
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:	
Objects,	Design,	and	Concurrency	
API	Design

Christian	Kaestner Bogdan	Vasilescu

Many	slides	stolen	with	permission	from	Josh	Bloch	(thanks!)

215-214

Administrivia

• Homework	4c	due	tonight
• Homework	4b	feedback	available	soon
• Homework	5	released	tomorrow
–Work	in	teams

315-214

Part	1:
Design	at	a	Class	Level

Design	for	Change:
Information	Hiding,	

Contracts,	Design	Patterns,	
Unit	Testing

Design	for	Reuse:
Inheritance,	Delegation,	

Immutability,	LSP,	
Design	Patterns

Part	2:
Designing	(Sub)systems

Understanding	the	Problem

Responsibility	Assignment,	
Design	Patterns,	
GUI	vs	Core,

Design	Case	Studies

Testing	Subsystems

Design	for	Reuse	at	Scale:
Frameworks	and	APIs

Part	3:
Designing	Concurrent	

Systems

Concurrency	Primitives,
Synchronization

Designing	Abstractions	for	
Concurrency

Distributed	Systems	in	a	
Nutshell

Intro	to	Java

Git,	CI
Static	Analysis

GUIsUML More	Git

GUIs
Performance

Design

415-214

Agenda

• Introduction	to	APIs:		Application	Programming	
Interfaces

• An	API	design	process
• Key	design	principle:		Information	hiding
• Concrete	advice	for	user-centered	design

515-214

Learning	goals
• Understand	and	be	able	to	discuss	the	similarities	
and	differences	between	API	design	and	regular	
software	design
– Relationship	between	libraries,	frameworks	and	API	
design

– Information	hiding	as	a	key	design	principle
• Acknowledge,	and	plan	for	failures	as	a	
fundamental	limitation	on	a	design	process

• Given	a	problem	domain	with	use	cases,	be	able	to	
plan	a	coherent	design	process	for	an	API	for	those	
use	cases,	e.g.,	"Rule	of	Threes"

615-214

API:		Application	Programming	Interface

• An	API	defines	the	boundary	between	
components/modules	in	a	programmatic	system

715-214

API:		Application	Programming	Interface

• An	API	defines	the	boundary	between	
components/modules	in	a	programmatic	system

815-214

API:		Application	Programming	Interface

• An	API	defines	the	boundary	between	
components/modules	in	a	programmatic	system

915-214

API:		Application	Programming	Interface

• An	API	defines	the	boundary	between	
components/modules	in	a	programmatic	system

1015-214

Libraries	and	frameworks	both	define	
APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);

g.drawRect(0, 0, d.getWidth(),
d.getHeight()); }
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);

g.drawRect(0, 0, d.getWidth(),
d.getHeight()); }
}

your code

your code

API

API

1115-214

Why	is	API	design	important?

• APIs	can	be	among	your	greatest	assets
– Users	invest	heavily:	acquiring,	writing,	learning
– Cost	to	stop using	an	API	can	be	prohibitive
– Successful	public	APIs	capture	users

• Can	also	be	among	your	greatest	liabilities
– Bad	API	can	cause	unending	stream	of	support	calls
– Can	inhibit	ability	to	move	forward

1215-214

Public	APIs	are	forever

Your	
code

Your	
colleague

Another	
colleague

Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web

1315-214

Public	APIs	are	forever

Eclipse
(IBM)

JDT	Plugin	
(IBM)

CDT	Plugin	
(IBM)

UML	Plugin	
(third	party)

Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
Somebody	
on	the	web
third	party	
plugin

1415-214

Evolutionary	problems:		Public	(used)	
APIs	are	forever

• "One	chance	to	get	it	right"
• Can	only	add	features	to	library
• Cannot:
– remove	method	from	library
– change	contract	in	library
– change	plugin	interface	of	framework

