
1 15-214

School of
Computer Science

Principles of Software Construction:
Performance

Christian Kaestner Bogdan Vasilecu

2 15-214

Your Feedback

• Recitations and homeworks useful

• Art vs performance

• Narrative of the class unclear

• Workload high, assignments too large

• Unclear how to act on feedback

• Suggestions:

– More case studies of good design

– Longer recitations

– More live coding

3 15-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Design Patterns,
Unit Testing

Design for Reuse:

Inheritance, Delegation,
Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,

Design Patterns,
GUI vs Core,

Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for

Concurrency

Distributed Systems in a
Nutshell

Intro to Java

Git, CI
Static Analysis

GUIs UML More Git

GUIs
Performance

Design

4 15-214

5 15-214

Learning goals for today

• Avoid premature optimization

• Know pitfalls of common APIs

• Understand garbage collection

• Ability to use a profiler

6 15-214

More computing sins are committed in the
name of efficiency (without necessarily
achieving it) than for any other single
reason—including blind stupidity.
 —William A. Wulf

7 15-214

Competing Design Goals

• Extensibility

• Maintainability
(design for change & understanding)

• Performance

• Safety, security

• Stability

8 15-214

Good Programs Rather than Fast Ones

• Information hiding:

– Individual decisions can be changed and improved without
affecting other parts of a system

– Abstract interactions with the outside world (I/O, user
interactions)

• A good architecture scales

• Hardware is cheap, developers are not

• Optimize only clear, concise, well-structured
implementations, if at all

• Who exchanges readability for performance will lose
both

9 15-214

Performance Optimizations

• High-level algorithmic changes

• Low-level hacking

10 15-214

Performance Optimizations

• High-level algorithmic changes

• Low-level hacking

No amount of
low-level optimization
can fix an inefficient
algorithmic choice

11 15-214

Before Optimization: Profiling

• Common wisdom: 80% of time spent in 20% of
code

• Many optimizations have minimal impact or
make performance worse

• Guessing problem often inefficient

• Use profiler to identify bottleneck

– Often points toward algorithmic changes
(quadratic -> linear)

12 15-214

EXAMPLE: COSINE SIMILARITY

13 15-214

Performance informs design

• Find closest match in n documents

– Computational complexity?

• Find closest matches in n documents

– Computational complexity?

• What’s the actual runtime performance?

14 15-214

Latency
PRIMITIVE LATENCY: ns us ms

L1 cache reference 0.5

Branch mispredict 5

L2 cache reference 7

Mutex lock/unlock 25

Main memory reference 100
Compress 1K bytes with Zippy 3,000 3

Send 1K bytes over 1 Gbps network 10,000 10

Read 4K randomly from SSD* 150,000 150

Read 1 MB sequentially from memory 250,000 250

Round trip within same datacenter 500,000 500

Read 1 MB sequentially from SSD* 1,000,000 1,000 1

Disk seek 10,000,000 10,000 10

Read 1 MB sequentially from disk 20,000,000 20,000 20

Send packet CA->Netherlands->CA 150,000,000 150,000 150

15 15-214

public class Document {
 private final ...

 public Document(String url) throws IOException {

 }

 public double cosineSimilarity(Document doc) {

 }
}

16 15-214

public class Document {
 private final String url;
 private final Map<String, Integer> wordFreqs = new HashMap<>();
 private final double magnitude; // Smaller win
 public Document(String url) throws IOException {
 this.url = url;
 Scanner sc = new Scanner(new URL(url).openStream());
 while (sc.hasNext())
 wordFreqs.merge(sc.next(), 1, Integer::sum);
 double sumOfSquares = 0;
 for (int freq : wordFrequencies.values())
 sumOfSquares += freq * freq;
 magnitude = Math.sqrt(sumOfSquares);
 }
 public double cosineSimilarity(Document doc) {
 double dotProduct = 0;
 for (Map.Entry<String, Integer> freq :
 wordFreqs.entrySet()) {
 dotProduct += freq.getValue() *
 doc.wordFreqs.getOrDefault(freq.getKey(), 0);
 }
 return dotProduct / (magnitude * doc.magnitude);
 }

(redacted)

17 15-214

public static void main(String[] args) throws IOException {
 // Translate URLs into documents
 int numDocs = args.length;
 Document[] docs = new Document[numDocs];
 for (int i = 0; i < numDocs; i++) {
 docs[i] = new Document(args[i]);
 }

 // Create matrix of similarity scores
 double[][] scores = new double[numDocs][numDocs];
 for (int i = 0; i < numDocs; i++) {
 for (int j = i + 1; j < numDocs; j++) {
 scores[i][j] = scores[j][i] =
 docs[i].cosineSimilarity(docs[j]);
 }
 }

(redacted)

18 15-214

Profiler Demo

19 15-214

Performance prediction

• Performance prediction is hard

• Use profiler

• I/O can overshadow other costs

• Performance may not be practically relevant for
many problems

20 15-214

15-313 Question

• Twitter famously had scalability problems and
rewrote most of their system
(Ruby -> Scala; Monolithic -> Microarchitecture)

• Was the initial monolithic design stupid?

