Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency:
Motivation and Primitives

Christian Kastner Bogdan Vasilescu

institute for

SOFTWARE

RESEARCH - Institute [:ar
|S [et

Administrivia (1)

* Signup procedure and deadline for HW5a

— Teams of 2 or 3. Form your team and sign up for a
presentation time by Thursday, Mar 30, 11:59pm.

* You may utilize the "Search for Teammates" thread @5 to help you
find teammates.

e Stick around after class today if you don’t have partners yet.
* Two places to sign up: Google Sheet & GitHub repo. See @652

— Short presentation (max 10 min, 6 slides or fewer) in
recitation on Wednesday, April 5 in front of your
classmates.

* Goal: illustrate how you achieve reuse in a domain

* Describe domain, examples of plugins, decisions regarding
generality vs specificity, overall project structure (e.g., how are
plugins loaded), plugin interfaces

* Similar to design review sessions
- Institute for
15-214 2 sor s

Administrivia (2)

* Second midterm, Thursday Mar 30 in class.
* Midterm review session today 7:30pm in GHC 4401.

e Concurrency not tested on the midterm
— But everything in the course including readings is fair game

— We will focus on the middle part of the course and the
things that you had more chances to practice
* e.g. more UML/design than API design

L J
Institute I
15-214 O | S [Boaast

Administrivia (3)

* Good discussion on Piazza about the Reading Quiz
question 2 (Chapter 6 of “Beautiful Code”):

* Q: “What are some of the mentioned mechanisms that can
help ensure backward-compatibility?”
— A: Using design patterns
— A: Using interfaces
— A: Controlling visibility
* A: Using design patterns:
— Book: “Provide well-defined ‘hook points’ that permit extensibility in
the places where you intend it to occur”

— Example of how the Observer pattern can be used to provide such
hook points

-
institute for
15-214 4 ol

Administrivia (4)

e Commit messages are (one of) your primary means
of communication with the rest of the team.

— This will become more obvious in HWS5.

HW4b; Oops forgot to save. (Also bus is here)
Woke up and dreamt of some bugs. They were there.

HW 4b update (...kill me)

dropped my laptop, then | banged it on a table. Was reminded of impor...

-
institute for
15-214 5 [N sormve

institute f
el
15_2 14 6 RESEARCH

UML GUIs More Git
Static Analysis

Intro to Java

Git, CI GUIs

Performance

Part 1: Part 2: Part 3:
Design at a Class Level Designing (Sub)systems Designing Concurrent
Systems

Design for Change: Understanding the Problem / \

Information Hiding, < Concurrency Primitives, >
Contracts, Design Patterns, | Responsibility Assignment, Synchronization
Unit Testing Design Patterns, \ /
GUI vs Core, Designing Abstractions for
Design for Reuse: Design Case Studies Concurrency
Inheritance, Delegation,
Immutability, LSP, Testing Subsystems Distributed Systems in a
Design Patterns Nutshell

Design for Reuse at Scale:
Frameworks and APIs

-
Institute [I
15-214 7 SOt

Learning Goals

e Understand the motivation and different use
cases for concurrency and parallelism

* Understand concurrency risks: safety, liveness,
oerformance

 Understand and use Java primitives for
concurrency: threads, synchronization,
volatile, wait/notify

L J
Institute
15-214 O | S [Boavast

WHY CONCURRENCY

L J
Institute [: F
15-214 9 [BIf o

What is a thread? (review)

* Short for thread of execution

* Multiple threads run in same program
concurrently

* Threads share the same address space

— Changes made by one thread may be read by
others

 Multithreaded programming

— Also known as shared-memory multiprocessing

15-214 10 [Bl

Processor characteristics over time

15-214

7
10 r Transistors
i (thousands)
6 |
10}
5 |
10" |
f Single-thread
4 Performance
10 | (SpeciNT)
3
10" |
2 | Typical Power
10 | (Watts)
1| Number of
10 b Cores
ol

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

11

institute for
SOFTWARE
RESEARCH

Power requirements of a CPU

* power = capacitance x voltage? x frequency

* To increase performance

— More transistors, thinner wires
* More power leakage: increase voltage

— Increase clock frequency
* Change electrical state faster: increase voltage

* Dennard scaling — as transistors get smaller,
power density is approximately constant...

— ...until early 2000s
* Now: Power is super-linear in CPU performance

-
institute tor
12l 12 ol

Failure of Dennard Scaling forced our hand

* Must reduce heat by limiting power
* Limit power by reducing frequency and/or voltage
* |n other words, build slower cores...