• Deprecation	of	APIs	as	weak	workaround

awt.Component,
deprecated since Java 1.1
still included in 7.0

1515-214

Good	vs	Bad	APIs

• Lots	of	reuse
– including	from	yourself

• Lots	of	users/customers
• User	buy-in	and	lock-in

• Lost	productivity,	
inefficient	reuse

• Maintenance	and	
customer	support	
liability

1615-214

Characteristics	of	a	good	API

• Easy	to	learn
• Easy	to	use,	even	without	documentation
• Hard	to	misuse
• Easy	to	read	and	maintain	code	that	uses	it
• Sufficiently	powerful	to	satisfy	requirements
• Easy	to	evolve
• Appropriate	to	audience

1715-214

Outline	for	today

• The	Process	of	API	Design
• Key	design	principle:		Information	hiding
• Concrete	advice	for	user-centered	design

1815-214

An	API	design	process

• Define	the	scope	of	the	API
– Collect	use-case	stories,	define	requirements
– Be	skeptical

• Distinguish	true	requirements	from	so-called	solutions
• "When	in	doubt,	leave	it	out."

• Draft	a	specification,	gather	feedback,	revise,	and	
repeat
– Keep	it	simple,	short

• Code	early,	code	often
– Write	client	code before	you	implement	the	API

1915-214

Plan	with	Use	Cases

• Think	about	how	the	API	might	be	used?
– e.g.,	get	the	current	time,	compute	the	difference	
between	two	times,	get	the	current	time	in	Tokyo,	
get	next	week's	date	using	a	Maya	calendar,	…

• What	tasks	should	it	accomplish?
• Should	all	the	tasks	be	supported?
– If	in	doubt,	leave	it	out!

• How	would	you	solve	the	tasks	with	the	API?

2015-214

Respect	the	rule	of	three

• Via	Will	Tracz (via	Josh	Bloch),	Confessions	of	a	
Used	Program	Salesman:	

Write	3	implementations	of	each	abstract	class	
or	interface	before	release

– "If	you	write	one,	it	probably	won't	support	
another."

– "If	you	write	two,	it	will	support	more	with	
difficulty."

– "If	you	write	three,	it	will	work	fine."

2115-214

Outline

• The	Process	of	API	Design
• Key	design	principle:		Information	hiding
• Concrete	advice	for	user-centered	design

2215-214

Which	one	do	you	prefer?
public class Point {

public double x;
public double y;

}
vs.

public class Point {
private double x;
private double y;
public double getX() { /* … */ }
public double getY() { /* … */ }

}

2315-214

Key	design	principle:		Information	hiding

• "When	in	doubt,	leave	it	out.”

• Implementation	details	in	APIs		are	harmful
– Confuse	users
– Inhibit	freedom	to	change	implementation

2415-214

Key	design	principle:		Information	hiding

• Make	classes,	members	as	private	as	possible
– You	can	add	features,	but	never	remove	or	change	
the	behavioral	contract	for	an	existing	feature

• Public	classes	should	have	no	public	fields
(with	the	exception	of	constants)

• Minimize	coupling
– Allows	modules	to	be,	understood,	used,	built,	
tested,	debugged,	and	optimized	independently

2515-214

Applying	Information	Hiding:	
Fields	vs Getter/Setter	Functions

public class Point {
public double x;
public double y;

}
vs.

public class Point {
private double x;
private double y;
public double getX() { /* … */ }
public double getY() { /* … */ }

}

2615-214

Which	one	do	you	prefer?

public class Rectangle {
public Rectangle(Point e, Point f) …

}

vs.
public class Rectangle {
public Rectangle(PolarPoint e, PolarPoint f) …

}

2715-214

Applying	Information	hiding:	
Interface	vs.	Class	Types

public class Rectangle {
public Rectangle(Point e, Point f) …

}

vs.
public class Rectangle {
public Rectangle(PolarPoint e, PolarPoint f) …

}

2815-214

Still…

public class Rectangle {
public Rectangle(Point e, Point f) …

}
…
Point p1 = new PolarPoint(…);
Point p2 = new PolarPoint(…);
Rectangle r = new Rectangle(p1, p2);

