Principles of Software Construction:
Objects, Design, and Concurrency
(Part 2: Designing (Sub-)Systems)

Object-oriented analysis: Modeling
a problem domain

Christian Kastner Bogdan Vasilescu

Computer Science

2 o [

institute ror

SOFTWARE

RESEARCH : s
15-214 I | S [s

> R o
SOFTWARE
RESEARCH

15-214 2

LEFTOVER TOPICS FROM
DESIGN FOR REUSE

15-214 3 [} soini

RRRRRRRRR

Generics / Parametric Polymorphism

Map<Integer,String> ...;

public class Stack<T> {
public void push(T obj) { ... }
public T pop() { ... }

}

abstract class Foo {
abstract public <T> T process(List<T> |);

J

ArrayList<? extends Animal> ... ;

15-214 a [Bj o

The Iterator Design Pattern

* Generic traversal of elements of a data structure
or computation
— All items in a list, set, tree
— The Fibonacci numbers
— All permutations of a set

 |nterface:

— hasNext(), next()

— example: while (i.hasNext()) { x = i.next(); process(x); }
or for (x : i) { process(x); }

15-214 s [} soini

RRRRRRRRR

lterators in Java

interface lterable<E> {//implemented by most collections
lterator<E> iterator();
}
interface lterator<E> {
boolean hasNext();
E next();
void remove(); // removes previous returned item

} // from the underlying collection

15-214 6 [EIj o

An lterator implementation for Pairs

public class Pair<E> {
private final E first, second;
public Pair(E f, E s) { first = f; second=s;}

Pair<String> pair = new Pair<String>("foo", "bar");
¥ for (String s : pair) { .. }

15-214 7 Lo

An lterator implementation for Pairs

public class Pair<E> implements Iterable<E> {
private final E first, second;
public Pair(E f, E s) { first = f; second=s;}
public Iterator<E> iterator() {
return new PairIterator();
}
private class PairIterator implements Iterator<g> {
private boolean seenFirst = false, seenSecond = false;
public boolean hasNext() { return !seenSecond; }
public E next() {
if (!seenFirst) { seenFirst = true; return first; }
if (!seenSecond) { seenSecond = true; return second; }
throw new NoSuchElementException();
}
public void remove() {
throw new UnsupportedOperationException();

} Pair<String> pair = new Pair<String>("foo", "bar");
} for (String s : pair) { .. }

Y5214 s [H e

Fibonacci lterator

class Fiblterator implements Iterator<integer> {
public boolean hasNext() { return true; }
public Integer next() {

}

public void remove() {
throw new UnsupportedOperationException();

}

15-214 9

Fibonacci lterator

class Fiblterator implements Iterator<integer> {
public boolean hasNext() { return true; }
private inta =1;
private int b =1;
public Integer next() {
int result = a;
a=b;
b = a + result;
return result;
}
public void remove() {
throw new UnsupportedOperationException();

}

15-214 10

Using a java.util.lterator<E>: A
warning

* The default Collections implementations are mutable...
e ..but their Iterator implementations assume the collection
does not change while the Iterator is being used
— You will get a ConcurrentModificationException
— If you simply want to remove an item:
List<String> arguments = ...;
for (Iterator<String> it = arguments.iterator();
it.hasNext();) {
String s = it.next();
if (s.equals("Charlie"))
arguments.remove("Charlie"); // runtime error
// use it.remove instead

15-214 11

Aggregate e create oo iterator

+ iterator() + nexty)
+ hasNexty)

The Iterator Pattern 7 7

ConcreteAggregate = create == > Concretelterator

+ [terator() + next{}

e Problem: Clients need

uniform strategy to access all elements in a
container, independent of the container type

— Order is unspecified, but access every element once
* Solution: A strategy pattern for iteration

* Consequences:
— Hides internal implementation of underlying container
— Easy to change container type

— Facilitates communication between parts of the
program

15-214 12

Summary: Design for Reuse

* Delegation and inheritance to reuse code
— implements vs extends, abstract classes
— Strategy vs template method pattern
— Flexible delegation: Decorator design pattern

* |nvariants and constructors

e Contracts and inhertiance
— Behavioral subtyping/Liskov substitution principle

* Immutable objects
* Parametric polymorphism (generics)

15-214 13 [sorvias

RRRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 2: Designing (Sub-)Systems)

Object-oriented analysis: Modeling
a problem domain

Christian Kastner Charlie Garrod

Computer Science

» - (

Institute ror

SOFTWARE

RESEARCH - Y
15-214 14 |10 s

Learning Goals

* High-level understanding of requirements
challenges

* |dentify the key abstractions in a domain,
model them as a domain model

* |dentify the key interactions within a system,
model them as system sequence diagram

* Discuss benefits and limitations of the design
principle low representational gap

15-214 15 [Ej s

Design Goals, Principles, and Patterns

* Design Goals
— Design for change
— Design for division of labor
— Design for reuse
* Design Principle
— Low representational gap

15-214 16 [EXQ sorviass

RRRRRRRRR

REQUIREMENTS

15-214 17 [sorviass

RESEARCH

How the customer explained it

How the Project Leader
understood it

How the Analyst designed 4

How the Programmer wrote o

How the Busness Consultant
described it

How the progect was
documented

What operations installed

How the customer was biled

How it was supported

Requirements say what the system will
do (and not how it will do it).

* The hardest single part of building a software
system is deciding precisely what to build.