— ...but build more of them

* Adding cores ups power linearly with
performance

* But concurrency is required to utilize multiple
cores

= Institute [: I
15-214 13 [N} o

Concurrency then and now

* |n past multi-threading just a convenient
abstraction

— GUI design: event dispatch thread
— Server design: isolate each client’s work

— Workflow design: isolate producers and
consumers

* Now: required for scalability and performance

15-214 10 [0 s

Benefits of Threads (1)

* Exploiting Multiple Processors
— All CPUs today are multi-core

— But basic unit of scheduling is a thread

* Asingle-threaded program running on a 100-processor system is
giving up access to 99% of the available CPU resources

— Also, better throughput on single-processor systems:

* Single-threaded program needs to wait for synchronous 1/0
operation to complete

* Multi-threaded program can do something else during the
blocking 1/0

* Responsive User Interfaces
— AWT, Spring have separate event dispatch thread

— Long-running tasks (e.g., spell checking) can be executed in
separate thread

. institute for
15-214 15 sormst

Benefits of Threads (2)

* Simplicity of Modeling

— Separating tasks & assign
each

ing a separate thread to

— Abstracting common infrastructure, as request
management, load balancing, ... in concurrency

frameworks

* Simplified Handling of Asynchronous Events

— Async vs sync I/O: server
connections from multip
blocks until data is availa

that accepts socket
e clients; client read
ole

— Avoiding “callback hell” (|

15-214

avaSscript)

Aside: JavaScript “Callback Hell”

* You don’t want the program to pause (block) while
waiting for download to finish

var photo = downloadPhoto('http://coolcats.com/cat.gif")
// photo is 'undefined'!

Store the code that should run after the download is
complete in a “callback” function

downloadPhoto('http://coolcats.com/cat.gif', handlePhoto)

if (error) console.error('Download error!', error)
else console. log('Download finished', photo) ‘E’

}

0 function handlePhoto (error, photo) {

console. log('Download started')

te f

- institute tor
15-214 From: http://callbackhell.com 17 i

Aside: JavaScript “Callback Hell”

e (Callbacks can get out of hand

getData(function(a){
getMoreData(a, function(b){
getMoreData(b, function(c){
getMoreData(c, function(d){
getMoreData(d, function(e){

});
});
});
});
});

- institute for
15-214 From: http://stackabuse.com/avoiding-callback-hell-in-node-js/ 18 RESEARCH

We are all concurrent programmers

* Java is inherently multithreaded

* In order to utilize our multicore processors,
we must write multithreaded code

 Good news: a lot of it is written for you
— Excellent libraries exist (java.util.concurrent)

* Bad news: you still must understand
fundamentals

— to use libraries effectively
— to debug programs that make use of them

15-214 1o [

Concurrency vs Parallelism

- Institute [I
15-214 20 soe

Safety, Liveness, Performance

CONCURRENCY HAZARDS

-
institute tor
15-214 21 [Nl o

Safety Hazard

 The ordering of operations in multiple threads is unpredictable.

@NotThreadSafe
public class UnsafeSequence {
private int value;

public int getNext() {
return value++; «—

) — Not atomic

}

* Unlucky execution of UnsateSequence.getNext

A value=>9 value—>10

\ 4

9+1->10

\ 4

B value->9 value->10

\ 4

9+1->10

\ 4

-
institute for
15-214 22 sormst

Thread Safety

A class is thread safe if it behaves correctly when
accessed from multiple threads, regardless of
the scheduling or interleaving of the execution
of those threads by the runtime environment,
and with no additional synchronization or other
coordination on the part of the calling code.

15-214 s [e

Liveness Hazard

e Safety: “nothing bad ever happens”
* Liveness: “something good eventually happens”

e Deadlock

— Infinite loop in sequential programs

— Thread A waits for a resource that thread B holds
exclusively, and B never releases it 2 A will wait forever
* E.g., Dining philosophers

* Elusive: depend on relative timing of events in
different threads

= Institute [: I
15-214 24 [B)) sorrvare

Deadlock example

 Two threads: A does transfer(a, b, 10); B does transfer(b, a, 10)

class Account {
double balance;

void withdraw(double amount){ balance -= amount; }
void deposit(double amount){ balance += amount; }

void transfer(Account from, Account to, double amount){
synchronized(from) {
from.withdraw(amount);
synchronized(to) {
to.deposit(amount);

Execution
trace:

: lock a (v)
: lock b (v)
: lock b (x)
: lock a (x)
: wait

: wait

> > >

Deadlock!