2915-214

Still…

public class Rectangle {
public Rectangle(Point e, Point f) …

}
…
Point p1 = new PolarPoint(…);
Point p2 = new PolarPoint(…);
Rectangle r = new Rectangle(p1, p2);
…
Point p3 = new PolarPoint(…);
Point p4 = new PolarPoint(…);
Rectangle r2 = new Rectangle(p3, p4);
…

3015-214

public class Rectangle {
public Rectangle(Point e, Point f) …

}
…
Point p1 = PointFactory.Construct(…);
// new PolarPoint(…); inside
Point p2 = PointFactory.Construct(…);
// new PolarPoint(…); inside
Rectangle r = new Rectangle(p1, p2);

Applying	Information	hiding:	Factories

3115-214

Applying	Information	hiding:	Factories

• Consider	implementing	a	factory	method	
instead	of	a	constructor

• Factory	methods	provide	additional	flexibility
– Can	be	overridden
– Can	return	instance	of	any	subtype;	hides	dynamic	
type	of	object

– Can	have	a	descriptive	method	name

3215-214

Applying	Information	Hiding:	
Hide	Client	Boilerplate	Code
• Generally	done	via	cut-and-paste
• Ugly,	annoying,	and	error-prone

import org.w3c.dom.*;
import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

/** DOM code to write an XML document to a specified output stream. */
static final void writeDoc(Document doc, OutputStream out)throws IOException{

try {
Transformer t = TransformerFactory.newInstance().newTransformer();
t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing

} catch(TransformerException e) {
throw new AssertionError(e); // Can’t happen!

}
}

3315-214

The	exception	hierarchy	in	Java

Throwable

Exception

RuntimeException IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException… …

. . .

Object

Re
ca
ll unchecked

checked

3415-214

Applying	Information	Hiding:	
Hide	Client	Boilerplate	Code
• Generally	done	via	cut-and-paste
• Ugly,	annoying,	and	error-prone

import org.w3c.dom.*;
import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

/** DOM code to write an XML document to a specified output stream. */
static final void writeDoc(Document doc, OutputStream out)throws IOException{

try {
Transformer t = TransformerFactory.newInstance().newTransformer();
t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing

} catch(TransformerException e) {
throw new AssertionError(e); // Can’t happen!

}
}

Won’t compile

3515-214

Applying	Information	Hiding:	
Hide	Information	Details
• Subtle	leaks	of	implementation	details	through
– Documentation
• E.g.,	do	not	specify	hash	functions

– Implementation-specific	return	types	/	exceptions
• E.g.,	Phone	number	API	that	throws	SQL	exceptions

– Output	formats
• E.g.,	implements Serializable

• Lack	of	documentation	à Implementation	
becomes	specification	à no	hiding

3615-214

Outline

• The	Process	of	API	Design
• Key	design	principle:		Information	hiding
• Concrete	advice	for	user-centered	design

3715-214

Apply	principles	of	user-centered	design

• e.g.,	"Principles	of	Universal	Design"
– Equitable	use

• Design	is	useful	and	marketable	to	people	with	diverse	abilities
– Flexibility	in	use

• Design	accommodates	a	wide	range	of	individual	preferences
– Simple	and	intuitive	use

• Use	of	the	design	is	easy	to	understand
– Perceptible	information

• Design	communicates	necessary	information	effectively	to	user
– Tolerance	for	error
– Low	physical	effort
– Size	and	space	for	approach	and	use

3815-214

Achieving	flexibility	in	use	while	remaining	
simple	and	intuitive:	Minimize	conceptual	weight

• API	should	be	as	small	as	possible	but	no	smaller
–When	in	doubt,	leave	it	out

• Conceptual	weight:		How	many	concepts	must	a	
programmer	learn	to	use	your	API?
– APIs	should	have	a	"high	power-to-weight	ratio"

