
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:	
Objects,	Design,	and	Concurrency

Concurrency:	
Motivation	and	Primitives

Christian	Kästner Bogdan	Vasilescu

215-214

Administrivia (1)
• Signup	procedure	and	deadline	for	HW5a
– Teams	of	2	or	3.	Form	your	team	and	sign	up	for	a	
presentation	time	by	Thursday,	Mar	30,	11:59pm.	
• You	may	utilize	the	"Search	for	Teammates"	thread @5 to	help	you	
find	teammates.

• Stick	around	after	class	today	if	you	don’t	have	partners	yet.
• Two	places	to	sign	up:	Google	Sheet	&	GitHub	repo.	See	@652

– Short	presentation	(max	10	min,	6	slides	or	fewer)	in	
recitation on	Wednesday,	April	5 in	front	of	your	
classmates.
• Goal:	illustrate	how	you	achieve	reuse	in	a	domain	
• Describe	domain,	examples	of	plugins,	decisions	regarding	
generality	vs	specificity,	overall	project	structure	(e.g.,	how	are	
plugins	loaded),	plugin	interfaces

• Similar	to	design	review	sessions

315-214

Administrivia (2)

• Second	midterm,	Thursday	Mar	30	in	class.
• Midterm	review	session	today 7:30pm	in GHC	4401.
• Concurrency	not	tested	on	the	midterm
– But	everything	in	the	course	including	readings	is	fair	game
– We	will	focus	on	the	middle	part	of	the	course	and	the	
things	that	you	had	more	chances	to	practice	
• e.g.	more	UML/design	than	API	design

415-214

Administrivia (3)

• Good	discussion	on	Piazza	about	the	Reading	Quiz	
question	2	(Chapter	6	of	“Beautiful	Code”):	

• Q:	“What	are	some	of	the	mentioned	mechanisms	that	can	
help	ensure	backward-compatibility?”
– A:	Using	design	patterns
– A:	Using	interfaces
– A:	Controlling	visibility

• A:	Using	design	patterns:
– Book:	“Provide	well-defined	‘hook	points’	that	permit	extensibility	in	

the	places	where	you	intend	it	to	occur.”
– Example	of	how	the Observer	pattern	can	be	used	to	provide	such	

hook	points

515-214

Administrivia (4)

• Commit	messages	are	(one	of)	your	primary	means	
of	communication	with	the	rest	of	the	team.
– This	will	become	more	obvious	in	HW5.

615-214

715-214

Part	1:
Design	at	a	Class	Level

Design	for	Change:
Information	Hiding,	

Contracts,	Design	Patterns,	
Unit	Testing

Design	for	Reuse:
Inheritance,	Delegation,	

Immutability,	LSP,	
Design	Patterns

Part	2:
Designing	(Sub)systems

Understanding	the	Problem

Responsibility	Assignment,	
Design	Patterns,	
GUI	vs	Core,

Design	Case	Studies

Testing	Subsystems

Design	for	Reuse	at	Scale:
Frameworks	and	APIs

Part	3:
Designing	Concurrent	

Systems

Concurrency	Primitives,
Synchronization

Designing	Abstractions	for	
Concurrency

Distributed	Systems	in	a	
Nutshell

Intro	to	Java

Git,	CI
Static	Analysis

GUIsUML More	Git

GUIs
Performance

Design

815-214

Learning	Goals

• Understand	the	motivation	and	different	use	
cases	for	concurrency	and	parallelism

• Understand	concurrency	risks:	safety,	liveness,	
performance

• Understand	and	use	Java	primitives	for	
concurrency:	threads,	synchronization,	
volatile,	wait/notify

915-214

WHY	CONCURRENCY

1015-214

What	is	a	thread?	(review)

• Short	for	thread	of	execution
• Multiple	threads	run	in	same	program	
concurrently

• Threads	share	the	same	address	space
– Changes	made	by	one	thread	may	be	read	by	
others

