
 1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 2: Designing (Sub-)Systems)

Object-oriented analysis: Modeling
a problem domain

Christian Kästner Bogdan Vasilescu

 2 15-214
2

 3 15-214

LEFTOVER TOPICS FROM
DESIGN FOR REUSE

3

 4 15-214

Generics / Parametric Polymorphism

Map<Integer,String> …;

public class Stack<T> {

 public void push(T obj) { … }

 public T pop() { … }

}

abstract class Foo {

 abstract public <T> T process(List<T> l);

}
ArrayList<? extends Animal> … ;

4

 5 15-214

The Iterator Design Pattern

• Generic traversal of elements of a data structure
or computation

– All items in a list, set, tree

– The Fibonacci numbers

– All permutations of a set

• Interface:

– hasNext(), next()

– example: while (i.hasNext()) { x = i.next(); process(x); }
or for (x : i) { process(x); }

5

 6 15-214

Iterators in Java

interface Iterable<E> {//implemented by most collections

 Iterator<E> iterator();

}

interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove(); // removes previous returned item

} // from the underlying collection

6

 7 15-214

public class Pair<E> {
 private final E first, second;
 public Pair(E f, E s) { first = f; second=s;}

}

An Iterator implementation for Pairs

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }

 8 15-214

public class Pair<E> implements Iterable<E> {
 private final E first, second;
 public Pair(E f, E s) { first = f; second=s;}
 public Iterator<E> iterator() {
 return new PairIterator();
 }
 private class PairIterator implements Iterator<E> {
 private boolean seenFirst = false, seenSecond = false;
 public boolean hasNext() { return !seenSecond; }
 public E next() {
 if (!seenFirst) { seenFirst = true; return first; }
 if (!seenSecond) { seenSecond = true; return second; }
 throw new NoSuchElementException();
 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
 }
}

An Iterator implementation for Pairs

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }

 9 15-214

Fibonacci Iterator

class FibIterator implements Iterator<Integer> {
 public boolean hasNext() { return true; }
 public Integer next() {

 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
}

9

 10 15-214

Fibonacci Iterator

class FibIterator implements Iterator<Integer> {
 public boolean hasNext() { return true; }
 private int a = 1;
 private int b =1;
 public Integer next() {
 int result = a;
 a = b;
 b = a + result;
 return result;
 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
}

10

 11 15-214

Using a java.util.Iterator<E>: A
warning
• The default Collections implementations are mutable…
• …but their Iterator implementations assume the collection

does not change while the Iterator is being used
– You will get a ConcurrentModificationException
– If you simply want to remove an item:
 List<String> arguments = …;
 for (Iterator<String> it = arguments.iterator();
 it.hasNext();) {
 String s = it.next();
 if (s.equals("Charlie"))
 arguments.remove("Charlie"); // runtime error
 // use it.remove instead
 }

 12 15-214

The Iterator Pattern

• Problem: Clients need
uniform strategy to access all elements in a
container, independent of the container type
– Order is unspecified, but access every element once

• Solution: A strategy pattern for iteration

• Consequences:
– Hides internal implementation of underlying container

– Easy to change container type

– Facilitates communication between parts of the
program

12

 13 15-214

Summary: Design for Reuse

• Delegation and inheritance to reuse code
– implements vs extends, abstract classes

– Strategy vs template method pattern

– Flexible delegation: Decorator design pattern

• Invariants and constructors

• Contracts and inhertiance
– Behavioral subtyping/Liskov substitution principle

• Immutable objects

• Parametric polymorphism (generics)

13

 14 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 2: Designing (Sub-)Systems)

Object-oriented analysis: Modeling
a problem domain

Christian Kästner Charlie Garrod

 15 15-214

Learning Goals

• High-level understanding of requirements
challenges

• Identify the key abstractions in a domain,
model them as a domain model

• Identify the key interactions within a system,
model them as system sequence diagram

• Discuss benefits and limitations of the design
principle low representational gap

15

 16 15-214

Design Goals, Principles, and Patterns

• Design Goals

– Design for change

– Design for division of labor

– Design for reuse

• Design Principle

– Low representational gap

16

 17 15-214

REQUIREMENTS

17

 18 15-214
18

 19 15-214

Requirements say what the system will
do (and not how it will do it).