-
institute for
25 SOFTWARE
RESEARCH

Performance Hazard

* Liveness: “something good eventually happens”
* Performance: we want something good to happen quickly

* Multi-threading involves runtime overhead:
— Coordinating between threads (locking, signaling, memory sync)
— Context switches
— Thread creation & teardown
— Scheduling
* Not all problems can be solved faster with more resources

— One mother delivers a baby in 9 months

- institute for
15-214 26 sormst

Amdahl’s law

20

* The speedup is
limited by the
serial part of
the program.

15-214

Speedup

12

10 -

—

Parallel porton
50%
5%
e 0%

=+ < N
o N O o)
- N wn

Number of processors

1024

2048

27

4096

8192

16384
32768

institute for
SOFTWARE
RESEARCH

65536

How fast can this run?

* N threads fetch independent tasks from a shared work queue

public class WorkerThread extends Thread {

public void run() {
while (true) {
try {
Runnable task = queue.take();
task.run();
} catch (InterruptedException e) {
break; /* Allow thread to exit */

}

L J ¢
Institute tor
15-214 s [Hiine

JAVA PRIMITIVES: ENSURING
VISIBILITY AND ATOMICITY

= Institute [: I
15-214 29 [B)) sorrvare

Synchronization for Safety

* |If multiple threads access the same mutable

state variable without appropriate
synchronization, the program is broken.

* There are three ways to fix it:
— Don't share the state variable across threads;
— Make the state variable immutable; or

— Use synchronization whenever accessing the state
variable.

tttttttttttt
SSSSSSSS

15-214 30 [NIN o :

Exclusion

Synchronization allows parallelism while
ensuring that certain segments are
executed in isolation. Threads wait to
acquire lock, may reduce performance.

-
institute for
12l 31 sofisas

Stateless objects are always thread safe

 Example: stateless factorizer
— No fields
— No references to fields from other classes
— Threads sharing it cannot influence each other

@ThreadSafe
public class StatelessFactorizer implements Servlet {

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
encodeIntoResponse(resp, factors);

-
institute for
15-214 32 sormst

Is this thread safe?

public class CountingFactorizer implements Servlet {
private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

L J ’
institute for
15-214 33 [Hl o

Non atomicity and thread (un)safety

A value->9 » 9+1->10 » value->10
B value->9 » 9+1->10 » value->10
@NotThreadSafe

public class UnsafeCountingFactorizer implements Servlet {
private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

institute for
15-214 34 ol

Non atomicity and thread (un)safety

e Stateful factorizer

— Susceptible to lost updates
— The ++count operation is not atomic (read-modify-write)

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

-
institute for
12l 35 sofisas

Enforcing atomicity: Intrinsic locks

* synchronized(lock) { .. } synchronizes entire
code block on object 1ock; cannot forget to unlock

* The synchronized modifier on a method is
equivalent to synchronized(this) { .. }
around the entire method body

* Every Java object can serve as a lock

* At most one thread may own the lock (mutual
exclusion)

— synchronized blocks guarded by the same lock execute
atomically w.r.t. one another

L J
Institute r
15-214 36 MY sora

Fixing the stateful factorizer

@ThreadSafe
public c%ass UnsafeCountingFactorizer For each mutable
implements Servlet {]
@GuardedBy (“this”) state variable that
private long count = ©; may be accessed by
public long getCount() { more than one
synchr‘onized(this){ thread’ a_" accesses
return count; .
} to that variable must
; be performed with
public void service(ServletRequest req, the same lock held.

ServletResponse resp) { In this case, we say
BigInteger i = extractFromRequest(req);

BigInteger[] factors = factor(i); that the variable is

synchronized(this) { guarded by that lock.
++count;

}

encodeIntoResponse(resp, factors);

-
institute for
12l 37 sofisas

Fixing the stateful factorizer

@ThreadSafe
public class UnsafeCountingFactorizer For each mutable
implements Servlet {]
@GuardedBy (“this”) state variable that
private long count = 0; may be accessed by
public synchronized long getCount() { more than one
} return count; thread, all accesses
to that variable must
public void service(ServletRequest req, be performed With
ServletResponse resp) {
BigInteger i = extractFromRequest(req); the same lock held.
BigInteger[] factors = factor(i); In this case. we say
synchronized(this) { " i
++count; that the variable is
} guarded by that lock.

encodeIntoResponse(resp, factors);

-
institute for
12l 38 sofisas

Fixing the stateful factorizer

@ThreadSafe
public class UnsafeCountingFactorizer
implements Servlet {
@GuardedBy(“this”)
private long count = ©;

public synchronized long getCount() {
return count;

}

public synchronized void service(
ServletRequest req,
ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

15-214

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

-
institute for
39 SOFTWARE
RESEARCH

What’s the difference?