• Multithreaded	programming
– Also	known	as	shared-memory	multiprocessing

1115-214

Processor	characteristics	over	time

1215-214

Power	requirements	of	a	CPU

• power	=	capacitance	× voltage2 × frequency
• To	increase	performance
– More	transistors,	thinner	wires

• More	power	leakage:	increase	voltage
– Increase	clock	frequency

• Change	electrical	state	faster:	increase	voltage

• Dennard	scaling	– as	transistors	get	smaller,	
power	density	is	approximately	constant…
– …until	early	2000s

• Now:	Power	is	super-linear	in	CPU	performance

1315-214

Failure	of	Dennard Scaling	forced	our	hand

• Must	reduce	heat	by	limiting	power
• Limit	power	by	reducing	frequency	and/or	voltage
• In	other	words,	build	slower	cores…
– …but	build	more	of	them

• Adding	cores	ups	power	linearly	with	
performance

• But	concurrency	is	required	to	utilize	multiple	
cores

1415-214

Concurrency	then	and	now

• In	past	multi-threading	just	a	convenient	
abstraction
– GUI	design:	event	dispatch	thread
– Server	design:	isolate	each	client’s	work
–Workflow	design:	isolate	producers	and	
consumers

• Now:	required for	scalability	and	performance

1515-214

Benefits	of	Threads	(1)
• Exploiting	Multiple	Processors
– All	CPUs	today	are	multi-core
– But	basic	unit	of	scheduling	is	a	thread

• A	single-threaded	program	running	on	a	100-processor	system	is	
giving	up	access	to	99%	of	the	available	CPU	resources

– Also,	better	throughput	on	single-processor	systems:
• Single-threaded	program	needs	to	wait	for	synchronous	I/O	
operation	to	complete

• Multi-threaded	program	can	do	something	else	during	the	
blocking	I/O

• Responsive	User	Interfaces
– AWT,	Spring	have	separate	event	dispatch	thread
– Long-running	tasks	(e.g.,	spell	checking)	can	be	executed	in	
separate	thread

1615-214

Benefits	of	Threads	(2)

• Simplicity	of	Modeling
– Separating	tasks	&	assigning	a	separate	thread	to	
each

– Abstracting	common	infrastructure,	as	request	
management,	load	balancing,	...	in	concurrency	
frameworks

• Simplified	Handling	of	Asynchronous	Events
– Async vs	sync	I/O:	server	that	accepts	socket	
connections	from	multiple	clients;	client	read
blocks	until	data	is	available

– Avoiding	“callback	hell”	(JavaScript)

1715-214

Aside:	JavaScript	“Callback	Hell”
• You	don’t	want	the	program	to	pause	(block)	while	
waiting	for	download	to	finish

• Store	the	code	that	should	run	after	the	download	is	
complete	in	a	“callback”	function

var photo = downloadPhoto('http://coolcats.com/cat.gif')
// photo is 'undefined'!

downloadPhoto('http://coolcats.com/cat.gif', handlePhoto)

function handlePhoto (error, photo) {
if (error) console.error('Download error!', error)
else console.log('Download finished', photo)

}

console.log('Download started')

From: http://callbackhell.com

1

2

3

4

1815-214

Aside:	JavaScript	“Callback	Hell”
• Callbacks	can	get	out	of	hand

getData(function(a){
getMoreData(a, function(b){

getMoreData(b, function(c){
getMoreData(c, function(d){

getMoreData(d, function(e){
...

});
});

});
});

});

From: http://stackabuse.com/avoiding-callback-hell-in-node-js/

1915-214

We	are	all	concurrent	programmers

• Java	is	inherently	multithreaded
• In	order	to	utilize	our	multicore	processors,	
we	must	write	multithreaded	code

• Good	news:	a	lot	of	it	is	written	for	you
– Excellent	libraries	exist	(java.util.concurrent)

• Bad	news:	you	still	must	understand	
fundamentals
– to	use	libraries	effectively
– to	debug	programs	that	make	use	of	them

2015-214

Concurrency	vs	Parallelism

2115-214

CONCURRENCY	HAZARDS
Safety,	Liveness,	Performance

2215-214

Safety	Hazard
• The	ordering	of	operations	in	multiple	threads	is	unpredictable.