• The hardest single part of building a software
system is deciding precisely what to build.

• No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements ...

• No other part of the work so cripples the
resulting system if done wrong.

• No other part is as difficult to rectify later.
 — Fred Brooks

19

 20 15-214

Requirements

• What does the customer want?

• What is required, desired, not necessary?
Legal, policy constraints?

• Customers often do not know what they really
want; vague, biased by what they see; change
their mind; get new ideas…

• Difficult to define requirements precisely

• (Are we building the right thing? Not: Are we
building the thing right?)

20

 21 15-214

Lufthansa Flight 2904

• The Airbus A320-200 airplane
has a software-based braking
system that consists of:

– Ground spoilers (wing
plates extended to reduce
lift)

– Reverse thrusters

– Wheel brakes on the main
landing gear

• To engage the braking system,
the wheels of the plane must
be on the ground.

21

 22 15-214

Lufthansa Flight 2904

There are two “on ground” conditions:

1. Both shock absorber bear a load of 6300 kgs

2. Both wheels turn at 72 knots (83 mph) or faster

• Ground spoilers activate for conditions 1 or 2
• Reverse thrust activates for condition 1 on both

main landing gears
• Wheel brake activation depends upon the

rotation gain and condition 2

22

 23 15-214

23

 24 15-214

Requirements

• What does the customer want?

• What is required, desired, not necessary?
Legal, policy constraints?

• Customers often do not know what they really
want; vague, biased by what they see; change
their mind; get new ideas…

• Difficult to define requirements precisely

• (Are we building the right thing? Not: Are we
building the thing right?)

24

214 assumption:
Somebody has gathered the
requirements (mostly text).

Challenges:
How do we start implementing them?

How do we cope with changes?

 25 15-214

This lecture

• Understand functional requirements

• Understand the problem’s vocabulary (domain
model)

• Understand the intended behavior (system
sequence diagrams; contracts)

25

 26 15-214

Problem

Space

Domain Model

Solution

Space

Object Model

• Real-world concepts
• Requirements, Concepts
• Relationships among

concepts
• Solving a problem
• Building a vocabulary

• System implementation
• Classes, objects
• References among

objects and inheritance
hierarchies

• Computing a result
• Finding a solution

 27 15-214

A design process

• Object-Oriented Analysis
– Understand the problem
– Identify the key concepts and their relationships
– Build a (visual) vocabulary
– Create a domain model (aka conceptual model)

• Object-Oriented Design
– Identify software classes and their relationships with class diagrams
– Assign responsibilities (attributes, methods)
– Explore behavior with interaction diagrams
– Explore design alternatives
– Create an object model (aka design model and design class diagram)

and interaction models

• Implementation
– Map designs to code, implementing classes and methods

 28 15-214

A high-level software design process

• Project inception
• Gather requirements
• Define actors, and use cases
• Model / diagram the problem, define objects
• Define system behaviors
• Assign object responsibilities
• Define object interactions
• Model / diagram a potential solution
• Implement and test the solution
• Maintenance, evolution, …

15-313

15-214

…

 29 15-214

DESIGN PRINCIPLE:
LOW REPRESENTATIONAL GAP

29

 30 15-214

Representational gap
• Real-world concepts:

• Software concepts:
?

…

…

?

…

…
…

 31 15-214

Representational gap

Obj1

a
h

k()

Obj2

objs

…

Actor42

…

op12

• Real-world concepts:

• Software concepts:

 32 15-214

Representational gap

PineTree

age
height

harvest()

Forest

-trees

…

Ranger

…

surveyForest(…)

• Real-world concepts:

• Software concepts:

 33 15-214

Representational gap

PineTree

age
height

harvest()

Forest

-trees

…

Ranger

…

surveyForest(…)

• Real-world concepts:

• Software concepts:
inspires objects and names

 34 15-214

Representational gap

PineTree

age
height

harvest()

Forest

-trees

…

Ranger

…

surveyForest(…)

• Real-world concepts:

• Software concepts:

Problem

Space

Domain Model

Solution

Space

Object Model

 35 15-214

Low Representational Gap
(Congruency)

• Align software objects with real-world objects
(concrete and abstract); objects with
relationships and interactions in the real world
similarly relate and interact in software