• Good	examples:
– java.util.*
– java.util.Collections

3915-214

What’s	wrong	here?

public class Thread implements Runnable {
// Tests whether current thread has been interrupted.
// Clears the interrupted status of current thread.
public static boolean interrupted();

}

4015-214

Unintuitive	behavior:	side	effects

• User	of	API	should	not	be	surprised	by	behavior,	aka	
“the	principle	of	least	astonishment”
– It's	worth	extra	implementation	effort
– It's	even	worth	reduced	performance

public class Thread implements Runnable {

// Tests whether current thread has been interrupted.
// Clears the interrupted status of current thread.
public static boolean interrupted();

}

4115-214

• Do	what	you	say	you	do:		
– "Don't	violate	the	Principle	of	Least	Astonishment"

Good	names	drive	good	design

4215-214

Discuss	these	names

– get_x()	vs getX()
– Timer	vs timer
– isEnabled()	vs.	enabled()
– computeX()	vs.	generateX()?
– deleteX()	vs.	removeX()?

4315-214

Good	names	drive	good	design	(2)

• Follow	language- and	platform-dependent	
conventions,	e.g.,
– Typographical:		

• get_x() vs. getX()
• timer vs. Timer, HTTPServlet vs HttpServlet
• edu.cmu.cs.cs214

– Gramatical (see	next)

4415-214

Good	names	drive	good	design	(3)

• Nouns	for	classes
– BigInteger,	PriorityQueue

• Nouns	or	adjectives	for	interfaces
– Collection,	Comparable

• Nouns,	linking	verbs	or	prepositions	for
non-mutative	methods
– size,	isEmpty,	plus

• Action	verbs	for	mutative	methods
– put,	add,	clear

4515-214

Good	names	drive	good	design	(4)
• Use	clear,	specific	naming	conventions
– getX() and	setX() for	simple	accessors and	
mutators

– isX() for	simple	boolean accessors
– computeX() for	methods	that	perform	computation
– createX() or	newInstance() for	factory	methods
– toX() for	methods	that	convert	the	type	of	an	object
– asX() for	wrapper	of	the	underlying	object

4615-214

Good	names	drive	good	design	(5)

• Be	consistent
– computeX()	vs.	generateX()?
– deleteX()	vs.	removeX()?

• Avoid	cryptic	abbreviations
– Good:	Font,	Set,	PrivateKey,	Lock,
ThreadFactory,	TimeUnit,	Future<T>

– Bad:	DynAnyFactoryOperations,
_BindingIteratorImplBase,
ENCODING_CDR_ENCAPS,	OMGVMCID

4715-214

Do	not	violate	Liskov's	behavioral	
subtyping	rules

• Use	inheritance	only	for	true	subtypes
• Examples:

1)
class Stack extends Vector …

2)
// A Properties instance maps Strings to Strings
public class Properties extends HashTable {

public Object put(Object key, Object value);
…

}

4815-214

Favor	composition	over	inheritance

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {

public Object put(Object key, Object value);
…

}

public class Properties {
private final HashTable data = new HashTable();
public String put(String key, String value) {

data.put(key, value);
}
…

}

4915-214

Minimize	mutability

• Classes	should	be	immutable	unless	there’s	a	
good	reason	to	do	otherwise
– Advantages:	simple,	thread-safe,	reusable
– Disadvantage:	separate	object	for	each	value

Bad:				Date,	Calendar
Good:		TimerTask

5015-214

• Component.getSize() returns	Dimension
• Dimension is	mutable
• Each	getSize call	must	allocate	Dimension
• Causes	millions	of	needless	object	allocations
• Alternative	added	in	Java1.2	but	old	client	code	still	slow:	
getX(),	getY()

• Document	mutability
– Carefully	describe	state	space
–Make	clear	when	it's	legal	to	call	which	method

Mutability	and	performance

5115-214

Overload	method	names	judiciously
• Avoid	ambiguous	overloads	for	subtypes

– Recall	the	subtleties	of	method	dispatch:
public class Point() {

private int x;
private int y;
public boolean equals(Point p) {

return this.x == p.x && this.y == p.y;
}

}
• If	you	must	be	ambiguous,	implement	consistent	behavior

public class TreeSet implements SortedSet {
public TreeSet(Collection c); // Ignores order.
public TreeSet(SortedSet s); // Respects order.