• Unlucky	execution	of	UnsafeSequence.getNext

@NotThreadSafe
public class UnsafeSequence {

private int value;

public int getNext() {
return value++;

}
}

valueà9 9+1à10 valueà10

valueà9 9+1à10 valueà10

A

B

Not atomic

2315-214

Thread	Safety

A	class	is	thread	safe	if	it	behaves	correctly	when	
accessed	from	multiple	threads,	regardless	of	
the	scheduling	or	interleaving	of	the	execution	
of	those	threads	by	the	runtime	environment,	
and	with	no	additional	synchronization	or	other	
coordination	on	the	part	of	the	calling	code.	

2415-214

Liveness	Hazard
• Safety:	“nothing	bad	ever	happens”
• Liveness:	“something	good	eventually	happens”

• Deadlock
– Infinite	loop	in	sequential	programs
– Thread	A	waits	for	a	resource	that	thread	B	holds	
exclusively,	and	B	never	releases	it	à A	will	wait	forever
• E.g.,	Dining	philosophers

• Elusive:	depend	on	relative	timing	of	events	in	
different	threads

2515-214

Deadlock	example

class Account {
double balance;

void withdraw(double amount){ balance -= amount; }

void deposit(double amount){ balance += amount; }

void transfer(Account from, Account to, double amount){
synchronized(from) {

from.withdraw(amount);
synchronized(to) {

to.deposit(amount);
}

}
}

}

• Two	threads:	A	does	transfer(a,	b,	10);	 B	does	transfer(b,	a,	10)

Execution
trace:
A: lock a (v)
B: lock b (v)
A: lock b (x)
B: lock a (x)
A: wait
B: wait

Deadlock!

2615-214

Performance	Hazard
• Liveness:	“something	good	eventually	happens”
• Performance:	we	want	something	good	to	happen	quickly

• Multi-threading	involves	runtime	overhead:
– Coordinating	between	threads	(locking,	signaling,	memory	sync)
– Context	switches
– Thread	creation	&	teardown
– Scheduling

• Not	all	problems	can	be	solved	faster	with	more	resources
– One	mother	delivers	a	baby	in	9	months

2715-214

Amdahl’s	law
• The	speedup	is	

limited	by	the	
serial	part	of	
the	program.

2815-214

How	fast	can	this	run?

public class WorkerThread extends Thread {
...

public void run() {
while (true) {

try {
Runnable task = queue.take();
task.run();

} catch (InterruptedException e) {
break; /* Allow thread to exit */

}
}

}
}

• N	threads	fetch	independent	tasks	from	a	shared	work	queue

2915-214

JAVA	PRIMITIVES:	ENSURING	
VISIBILITY	AND	ATOMICITY

3015-214

Synchronization	for	Safety

• If	multiple	threads	access	the	same	mutable	
state	variable	without	appropriate	
synchronization,	the	program	is	broken.	

• There	are	three	ways	to	fix	it:	
– Don't	share	the	state	variable	across	threads;	
–Make	the	state	variable	immutable;	or	
– Use	synchronization	whenever	accessing	the	state	
variable.	

3115-214

Exclusion

Synchronization	allows	parallelism	while
ensuring	that	certain	segments	are	
executed	in	isolation.	Threads	wait	to
acquire	lock,	may	reduce	performance.