• “Intuitive” understanding; clear vocabulary

• Real-world abstractions are less likely to
change => Design for change

35

 => Find and understand real-world objects and abstractions

 36 15-214

Benefit of Low Representational Gap
(Congruence)
• The domain model is familiar to domain experts

– Simpler than code
– Uses familiar names, relationships

• Classes in the object model and implementation will be
inspired by domain model
– similar names
– possibly similar connections and responsibilities

• Facilitates understanding of design and implementation
• Facilitates traceability from problem to solution
• Facilitates evolution

– Small changes in the domain more likely to lead to small
changes in code

 37 15-214

A related design principle: high
cohesion

• Each component should have a small set of
closely-related responsibilities

• Benefits:

– Facilitates understandability

– Facilitates reuse

– Eases maintenance

PineTree

age
height

harvest()

Forest

-trees

…

Ranger

…

surveyForest(…)

 38 15-214

DOMAIN MODELS

38

 39 15-214

Artifacts of this design process

• Model / diagram the problem, define objects
– Domain model (a.k.a. conceptual model)

• Define system behaviors
– System sequence diagram

– System behavioral contracts

• Assign object responsibilities, define interactions
– Object interaction diagrams

• Model / diagram a potential solution
– Object model

Today:
understanding
the problem

Defining a
solution

 40 15-214

Object-Oriented Analysis

• Find the concepts in the problem domain
– Real-world abstractions, not necessarily software objects

• Understand the problem

• Establish a common vocabulary

• Common documentation, big picture

• For communication!

• Often using UML class diagrams as (informal) notation

• Starting point for finding classes later (low
representational gap)

 41 15-214

Why domain modeling?

• Understand the domain
– Details matter! Does every student have exactly one

major?

• Ensure completeness
– A student’s home college affects registration

• Agree on a common set of terms
– freshman/sophomore vs. first-year/second-year

• Prepare to design
– Domain concepts are good candidates for OO classes (->

low representational gap)

• A domain model is a (often visual) representation of
the concepts and relationships in a domain

 42 15-214

Input to the design process:
Requirements and use cases

• Typically prose:

Point of sale (POS) or checkout is the place where a retail
transaction is completed. It is the point at which a customer
makes a payment to a merchant in exchange for goods or
services. At the point of sale the merchant would use any of a
range of possible methods to calculate the amount owing - such
as a manual system, weighing machines, scanners or an
electronic cash register. The merchant will usually provide
hardware and options for use by the customer to make
payment. The merchant will also normally issue a receipt for
the transaction.
For small and medium-sized retailers, …

 43 15-214

Running Example in Book

© CC License by Cyberslayer on Flickr

http://www.fotopedia.com/redirect?u=http://www.flickr.com/photos/90514086@N00
http://www.fotopedia.com/redirect?u=http://www.flickr.com/photos/90514086@N00/1437093077

 44 15-214

Identify concepts

S to reR e g is te r S a leI te m

C a s h

P a y m e n t

S a le s

L in e I te m
C a s h ie r C u s to m e r

P ro d u c t

C a ta lo g

P ro d u c t

D e s c r ip t io n

L e d g e r

 45 15-214

Running Example

• Point of sale (POS) or checkout is the place where a retail transaction is
completed. It is the point at which a customer makes a payment to a merchant in
exchange for goods or services. At the point of sale the merchant would use any of
a range of possible methods to calculate the amount owing - such as a manual
system, weighing machines, scanners or an electronic cash register. The merchant
will usually provide hardware and options for use by the customer to make
payment. The merchant will also normally issue a receipt for the transaction.

• For small and medium-sized retailers, the POS will be customized by retail industry
as different industries have different needs. For example, a grocery or candy store
will need a scale at the point of sale, while bars and restaurants will need to
customize the item sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to cater to different
verticals, such as inventory, CRM, financials, warehousing, and so on, all built into
the POS software. Prior to the modern POS, all of these functions were done
independently and required the manual re-keying of information, which resulted
in a lot of errors.

http://en.wikipedia.org/wiki/Point_of_sale

 46 15-214

Read description carefully, look for

nouns and verbs
• Point of sale (POS) or checkout is the place where a retail transaction is

completed. It is the point at which a customer makes a payment to a merchant in
exchange for goods or services. At the point of sale the merchant would use any of
a range of possible methods to calculate the amount owing - such as a manual
system, weighing machines, scanners or an electronic cash register. The merchant
will usually provide hardware and options for use by the customer to make
payment. The merchant will also normally issue a receipt for the transaction.