public synchronized void service(ServletRequest req,

ServletResponse resp) {
BigInteger i = extractFromRequest(req);

BigInteger[] factors = factor(i);
++count;

encodeIntoResponse(resp, factors);

public void service(ServletRequest req,

ServletResponse resp) {
BigInteger i = extractFromRequest(req);

BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}

encodeIntoResponse(resp, factors);

= m.rm.m-l' |
15-214 a0 Ml

Private locks

@ThreadSafe
public class UnsafeCountingFactorizer
implements Servlet {
private final Object lock = new Object();
@GuardedBy(“lock”)
private long count = ©;

public long getCount() {
synchronized(lock){
return count;

}
}

public void service(ServletRequest req,
ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(lock) {
++count;

}

encodeIntoResponse(resp, factors);

}5-214

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

-
institute for
41 SOFTWARE
RESEARCH

Does this deadlock?

public class Widget {
public synchronized void doSomething() {...}

¥

public class LoggingWidget extends Widget {
public synchronized void doSomething() {
System.out.println(toString() + ": calling doSomething");
super.doSomething();

¥

L J ’
institute for
15-214 FPR | S [i

No: Intrinsic locks are reentrant

* Athread can lock the same object again while already
holding a lock, i.e., a synchronized method can call
another synchronized method in the same object

public class Widget {
public synchronized void doSomething() {...}

}

public class LoggingWidget extends Widget {
public synchronized void doSomething() {
System.out.println(toString() + ": calling doSomething");
super.doSomething();

-
institute for
15-214 43 ol

Cooperative thread termination
How long would you expect this to run?

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(5);
stopRequested = true;

institute for

15-214 as [HI e

What could have gone wrong?

* In the absence of synchronization, there is no
guarantee as to when, if ever, one thread will

see changes made by another!
* VMs can and do perform this optimization:

while (!done)
/* do something */ ;

becomes:
if (!done)
while (true)
/* do something */ ;

rrrrrrrrrrrrrr
SSSSSSSS

15-214 as [ISIN so :

How do you fix it?

public class StopThread {
@GuardedBy(“StopThread.class™)
private static boolean stopRequested;

private static synchronized void requestStop() {
stopRequested = true;

private static synchronized boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;

) ;
ackgroundThread.start();

TimeUnit.SECONDS.sleep(5);
requestStop();

- institute for
15-214 a6 sorms:

You can do better (?)
volatile is synchronization sans mutual exclusion

public class StopThread {
private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

-
institute for
15-214 47 ol

Volatile keyword

* Tells compiler and runtime that variable is
shared and operations on it should not be
reordered with other memory ops

— A read of a volatile variable always returns the
most recent write by any thread

* Volatile is not a substitute for synchronization

— Volatile variables can only guarantee visibility
— Locking can guarantee both visibility and atomicity

15'2 14 institute for

Summary: Synchronization

* ldeally, avoid shared mutable state

* |f you can’t avoid it, synchronize properly
— Failure to do so causes safety and liveness failures
— If you don’t sync properly, your program won’t work

* Even atomic operations require synchronization
— e.g., stopRequested = true

— And some things that look atomic aren’t (e.g., val++)

15-214 s [H1 4

JAVA PRIMITIVES:
WAIT, NOTIFY, AND TERMINATION

- institute for
15-214 50 bk

Guarded methods

* What to do on a method if the precondition is not
fulfilled (e.g., transfer money from bank account with
insufficient funds)

* throw exception (balking)
« wait until precondition is fulfilled (guarded suspension)

e wait and timeout (combination of balking and guarded
suspension)

z Institute [: I
15-214 s1 |[BYQ sormae

Guarded suspension

* Block execution until a given condition is true
* For example,

— pull element from queue, but wait on an empty
gueue

— transfer money from bank account as soon
sufficient funds are there

* Blocking as (often simpler) alternative to
callback

15-214 s [H i

Monitor Mechanics in Java

* Object.wait() — suspends the current thread’s
execution, releasing locks

e Object.wait(timeout) — suspends the current
thread’s execution for up to timeout
milliseconds

* Object.notify() — resumes one of the waiting
threads

e See documentation for exact semantics

L J
Institute r
15-214 53 |BYQ sormae

Monitor Example

class SimpleBoundedCounter {

protected long count = MIN;

public synchronized long count() { return count; }

public synchronized void inc() throws InterruptedException {
awaitUnderMax(); setCount(count + 1);

}

public synchronized void dec() throws InterruptedException {
awaitOverMin(); setCount(count - 1);

}

protected void setCount(long newValue) { // PRE: lock held
count = newValue;
notifyAll(); // wake up any thread depending on new value

}

protected void awaitUnderMax() throws InterruptedException {
while (count == MAX) wait();

}

protected void awaitOverMin() throws InterruptedException {
while (count == MIN) wait();

}

) o
15-214 54 soe

Never invoke wait outside a loop!