• What tradeoffs to make for a startup?

21 15-214

Scrabble Design

• When to load the dictionary?

• When to check whether a move is valid?

22 15-214

PERFORMANCE PITFALLS
(NOT ONLY IN JAVA)

23 15-214

Know the Language and its Libraries

• String concatenation

• List access

• Autoboxing

• Hashcode

24 15-214

String concatenation in Java

public String toString(String[] elements) {

String result = "";

for (int i = 0; i < elements.length; i++)

 result += elements[i];

return result;

}

25 15-214

String concatenation in Java

public String toString(String[] elements) {

String result = "";

for (int i = 0; i < elements.length; i++)

 result = result.concat(elements[i]);

return result;

}

See implementation of String.concat()

26 15-214

Efficient String Concatenation

public String toString(String[] elements) {

StringBuilder b = new StringBuilder();

for (int i = 0; i < elements.length; i++)

 b.append(elements[i]);

return b.toString();

}

See implementation of StringBuilder

27 15-214

Lists

List<String> l = …

for (int i = 0; i < l.size(); i++)

 if (“key”.equals(l.get(i))

 System.out.println(“found it”);

Possibly very slow; why?

28 15-214

Autoboxing: Integer vs int

• Integers are objects, ints are not

• new Integer(42) == new Integer(42) ?

• 4.equals(4) ?

• Integer a = 5 ?

• Math.max(12, new Integer(44)) ?

• new Integer(42) == 42 ?

see implementation of Integer

29 15-214

Understand Autoboxing

public static void main(String[] args) {

Long sum = 0L;

for (long i = 0; i < Integer.MAX_VALUE; i++) {

 sum += i;

}

System.out.println(sum);

}

Very slow; why?

30 15-214

When to use Boxed Primitives?

• Keys and values in collections (need objects)

• Type parameters in general (Optional<Long>)

• Prefer primitive types over boxed ones where
possible

31 15-214

Understanding Hashcode

class Office {

 private String roomNr;

 private Set<Person> occupants;

 public boolean equals(Object that) { … }

}

Set<Office> …

possible problem?

32 15-214

Understanding Hashcode

class Office {

 private String roomNr;

 private Set<Person> occupants;

 public int hashCode() { return 0; }

}

Set<Office> …

performance problem?

33 15-214

Hashcode – good practice

• Start with nonzero constant (e.g. 17)

• For each significant field integrate value (result =
result * 31 + c) where c:

– “(f?1:0)” for boolean

– “(int) f” for most primitives

– o.hashCode for objects

34 15-214

Don’t worry about

• Overhead of method calls (e.g., strategy pattern)

• Overhead of object allocation (unless its
millions)

• Multiplication vs shifting (compiler can optimize
that)

• Performance of a single statement /
microbenchmarks

• Recursion vs iteration

35 15-214

We should forget about small
efficiencies, say about 97% of the
time: premature optimization is the
root of all evil.
 —Donald E. Knuth

36 15-214

GARBAGE COLLECTION

37 15-214

Explicit Memory Allocation vs. Garbage
Collection

• Stack allocation:

– int x = 4;

• Heap allocation

– Point x = new Point(4, 5);

– Reference on stack, object on heap

• C-style explicit memory allocation

– pointStruct* x; x = malloc(sizeof(pointStruct));

– x -> y = 5; x -> x = 4;

– free(x);

38 15-214

Garbage Collection

• No explicit “free”

• Elements that are no longer referenced may be
freed by the JVM

– int foo() {
 Point x = new Point(4, 5);
 return x.x - x.y;
}

– set.add(new Point(4, 5));
return set;

39 15-214 http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

40 15-214

Memory Leaks

• C: Forgetting to free memory

• Java: Holding on to references to objects no
longer needed

– class Memory {
 static final List<Point> l = new ArrayList(10000);
 final HashMap<Integer, Connection> …
}

• Java: Not closing streams, connections, etc

41 15-214

Memory Leak Example

class Stack {

 Point[] elements;

 int size = 0;

 void push(Point x) { elements[++size] = x; }

 Point peek() { return elements[size]; }

 Point pop() { return elements[size--]; }

}
Why is this a problem? How to fix it?