• For small and medium-sized retailers, the POS will be customized by retail industry
as different industries have different needs. For example, a grocery or candy store
will need a scale at the point of sale, while bars and restaurants will need to
customize the item sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to cater to different
verticals, such as inventory, CRM, financials, warehousing, and so on, all built into
the POS software. Prior to the modern POS, all of these functions were done
independently and required the manual re-keying of information, which resulted
in a lot of errors.

http://en.wikipedia.org/wiki/Point_of_sale

 47 15-214

Hints for Identifying Concepts

• Read the requirements description, look for nouns
• Reuse existing models
• Use a category list

– tangible things: cars, telemetry data, terminals, …
– roles: mother, teacher, researcher
– events: landing, purchase, request
– interactions: loan, meeting, intersection, …
– structure, devices, organizational units, …

• Analyze typical use scenarios, analyze behavior
• Brainstorming

• Collect first; organize, filter, and revise later

 48 15-214

Modeling a problem domain

• Identify key concepts of the domain description
– Identify nouns, verbs, and relationships between concepts

– Avoid non-specific vocabulary, e.g. "system"

– Distinguish operations and concepts

– Brainstorm with a domain expert

• Visualize as a UML class diagram, a domain model
– Show class and attribute concepts

• Real-world concepts only

• No operations/methods

• Distinguish class concepts from attribute concepts

– Show relationships and cardinalities

 49 15-214

Building a domain model for a library
system
• A public library typically stores a collection of books,

movies, or other library items available to be borrowed by
people living in a community. Each library member
typically has a library account and a library card with the
account’s ID number, which she can use to identify herself
to the library.

• A member’s library account records which items the
member has borrowed and the due date for each borrowed
item. Each type of item has a default rental period, which
determines the item’s due date when the item is borrowed.
If a member returns an item after the item’s due date, the
member owes a late fee specific for that item, an amount
of money recorded in the member’s library account.

 50 15-214

One domain model for the library system

 51 15-214

Notes on the library domain model

• All concepts are accessible to a non-programmer
• The UML is somewhat informal

– Relationships are often described with words

• Real-world "is-a" relationships are appropriate for a domain
model

• Real-word abstractions are appropriate for a domain model
• Iteration is important

– This example is a first draft. Some terms (e.g. Item vs.
LibraryItem, Account vs. LibraryAccount) would likely be revised
in a real design.

• Aggregate types are usually modeled as classes
• Primitive types (numbers, strings) are usually modeled as

attributes

 52 15-214

Reminder: Classes vs. Attributes

• "If we do not think of some conceptual class X as
text or a number in the real world, it's probably a
conceptual class, not an attribute"

• Avoid type annotations

Sale

store

Sale Store

phoneNr
vs.

 53 15-214

Reminder: Associations

• When do we care about a relationship between two
objects? (in the real world)

• Include cardinality (aka multiplicity) where relevant

ItemStore
stocks

*

Cardinality of the role

1

 54 15-214

Reminder: Lowering the
Representational Gap (Congruency)

• Classes in the object model and
implementation will be inspired by domain
model

– similar names

– possibly similar connections and responsibilities

• Facilitates understanding of design and
implementation

• Eases tracking and performing of changes

 55 15-214

Hints for Object-Oriented Analysis
(see textbook for details)
• A domain model provides vocabulary

– for communication among developers, testers, clients, domain experts, …
– Agree on a single vocabulary, visualize it

• Focus on concepts, not software classes, not data
– ideas, things, objects
– Give it a name, define it and give examples (symbol, intension, extension)
– Add glossary
– Some might be implemented as classes, other might not

• There are many choices
• The model will never be perfectly correct

– that’s okay
– start with a partial model, model what's needed
– extend with additional information later
– communicate changes clearly
– otherwise danger of "analysis paralysis"

 56 15-214

Documenting a Domain Model

• Typical: UML class diagram
– Simple classes without methods and essential

attributes only
– Associations, inheritances, … as needed
– Do not include implementation-specific details, e.g.,

types, method signatures
– Include notes as needed

• Complement with examples, glossary, etc as
needed

• Formality depends on size of project
• Expect revisions

 57 15-214

Three perspectives of class diagrams

• Conceptual: Draw a diagram that represents the
concepts in the domain under study
– Conceptual classes reflect concepts in the domain

– Little or no regard for software that might implement it

• Specification: Describing the interfaces of the software,
not the implementation
– Software classes representing candidates for implem.

