals.addAll(candidates);
for (Animal a : animals) {

if (candidate == null || !candidate.isPotentialMate(a))
candidate = a;

else {
ark.load(new AnimalPair(candidate, a));
++numPairs;
candidate = null;

}
}
return numPairs;

}

• Shared	ark	object
• TreeSet is	not	thread	safe	but	it’s	local	à can’t	leak
• Defensive	copying	on	AnimalPair



3715-214

Confinement	with	ThreadLocal

• ThreadLocal holds	a	separate	value	for	each	
cache	(essentially	Map<Thread,T>)
– create	variables	that	can	only	be	read	and	written	
by	the	same	thread

– if	two	threads	are	executing	the	same	code,	and	
the	code	has	a	reference	to	a	ThreadLocal
variable,	then	the	two	threads	cannot	see	each	
other's	ThreadLocal variables



3815-214

Example:	ThreadLocal
public static class MyRunnable implements Runnable {

private ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>();

@Override
public void run() {

threadLocal.set((int) (Math.random() * 100D));

System.out.println(threadLocal.get());
}

}

public static void main(String[] args) throws InterruptedException {
MyRunnable sharedRunnableInstance = new MyRunnable();

Thread thread1 = new Thread(sharedRunnableInstance);
Thread thread2 = new Thread(sharedRunnableInstance);

thread1.start();
thread2.start();

thread1.join(); // wait for thread 1 to terminate
thread2.join(); // wait for thread 2 to terminate

}

From: http://tutorials.jenkov.com/java-concurrency/threadlocal.html



3915-214

Immutable	Objects

• Immutable	objects	can	be	shared	freely
• Remember:
– Fields	initialized	in	constructor
– Fields	final
– Defensive	copying	if	mutable	objects	used	internally



4015-214

Synchronization

• Thread-safe objects	vs	guarded:
– Thread-safe	objects	perform	synchronization	
internally	(clients	can	always	call	safely)

– Guarded	objects	require	clients	to	acquire	lock	
for	safe	calls

• Thread-safe	objects	are	idiot-proof	to	use,	
but	guarded	objects	can	be	more	flexible



4115-214

Designing	Thread-Safe	Objects

• Identify	variables	that	represent	the	object’s	
state
– may	be	distributed	across	multiple	objects

• Identify	invariants	that	constraint	the	state	
variables	
– important	to	understand	invariants	to	ensure	
atomicity	of	operations

• Establish	a	policy	for	managing	concurrent	
access	to	state



4215-214

What	would	you	change	here?
@ThreadSafe
public class PersonSet {

@GuardedBy("this")
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public synchronized void addPerson(Person p) {
mySet.add(p);

}

public synchronized boolean containsPerson(Person p) {
return mySet.contains(p);

}

public synchronized void setLast(Person p) {
this.last = p;

}
}



4315-214

Coarse-Grained	Thread-Safety
• Synchronize	all	access	to	all	state	with	the	object

@ThreadSafe
public class PersonSet {

@GuardedBy("this")
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public synchronized void addPerson(Person p) {
mySet.add(p);

}

public synchronized boolean containsPerson(Person p) {
return mySet.contains(p);

}

public synchronized void setLast(Person p) {
this.last = p;

}
}



4415-214

Fine-Grained	Thread-Safety
• “Lock	splitting”:	Separate	state	into	independent	regions	with	

different	locks
@ThreadSafe
public class PersonSet {

@GuardedBy(“myset")
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public void addPerson(Person p) {
synchronized (mySet) {

mySet.add(p);
}

}

public boolean containsPerson(Person p) {
synchronized (mySet) {

return mySet.contains(p);
}

}

public synchronized void setLast(Person p) {
this.last = p;

}
}



4515-214

Private	Locks
• Any	object	can	serve	as	lock

@ThreadSafe
public class PersonSet {

@GuardedBy(“myset")
private final Set<Person> mySet = new HashSet<Person>();

private final Object myLock = new Object();
@GuardedBy(“myLock")
private Person last = null;

public void addPerson(Person p) {
synchronized (mySet) {

mySet.add(p);
}

}

public synchronized boolean containsPerson(Person p) {
synchronized (mySet) {

return mySet.contains(p);
}

}

public void setLast(Person p) {
synchronized (myLock) {

this.last = p;
}

}
}



4615-214

Delegating	thread-safety	to	well	
designed	classes
• Recall	previous	CountingFactorizer

@NotThreadSafe
public class CountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}



4715-214

Delegating	thread-safety	to	well	
designed	classes
• Replace	long	counter	with	an	AtomicLong

@ThreadSafe
public class CountingFactorizer implements Servlet {

private final AtomicLong count = new AtomicLong(0);

public long getCount() { return count.get(); }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
count.incrementAndGet();
encodeIntoResponse(resp, factors);

}
}



4815-214

Synchronize	only	relevant	method	parts

• Design	heuristic:
– Get	in,	get	done,	and	get	out
• Obtain	lock
• Examine	shared	data
• Transform	as	necessary
• Drop	lock

– If	you	must	do	something	slow,	move	it	outside	
synchronized	region



4915-214

Example:	What	to	synchronize?