42 15-214

Memory Leak Example

class Stack {

 …

 Point pop() {

 Point r = elements[size];

 elements[size] = null;

 size--;

 return r;

 }

}

43 15-214

Weak References

• References that may be garbage collected

– java.lang.ref.WeakReference<T>

– java.util.WeakHashMap<K,V> (weak keys)

• x = new WeakReference(new Point(4 ,5));
x.get() // returns the point, or null if garbage collected in between

• WeakHashMap useful for caching, when cache
should not prevent garbage collection

44 15-214

References and Observers

class Game {

 List<WeakReference<Listener>> listeners = …

 void addListener(Listener l) {

 listeners.add(new WeakReference(l));

 }

 void fireEvent() {

 for (wl : listeners) {

 Listener l = wl.get();

 if (l != null) l.update();

 }

 }

}

Should lists of observers
be stored as weak

references to avoid
memory leaks?

45 15-214

Caching expensive computations
(on immutable objects)
class Cache {

 Map<Cryptarithm, Solution> cache = new WeakHashMap<>();

 Solution solve(Cryptarithm c) {

 Solution result = cache.get(c);

 if (result != null) return result;

 result = c.solve();

 cache.put(c, result);

 return result;

 }

}
similar caching in factories when creating objects

46 15-214

PERFORMANCE AND DESIGN

47 15-214

Performance in API Design

• Immutable classes are easy and fast

– Easy to share

– No defensive copying

• class type instead of interface type ties to that
class; inheritance ties subclass to superclass
decisions, delegation does not

48 15-214

Example: Poor Performance through API
Design

• java.awt.Component.getSize returns mutable
Dimension

– lots of defensive copying

– separate getWidth/getHight methods added later for
performance reasons

• “Returns the current height of this component. This
method is preferable to writing component.
getBounds().height or component.getSize().height
because it doesn't cause any heap allocations.”

• Old design problems stick around

49 15-214

Design Pattern for Performance

• Flyweight

• Proxy (caching)

• Factories (caching)

50 15-214

Proxy Design Pattern

Applicability
• Whenever you need a more sophisticated

obj reference than a simple pointer

• Local representative for remote obj.

• Create/load expensive obj on demand

• Control access to an object

• Extra error handling, failover

• Caching

• Reference count an object

Consequences
• Introduces a level of indirection
• Hides distribution from client
• Hides optimizations from client
• Adds housekeeping tasks

51 15-214

Proxy Example

CryptarythmProxy implements Cryptarythm {

 private Cryptarythm c;

 private final String[] input;

 CryptarythmProxy(String[] words) { input = words; }

 public solve() {

 if (c != null)

 c = new Cryptarythm(input);

 return c.solve();

 }

}

52 15-214

Proxy Example

CryptarythmProxy implements Cryptarythm {

 private Solution solution;

 private final String[] input;

 CryptarythmProxy(String[] words) { input = words; }

 public solve() {

 if (solution != null)

 solution = new Cryptarythm(input).solve();

 return solution;

 }

}

53 15-214

The Flyweight Pattern

• Share data structures for values efficiently;
create one instance per value

• Examples:

– Characters in a document

– Enums

– Coffee Flavors

• Flyweights are immutable value objects, their
creation is cached in a factory

• Aka “Hash consing”

54 15-214

55 15-214

Flyweight Example

class TileImage { // immutable value class, the flyweight

 TileImage(char c) { … } // package-visible constructor can prevent

 image, draw() … // clients from instantiating directly

}

class TileImageFactory {

 private Map<Char, TileImage> cache = new WeakHashMap<>();

 public TileImage create(char c) {

 TileImage result = cache.get(c);

 if (result != null) return result;

 result = new TileImage(c);

 cache.put(c, result);

 return result;

 }

}

56 15-214

57 15-214

5

3 3

1 2 2 3

1 2

How can we represent the same tree with
fewer objects?

58 15-214

5

3 3

1 2 2 3

1 2
5

3

3

1 2

Reusing Tree Nodes
with Flyweight Pattern:

59 15-214

Conclusion

• Performance does not matter, until it does

• Focus on good designs, avoid premature
optimization

• Use a profiler before optimizing

• Know pitfalls in Java, understand weak
references

• Flyweight, Proxies, *Factory Patterns all enable
caching of sorts

60 15-214

Further Reading

• Effective Java, Item 55 and many more

• Design patterns Proxy, Flyweight, *Factory

• Java API documentation of WeakReference,
WeakHashmap