– Often confused in OO since classes combine both
interfaces and implementation

• Implementation: Diagram describes actual
implementation classes

 58 15-214

Domain Model Distinctions

• Vs. data model (solution space)

– Not necessarily data to be stored

• Vs. object model and Java classes (solution
space)

– Only includes real domain concepts (real objects
or real-world abstractions)

– No “UI frame”, no database, etc.

 59 15-214

SYSTEM SEQUENCE DIAGRAMS

59

 60 15-214
60

: Cashier : System

makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt

 61 15-214

System Sequence Diagrams

• A system sequence diagram is a model that
shows, for one scenario of use, the sequence of
events that occur on the system’s boundary

• Design goal: Identify and define the interface of
the system
– Two components: A user and the overall system
– Useful for identifying tests later

• Input: Domain description and one use case
• Output: A sequence diagram of system-level

operations
– Include only domain-level concepts and operations

 62 15-214

One sequence diagram for the library
system
Use case scenario: A library member should be able to use her library card to
log in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the
book’s due date by adding its rental period to the current day, and record the
book and its due date as a borrowed item in the member’s library account.

 63 15-214

Outlook:
System Sequence Diagrams to Tests

s = new System();

a = s.makeNewSale();

t = a.enterItem(…);

assert(50.30, t);

tt = a.endSale();

assert(52.32, tt);

…

63

: Cashier : System

makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt

 64 15-214

Interaction diagrams

• See textbook for notation of UML
communication and sequence diagrams

64

 65 15-214

Sequence vs Communication Diagrams

• Sequence diagrams are better to visualize the
order in which things occur

• Communication diagrams also illustrate how
objects are statically connected

• Communication diagrams often are more
compact

• You should generally use interaction diagrams
when you want to look at the behavior of
several objects within a single use case.

 66 15-214

SYSTEM BEHAVIORAL CONTRACTS

66

 67 15-214

Behavioral Contracts: What do These
Operations Do?

• Behavioral contract

– Like a pre-/post-
condition
specification for code

– Often written in
natural language

– Focused on system
interfaces

• may or may not be
methods

: Cashier : System

makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt

 68 15-214

Example Point of Sale Contract
Operation: makeNewSale()
Preconditions: none

Postconditions: - A Sale instance s was created
 - s was associated with a Register

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

 69 15-214

Example Point of Sale Contracts
Operation: makeNewSale()
Preconditions: none

Postconditions: - A Sale instance s was created
 - s was associated with a Register

Operation: enterItem(itemID : ItemID, quantity : integer)
Preconditions: There is a sale s underway

Postconditions: - A SalesLineItem instance sli was created
 - sli was associated with the sale s
 - sli.quantity became quantity
 - sli was associated with a ProjectDescription,
 based on itemID match

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

 70 15-214

A system behavioral contract for the
library system
• Operation: borrow(item)
• Pre-conditions:

– Library member has already logged in to the system.
Item is not currently borrowed by another member.

• Post-conditions:
– Logged-in member's account records the newly-

borrowed item, or the member is warned she has an
outstanding late fee.

– The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current
date.

 71 15-214

Distinguishing domain vs.
implementation concepts

• Domain-level concepts:

– Almost anything with a real-world analogue

• Implementation-level concepts:

– Implementation-like method names

– Programming types

– Visibility modifiers

– Helper methods or classes

– Artifacts of design patterns

 72 15-214

Take-Home Messages

• To design a solution, problem needs to be understood
• Know your tools to build domain-level representations

– Domain models – understand domain and vocabulary
– System sequence diagrams + behavioral contracts – understand interactions

with environment

• Be fast and (sometimes) loose
– Elide obvious(?) details
– Iterate, iterate, iterate, …

• Domain classes often turn into Java classes
– Low representational gap principle to support design for understanding and

change
– Some domain classes don’t need to be modeled in code; other concepts only

live at the code level

• Get feedback from domain experts
– Use only domain-level concepts