@ThreadSafe
public class AttributeStore {

@GuardedBy("this")
private final Map<String, String> 

attributes = new HashMap<String, String>();

public synchronized boolean userLocationMatches(String name,
String regexp) {

String key = "users." + name + ".location";
String location = attributes.get(key);
if (location == null)

return false;
else

return Pattern.matches(regexp, location);
}

}



5015-214

Narrowing	lock	scope
@ThreadSafe
public class BetterAttributeStore {

@GuardedBy("this")
private final Map<String, String> 

attributes = new HashMap<String, String>();

public boolean userLocationMatches(String name, String regexp) {
String key = "users." + name + ".location";
String location;
synchronized (this) {

location = attributes.get(key);
}
if (location == null)

return false;
else

return Pattern.matches(regexp, location);
}

}



5115-214

Fine-Grained	vs	Coarse-Grained	Tradeoffs

• Coarse-Grained	is	simpler

• Fine-Grained	allows	concurrent	access	to	different	
parts	of	the	state

• When	invariants	span	multiple	variants,	fine-grained	
locking	needs	to	ensure	that	all	relevant	parts	are	
using	the	same	lock	or	are	locked	together

• Acquiring	multiple	locks	requires	care	to	avoid	
deadlocks



5215-214

Over	vs	Undersynchronization

• Undersynchronization ->	safety	hazard
• Oversynchronization ->	liveness	hazard	and	
reduced	performance



5315-214

Guards	and	Client-Side	Locking
Where	is	the	issue?

public class ListHelper<E> {
public List<E> list =

Collections.synchronizedList(new ArrayList<E>());
...
public synchronized boolean putIfAbsent(E x) {

boolean absent = !list.contains(x);
if (absent)

list.add(x);
return absent;

}
}



5415-214

Guards	and	Client-Side	Locking

• Synchronize	on	target:
public class ListHelper<E> {

public List<E> list =
Collections.synchronizedList(new ArrayList<E>());

...
public boolean putIfAbsent(E x) {

synchronize(list) {
boolean absent = !list.contains(x);
if (absent)

list.add(x);
return absent;

}
}

}



5515-214

Avoiding	deadlock

• Deadlock	caused	by	a	cycle	in	waits-for	graph
– T1:	synchronized(a){ synchronized(b){ … } }
– T2:	synchronized(b){ synchronized(a){ … } }

• To	avoid	these	deadlocks:
– When	threads	have	to	hold	multiple	locks	at	the	same	
time,	all	threads	obtain	locks	in	same	order

T1 T2
b

a



5615-214

Summary	of	policies:
• Thread-confined.	A	thread-confined	object	is	owned	exclusively	by	

and	confined	to	one	thread,	and	can	be	modified	by	its	owning	
thread.	

• Shared		read-only. A		shared		read-only		object		can		be		accessed		
concurrently		by		multiple		threads		without		additional	
synchronization,		but		cannot		be		modified		by		any		thread.		Shared		
read-only		objects		include		immutable		and		effectively	immutable	
objects.	

• Shared		thread-safe.		A		thread-safe		object		performs		
synchronization		internally,		so		multiple		threads		can		freely		access		
it	through	its	public	interface	without	further	synchronization.	

• Guarded.		A		guarded		object		can		be		accessed		only		with		a		
specific		lock		held.		Guarded		objects		include		those		that		are	
encapsulated	within	other	thread-safe	objects	and	published	
objects	that	are	known	to	be	guarded	by	a	specific	lock.	



5715-214

Tradeoffs

• Strategies:
– Don't	share	the	state	variable	across	threads;	
–Make	the	state	variable	immutable;	or	
– Use	synchronization	whenever	accessing	the	state	
variable.	
• Thread-safe	vs	guarded
• Coarse-grained	vs	fine-grained	synchronization

• When	to	choose	which	strategy?
– Avoid	synchronization	if	possible
– Choose	simplicity	over	performance	where	possible



5815-214

Documentation

• Document	a	class's	thread	safety	guarantees	
for	its	clients	

• Document	its	synchronization	policy	for	its	
maintainers.

• @ThreadSafe,	@GuardedBy annotations	not	
standard	but	useful



5915-214

REUSE	RATHER	THAN	BUILD:	
KNOW	THE	LIBRARIES



6015-214

java.util.concurrent	is	BIG	(1)

• Atomic	vars - java.util.concurrent.atomic
– Support	various	atomic	read-modify-write	ops

• Executor	framework
– Tasks,	futures,	thread	pools,	completion	service,	etc.

• Locks	- java.util.concurrent.locks
– Read-write	locks,	conditions,	etc.

• Synchronizers
– Semaphores,	cyclic	barriers,	countdown	latches,		etc.



6115-214

java.util.concurrent	is	BIG	(2)

• Concurrent	collections
– Shared	maps,	sets,	lists

• Data	Exchange	Collections
– Blocking	queues,	deques,	etc.

• Pre-packaged	functionality	- java.util.arrays
– Parallel	sort,	parallel	prefix



6215-214

Parallel	Collections

• Java	1.2:	Collections.synchronizedMap(map)
• Java	5:	ConcurrentMap
– putIfAbsent,	replace,	…	built	in
– Fine-grained	synchronization

• BlockingQueue,	CopyOnWriteArrayList,	…



6315-214

Summary

• Three	design	strategies	for	achieving	safety:	
Thread	locality,	immutability	and	synchronization

• Tradeoffs	for	synchronization
– thread-safe	vs	guarding
– fine-grained	vs	coarse-grained
– simplicity	vs	performance

• Avoiding	deadlocks
• Reuse	rather	than	build	abstractions;	know	the	
libraries



6415-214

Recommended	Readings

• Goetz	et	al.	Java	Concurrency	In	Practice.	
Pearson	Education,	2006,	Chapters	2-5,	11

• Lea,	Douglas.	Concurrent	programming	in	
Java:	design	principles	and	patterns.	Addison-
Wesley	Professional,	2000.