3215-214

Stateless	objects	are	always	thread	safe

• Example:	stateless	factorizer
– No	fields
– No	references	to	fields	from	other	classes
– Threads	sharing	it	cannot	influence	each	other

@ThreadSafe
public class StatelessFactorizer implements Servlet {

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
encodeIntoResponse(resp, factors);

}
}

3315-214

Is	this	thread	safe?

public class CountingFactorizer implements Servlet {
private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

3415-214

Non	atomicity	and	thread	(un)safety

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

valueà9 9+1à10 valueà10

valueà9 9+1à10 valueà10

A

B

3515-214

Non	atomicity	and	thread	(un)safety

• Stateful factorizer
– Susceptible	to	lost	updates
– The	++count operation	is	not	atomic	(read-modify-write)

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

3615-214

Enforcing	atomicity:	Intrinsic	locks

• synchronized(lock) { … } synchronizes	entire	
code	block	on	object	lock;	cannot	forget	to	unlock

• The	synchronizedmodifier	on	a	method	is	
equivalent	to	synchronized(this) { … }
around	the	entire	method	body

• Every	Java	object	can	serve	as	a	lock
• At	most	one	thread	may	own	the	lock	(mutual	
exclusion)
– synchronized blocks	guarded	by	the	same	lock	execute	
atomically	w.r.t.	one	another

3715-214

Fixing	the	stateful factorizer
@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public long getCount() {
synchronized(this){

return count;
}

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}
}

For	each	mutable	
state	variable	that	
may	be	accessed	by	
more	than	one	
thread,	all accesses	
to	that	variable	must	
be	performed	with	
the	same lock	held.	
In	this	case,	we	say	
that	the	variable	is	
guarded	by	that	lock.

3815-214

Fixing	the	stateful factorizer
@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public synchronized long getCount() {
return count;

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}
}

For	each	mutable	
state	variable	that	
may	be	accessed	by	
more	than	one	
thread,	all accesses	
to	that	variable	must	
be	performed	with	
the	same lock	held.	
In	this	case,	we	say	
that	the	variable	is	
guarded	by	that	lock.

3915-214

Fixing	the	stateful factorizer
@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public synchronized long getCount() {
return count;

}

public synchronized void service(
ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);

++count;
encodeIntoResponse(resp, factors);

}
}

For	each	mutable	
state	variable	that	
may	be	accessed	by	
more	than	one	
thread,	all accesses	
to	that	variable	must	
be	performed	with	
the	same lock	held.	
In	this	case,	we	say	
that	the	variable	is	
guarded	by	that	lock.

4015-214

What’s	the	difference?

public synchronized void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);

++count;
encodeIntoResponse(resp, factors);

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}

4115-214

Private	locks
@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
private final Object lock = new Object();
@GuardedBy(“lock”)
private long count = 0;

public long getCount() {
synchronized(lock){

return count;
}

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(lock) {

++count;
}
encodeIntoResponse(resp, factors);

}
}

For	each	mutable	
state	variable	that	
may	be	accessed	by	
more	than	one	
thread,	all accesses	
to	that	variable	must	
be	performed	with	
the	same lock	held.	
In	this	case,	we	say	
that	the	variable	is	
guarded	by	that	lock.

4215-214

Does	this	deadlock?

public class Widget {
public synchronized void doSomething() {...}

}

public class LoggingWidget extends Widget {
public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");
super.doSomething();

}
}

4315-214

No:	Intrinsic	locks	are	reentrant
• A	thread	can	lock	the	same	object	again	while	already	
holding	a	lock,	i.e.,	a	synchronized	method	can	call	
another	synchronized	method	in	the	same	object

public class Widget {
public synchronized void doSomething() {...}

}

public class LoggingWidget extends Widget {
public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");
super.doSomething();

}
}

4415-214

Cooperative	thread	termination
How	long	would	you	expect	this	to	run?

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested)
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(5);
stopRequested = true;

}
}

4515-214

What	could	have	gone	wrong?

• In	the	absence	of	synchronization,	there	is	no	
guarantee	as	to	when,	if	ever,	one	thread	will	
see	changes	made	by	another!