* Loop tests condition before and after waiting
e Test before skips walt if condition already holds

— Necessary to ensure liveness
— Without it, thread can wait forever!

e Testing after walt ensure safety

— Condition may not be true when thread wakens
— If thread proceeds with action, it can destroy invariants!

15-214 ss [0

All of your waits should look like this

synchronized (obj) {
while (<condition does not hold>) {
obj.wait();
}

. // Perform action appropriate to condition

L J
institute tor
15-214 s6 |NYN sormu

Why can a thread wake from awailt
when condition does not hold?

* Another thread can slip in between notify & wake

* Another thread can invoke notify accidentally
or maliciously when condition does not hold

— This is a flaw in java locking design!

— Can work around flaw by using private lock object
* Notifier can be liberal in waking threads

— Using notifyAll is good practice, but causes this
* Waiting thread can wake up without a notify(!)

— Known as a spurious wakeup

z Institute [: I
15-214 57 |BYQ sormae

Interruption

 Difficult to kill threads once started, but may
nolitely ask to stop (thread.interrupt())

* Long-running threads should regularly check
whether they have been interrupted

* Threads waiting with wait() throw exceptions
if interrupted

e Read public class Thread {
. public void interrupt() { ... }
documentatlon public boolean isInterrupted() { ... }
}

15-214 ss [0

Interruption Example

class PrimeProducer extends Thread {

}

private final BlockingQueue<BigInteger> queue;
PrimeProducer(BlockingQueue<BigInteger> queue) {
this.queue = queue;

}
public void run() {
try {
BigInteger p = BigInteger.ONE;
while (!Thread.currentThread().1isInterrupted())
queue.put(p = p.nextProbablePrime());
} catch (InterruptedException consumed) {
/* Allow thread to exit */
}
}

public void cancel() { interrupt(); }

For details, see Java Concurrency In Practice, Chapter 7

15-214

-
institute for
59 SOFTWARE
RESEARCH

BUILDING HIGHER LEVEL
CONCURRENCY MECHANISMS

- institute for
15-214 60 bk

Beyond Java Primitives

* Java Primitives (synchronized, wait, notify) are
ow level mechanisms

* For most tasks better higher-level abstractions
exist

* Writing own abstractions is possible, but

potentially dangerous — use libraries written
by experts

z Institute [: I
15-214 61 |NYN sormue

Example: read-write locks (API)
Also known as shared/exclusive mode locks

private final RwLock lock = new RwLock();

lock.readLock();

try {
// Do stuff that requires read (shared) lock
} finally {

lock.unlock();
}

lock.writeLock();

try {
// Do stuff that requires write (exclusive) lock

} finally {
lock.unlock();
}

. institute for
15-214 62 ol

Example: read-write locks (Impl. 1/2)

public class RwLock {

15-214

// State fields are protected by RwLock's intrinsic lock

/** Num threads holding lock for read. */
private int numReaders = 0;

/** Whether lock is held for write. */
private boolean writelLocked = false;

public synchronized void readLock() throws InterruptedException {
while (writelLocked) {
wait();
}

numReaders++;

-
institute for
63 SOFTWARE
RESEARCH

Example: read-write locks (Impl. 2/2)

public synchronized void writelLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {
wait();
}

writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {
numReaders--;
} else if (writelLocked) {
writeLocked = false;
} else {
throw new IllegalStateException("Lock not held");
}

notifyAll(); // Wake any waiters

-
institute for
12l 64 sofisas

Caveat: RwLock is just a toy!

* |t has poor fairness properties

— Readers can starve writers!
 java.util.concurrent provides an
industrial strength ReadWritelLock

* More generally, avoid wait/notify

— In the early days it was all you had

— Nowadays, higher level concurrency utils are
better

15-214 os [Hl i

Summary

* Concurrency for exploiting multiple processors,
simplifying modeling, simplifying asynchronous
events

e Safety, liveness and performance hazards matter

* Synchronization on any Java object; volatile
ensures visibility

* Wait/notify for guards, interruption for
cancelation — building blocks for higher level
abstractions

15-214 oo [l

Recommended Readings

* Goetz et al. Java Concurrency In Practice.
Pearson Education, 2006, Chapters 1-2

* Lea, Douglas. Concurrent programming in
Java: design principles and patterns. Addison-
Wesley Professional, 2000.

15-214 o7 [0 i