}

5215-214

Use	appropriate	parameter	&	return	types

• Favor	interface	types	over	classes	for	input
– Provides	flexibility,	performance

• Use	most	specific	possible	input	parameter	type
– Moves	error	from	runtime	to	compile	time

• Don't	use	String if	a	better	type	exists
– Strings	are	cumbersome,	error-prone,	and	slow	

• Don't	use	floating	point	for	monetary	values
– Binary	floating	point	causes	inexact	results!

• Use	double (64	bits)	rather	than	float (32	bits)
– Precision	loss	is	real,	performance	loss	negligible

5315-214

Use	consistent	parameter	ordering

• An	egregious	example	from	C:
– char* strncpy(char* dest, char* src, size_t n);
– void bcopy(void* src, void* dest, size_t n);

5415-214

Use	consistent	parameter	ordering

• An	egregious	example	from	C:
– char* strncpy(char* dest, char* src, size_t n);
– void bcopy(void* src, void* dest, size_t n);

• Some	good	examples:
java.util.Collections – first	parameter	always	
collection	to	be	modified	or	queried

java.util.concurrent – time	always	specified	as		
long	delay,	TimeUnit unit

5515-214

Avoid	long	lists	of	parameters
• Especially	with	repeated	parameters	of	the	same	type

HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,
DWORD dwStyle, int x, int y, int nWidth, int nHeight,
HWND hWndParent, HMENU hMenu, HINSTANCE hInstance,
LPVOID lpParam);

• Long	lists	of	identically	typed	params harmful
– Programmers	transpose	parameters	by	mistake
– Programs	still	compile	and	run,	but	misbehave!

• Three	or	fewer	parameters	is	ideal
• Techniques	for	shortening	parameter	lists
– Break	up	method
– Create	helper	class	to	hold	parameters
– Builder	Pattern

5615-214

What’s	wrong	here?

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {

public Object put(Object key, Object value);

// Throws ClassCastException if this instance
// contains any keys or values that are not Strings
public void save(OutputStream out, String comments);

}

5715-214

Fail	fast
• Report	errors	as	soon	as	they	are	detectable
– Check	preconditions	at	the	beginning	of	each	method
– Avoid	dynamic	type	casts,	run-time	type-checking

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {

public Object put(Object key, Object value);

// Throws ClassCastException if this instance
// contains any keys or values that are not Strings
public void save(OutputStream out, String comments);

}

5815-214

Throw	exceptions	to	indicate	
exceptional	conditions
• Don’t	force	client	to	use	exceptions	for	control	flow

private byte[] a = new byte[CHUNK_SIZE];

void processBuffer (ByteBuffer buf) {
try {

while (true) {
buf.get(a);
processBytes(a, CHUNK_SIZE);

}
} catch (BufferUnderflowException e) {

int remaining = buf.remaining();
buf.get(a, 0, remaining);
processBytes(a, remaining);

}
}

• Conversely,	don’t	fail	silently
ThreadGroup.enumerate(Thread[] list)

5915-214

Avoid	checked	exceptions	if	possible

• Overuse	of	checked	exceptions	causes	boilerplate
try {

Foo f = (Foo) g.clone();
} catch (CloneNotSupportedException e) {

// Do nothing. This exception can't happen.