• VMs	can	and	do	perform	this	optimization:
while (!done)

/* do something */ ;

becomes:
if (!done)

while (true)
/* do something */ ;

4615-214

How	do	you	fix	it?
public class StopThread {

@GuardedBy(“StopThread.class”)
private static boolean stopRequested;

private static synchronized void requestStop() {
stopRequested = true;

}

private static synchronized boolean stopRequested() {
return stopRequested;

}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested())
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(5);
requestStop();

}
}

4715-214

You	can	do	better	(?)
volatile is	synchronization	sans	mutual	exclusion
public class StopThread {

private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested)
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
}

4815-214

Volatile	keyword

• Tells	compiler	and	runtime	that	variable	is	
shared	and	operations	on	it	should	not	be	
reordered	with	other	memory	ops
– A	read	of	a	volatile	variable	always	returns	the	
most	recent	write	by	any	thread

• Volatile	is	not	a	substitute	for	synchronization
– Volatile	variables	can	only	guarantee	visibility
– Locking	can	guarantee	both	visibility	and	atomicity

4915-214

Summary:	Synchronization

• Ideally,	avoid	shared	mutable	state

• If	you	can’t	avoid	it,	synchronize	properly
– Failure	to	do	so	causes	safety	and	liveness failures
– If	you	don’t	sync	properly,	your	program	won’t	work

• Even	atomic	operations	require	synchronization
– e.g.,	stopRequested = true

– And	some	things	that	look	atomic	aren’t	(e.g.,	val++)

5015-214

JAVA	PRIMITIVES:
WAIT,	NOTIFY,	AND	TERMINATION

5115-214

Guarded	methods

• What	to	do	on	a	method	if	the	precondition	is	not	
fulfilled	(e.g.,	transfer	money	from	bank	account	with	
insufficient	funds)
• throw	exception	(balking)
• wait	until	precondition	is	fulfilled	(guarded suspension)
• wait	and	timeout	(combination	of	balking	and	guarded	

suspension)

5215-214

Guarded	suspension

• Block	execution	until	a	given	condition	is	true
• For	example,	
– pull	element	from	queue,	but	wait	on	an	empty	
queue

– transfer	money	from	bank	account	as	soon	
sufficient	funds	are	there

• Blocking	as	(often	simpler)	alternative	to	
callback

5315-214

Monitor	Mechanics	in	Java

• Object.wait()	– suspends	the	current	thread’s	
execution,	releasing	locks

• Object.wait(timeout)	– suspends	the	current	
thread’s	execution	for	up	to	timeout	
milliseconds

• Object.notify()	– resumes	one	of	the	waiting	
threads

• See	documentation	for	exact	semantics

5415-214

Monitor	Example
class SimpleBoundedCounter {

protected long count = MIN;
public synchronized long count() { return count; }
public synchronized void inc() throws InterruptedException {

awaitUnderMax(); setCount(count + 1);
}
public synchronized void dec() throws InterruptedException {

awaitOverMin(); setCount(count - 1);
}
protected void setCount(long newValue) { // PRE: lock held

count = newValue;
notifyAll(); // wake up any thread depending on new value

}
protected void awaitUnderMax() throws InterruptedException {

while (count == MAX) wait();
}
protected void awaitOverMin() throws InterruptedException {

while (count == MIN) wait();
}

}

5515-214

Never invoke	wait	outside	a	loop!

• Loop	tests	condition	before	and	after	waiting
• Test	before	skips	wait if	condition	already	holds
– Necessary	to	ensure	liveness
–Without	it,	thread	can	wait	forever!

• Testing	after	wait ensure	safety
– Condition	may	not	be	true	when	thread	wakens
– If	thread	proceeds	with	action,	it	can	destroy	invariants!

5615-214

All of	your	waits	should	look	like	this
synchronized (obj) {

while (<condition does not hold>) {
obj.wait();

}

... // Perform action appropriate to condition
}

5715-214

Why	can	a	thread	wake	from	a	wait
when	condition	does	not	hold?

• Another	thread	can	slip	in	between	notify&	wake
• Another	thread	can	invoke	notify accidentally	
or	maliciously	when	condition	does	not	hold
– This	is	a	flaw	in	java	locking	design!
– Can	work	around	flaw	by	using	private	lock	object

• Notifier can	be	liberal	in	waking	threads
– Using	notifyAll is	good	practice,	but	causes	this

• Waiting	thread	can	wake	up	without	a	notify(!)
– Known	as	a	spurious	wakeup

5815-214

Interruption

• Difficult	to	kill	threads	once	started,	but	may	
politely	ask	to	stop	(thread.interrupt())

• Long-running	threads	should	regularly	check	
whether	they	have	been	interrupted

• Threads	waiting	with	wait()	throw	exceptions	
if	interrupted

• Read
documentation

public class Thread {
public void interrupt() { ... }
public boolean isInterrupted() { ... }
...

}

5915-214

Interruption	Example

For details, see Java Concurrency In Practice, Chapter 7

class PrimeProducer extends Thread {
private final BlockingQueue<BigInteger> queue;
PrimeProducer(BlockingQueue<BigInteger> queue) {

this.queue = queue;
}
public void run() {

try {
BigInteger p = BigInteger.ONE;
while (!Thread.currentThread().isInterrupted())

queue.put(p = p.nextProbablePrime());
} catch (InterruptedException consumed) {

/* Allow thread to exit */
}

}
public void cancel() { interrupt(); }

}

6015-214

BUILDING	HIGHER	LEVEL	
CONCURRENCY	MECHANISMS

6115-214

Beyond	Java	Primitives

• Java	Primitives	(synchronized,	wait,	notify)	are	
low	level	mechanisms

• For	most	tasks	better	higher-level	abstractions	
exist

• Writing	own	abstractions	is	possible,	but	
potentially	dangerous	– use	libraries	written	
by	experts

6215-214

Example:	read-write	locks	(API)
Also	known	as	shared/exclusive	mode	locks
private final RwLock lock = new RwLock();

lock.readLock();
try {

// Do stuff that requires read (shared) lock
} finally {

lock.unlock();
}

lock.writeLock();
try {

// Do stuff that requires write (exclusive) lock
} finally {

lock.unlock();
}

6315-214

Example:	read-write	locks	(Impl.	1/2)

public class RwLock {
// State fields are protected by RwLock's intrinsic lock

/** Num threads holding lock for read. */
private int numReaders = 0;

/** Whether lock is held for write. */
private boolean writeLocked = false;

public synchronized void readLock() throws InterruptedException {
while (writeLocked) {

wait();
}
numReaders++;

}

6415-214

Example:	read-write	locks	(Impl.	2/2)

public synchronized void writeLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {

wait();
}
writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {

numReaders--;
} else if (writeLocked) {

writeLocked = false;
} else {

throw new IllegalStateException("Lock not held");
}
notifyAll(); // Wake any waiters

}
}

6515-214

Caveat:	RwLock is	just	a	toy!

• It	has	poor	fairness	properties
– Readers	can	starve	writers!

• java.util.concurrent provides	an	
industrial	strength	ReadWriteLock

• More	generally,	avoid	wait/notify
– In	the	early	days	it	was	all	you	had
– Nowadays,	higher	level	concurrency	utils are	
better

6615-214

Summary

• Concurrency	for	exploiting	multiple	processors,	
simplifying	modeling,	simplifying	asynchronous	
events

• Safety,	liveness	and	performance	hazards	matter
• Synchronization	on	any	Java	object;	volatile	
ensures	visibility

• Wait/notify	for	guards,	interruption	for	
cancelation	– building	blocks	for	higher	level	
abstractions

6715-214

Recommended	Readings

• Goetz	et	al.	Java	Concurrency	In	Practice.	
Pearson	Education,	2006,	Chapters	1-2

• Lea,	Douglas.	Concurrent	programming	in	
Java:	design	principles	and	patterns.	Addison-
Wesley	Professional,	2000.