}

6015-214

Avoid	return	values	that	demand	
exceptional	processing
• Return	zero-length	array	or	empty	collection,	not	null

package java.awt.image;
public interface BufferedImageOp {

// Returns the rendering hints for this operation,
// or null if no hints have been set.
public RenderingHints getRenderingHints();

}

• Do	not	return	a	String if	a	better	type	exists

6115-214

Don't	let	your	output	become	your	de	
facto	API
• Document	the	fact	that	output	formats	may	
evolve	in	the	future

• Provide	programmatic	access	to	all	data	
available	in	string	form
public class Throwable {
public void

printStackTrace(PrintStream s);
}

6215-214

Don't	let	your	output	become	your	de	
facto	API
• Document	the	fact	that	output	formats	may	evolve	in	the	future
• Provide	programmatic	access	to	all	data	available	in	string	form

public class Throwable {
public void printStackTrace(PrintStream s);
public StackTraceElement[] getStackTrace();

}

public final class StackTraceElement {
public String getFileName();
public int getLineNumber();
public String getClassName();
public String getMethodName();
public boolean isNativeMethod();

}

6315-214

Documentation	matters

Reuse	is	something	that	is	far	easier	to	say	than	to	
do.		Doing	it	requires	both	good	design	and	very	
good	documentation.		Even	when	we	see	good	
design,	which	is	still	infrequently,	we	won't	see	the	
components	reused	without	good	documentation.

– D.	L.	Parnas,	Software	Aging.	Proceedings
of	the	16th	International	Conference	on
Software	Engineering,	1994

6415-214

Contracts	and	Documentation

• APIs	should	be	self-documenting
– Good	names	drive	good	design

• Document	religiously	anyway
– All	public	classes
– All	public	methods
– All	public	fields
– All	method	parameters
– Explicitly	write	behavioral	specifications

• Documentation	is	integral	to	the	design	and	
development	process

6515-214

Summary

• Accept	the	fact	that	you,	and	others,	will	make	
mistakes
– Use	your	API	as	you	design	it
– Get	feedback	from	others
– Think	in	terms	of	use	cases	(domain	engineering)
– Hide	information	to	give	yourself	maximum	flexibility	
later

– Design	for	inattentive,	hurried	users
– Document	religiously

6615-214

BONUS:	API	REFACTORING

6715-214

1.	Sublist operations	in	Vector
public class Vector {

public int indexOf(Object elem, int index);
public int lastIndexOf(Object elem, int index);
...

}

• Not	very	powerful	- supports	only	search
• Hard	to	use	without	documentation

6815-214

Sublist	operations	refactored
public interface List {

List subList(int fromIndex, int toIndex);
...

}

• Extremely	powerful	- supports	all operations
• Use	of	interface	reduces	conceptual	weight
– High	power-to-weight	ratio

• Easy	to	use	without	documentation

6915-214

2.	Thread-local	variables

// Broken - inappropriate use of String as capability.
// Keys constitute a shared global namespace.
public class ThreadLocal {

private ThreadLocal() { } // Non-instantiable

// Sets current thread’s value for named variable.
public static void set(String key, Object value);

// Returns current thread’s value for named variable.
public static Object get(String key);

}

7015-214

Thread-local	variables	refactored	(1)
public class ThreadLocal {

private ThreadLocal() { } // Noninstantiable

public static class Key { Key() { } }

// Generates a unique, unforgeable key
public static Key getKey() { return new Key(); }

public static void set(Key key, Object value);
public static Object get(Key key);

}

• Works,	but	requires	boilerplate	code	to	use
static ThreadLocal.Key serialNumberKey = ThreadLocal.getKey();
ThreadLocal.set(serialNumberKey, nextSerialNumber());
System.out.println(ThreadLocal.get(serialNumberKey));

7115-214

Thread-local	variables	refactored	(2)
public class ThreadLocal<T> {

public ThreadLocal() { }
public void set(T value);
public T get();

}

• Removes	clutter	from	API	and	client	code
static ThreadLocal<Integer> serialNumber =

new ThreadLocal<Integer>();
serialNumber.set(nextSerialNumber());
System.out.println(serialNumber.get());