* No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements ...

* No other part of the work so cripples the
resulting system if done wrong.

* No other part is as difficult to rectify later.
— Fred Brooks

15-214 10 BN o

Requirements

e What does the customer want?

 What is required, desired, not necessary?
Legal, policy constraints?

* Customers often do not know what they really
want; vague, biased by what they see; change
their mind; get new ideas...

* Difficult to define requirements precisely

* (Are we building the right thing? Not: Are w
building the thing right?)

- .
n .
15-214 RESEARCH

Lufthansa Flight 2904

* The Airbus A320-200 airplane
has a software-based braking
system that consists of:

— Ground spoilers (wing

plates extended to reduce
lift)

— Reverse thrusters

— Wheel brakes on the main
landing gear

* To engage the braking system,
the wheels of the plane must
be on the ground.

- P— ix‘u.?‘fu,lu’z;l
15214 2 [

RESEARCH

Lufthansa Flight 2904

There are two “on ground” conditions:
1. Both shock absorber bear a load of 6300 kgs
2. Both wheels turn at 72 knots (83 mph) or faster

e Ground spoilers activate for conditions 1 or 2

e Reverse thrust activates for condition 1 on both
main landing gears

 Wheel brake activation depends upon the
rotation gain and condition 2

15-214 22 [EYR s

RRRRRRRRR

— ———

—
L

N Ik -
M-
i pi

=~
e 924.4 » o

o
\)‘:l’, h

;~u

"~ ™ t

Requirements

214 assumption:
Somebody has gathered the
requirements (mostly text).

ally

This lecture

* Understand functional requirements

* Understand the problem’s vocabulary (domain
model)

* Understand the intended behavior (system
sequence diagrams; contracts)

15-214 25 YR sorvan

RRRRRRRRR

Problem

Space

Domain Model

* Real-world concepts
* Requirements, Concepts

* Relationships among
concepts

* Solving a problem
* Building a vocabulary

15-214

Solution
Space

Object Model

System implementation
Classes, objects

References among
objects and inheritance
hierarchies

Computing a result
Finding a solution

26

LS B sorTwaRE
= RESEARCH

A design process

* Object-Oriented Analysis
— Understand the problem
— ldentify the key concepts and their relationships
— Build a (visual) vocabulary
— Create a domain model (aka conceptual model)
* Object-Oriented Design
— ldentify software classes and their relationships with class diagrams
— Assign responsibilities (attributes, methods)
— Explore behavior with interaction diagrams
— Explore design alternatives

— Create an object model (aka design model and design class diagram)
and interaction models

* Implementation
— Map designs to code, implementing classes and methods

15-214 27 Lo

A high-level software design process

=

* Project inception

* Gather requirements

* Define actors, and use cases

* Model / diagram the problem, define objects |
* Define system behaviors

e Assign object responsibilities

* Define object interactions

* Model / diagram a potential solution

* Implement and test the solution

e Maintenance, evolution, ... }

- 15-313

- 15-214

15-214 28 [ot

RESEARC H

DESIGN PRINCIPLE:
LOW REPRESENTATIONAL GAP

15-214 20

Representational gap

* Real-world concepts:

15-214

30

N5 "l':l
OF TWARE

A InEte
I E

RESEARCH

Representational gap

* Real-world concepts:

e Software concepts:

Obj1 Actor4d?2

k() J

C N inole far
eoia 31 [0 o

jn i <))

J

Representational gap

* Real-world concepts:

e Software concepts:

PineTree Forest

age
height

harvest() J

C N inole far
eoia 52 [l o

surveyForest(..j}

Representational gap

* Real-world concepts:

inspires objects and names
e Software concepts:

PineTree Forest

age
height

harvest() J

C N inole far
eoia 33 [H i

surveyForest(..j}

Representational gap

* Real-world concepts:

Problem
Space

Domain Model

PineTree

age Solution
height

l harvest() J Space

i o L fiay
& || SOFTWARE
= RESEARCH

15-214

Low Representational Gap
(Congruency)

* Align software objects with real-world objects
(concrete and abstract); objects with
relationships and interactions in the real world
similarly relate and interact in software

* “Intuitive” understanding; clear vocabulary

* Real-world abstractions are less likely to
change => Design for change

=> Find and understand real-world objects and abstractions

~ e '35
15-214 35 torunss

Benefit of Low Representational Gap
(Congruence)

* The domain model is familiar to domain experts
— Simpler than code
— Uses familiar names, relationships

* Classes in the object model and implementation will be
inspired by domain model

— similar names
— possibly similar connections and responsibilities

e Facilitates understanding of design and implementation
e Facilitates traceability from problem to solution

 Facilitates evolution

— Small changes in the domain more likely to lead to small
changes in code

15-214 36 [EYf iorins

A related design principle: high
cohesion

* Each component should have a small set of

 Benefits:

15-214

closely-related responsibilities

— Facilitates understandability

— Facilitates reuse

— Eases maintenance

PineTree

age
height

e

.

harvest()

J

— Forest |
— Forest

-trees

e

Ranger

S

e

surveyForest(...)

. J

)

DOMAIN MODELS

15-214 3g [EJl ioian

RESEARC H

Artifacts of this design process

—

Model / diagram the problem, define objects

— Domain model (a.k.a. conceptual model) Today:
* Define system behaviors — understanding
— System sequence diagram the problem

— System behavioral contracts

—

« Assign object responsibilities, define interactions’
— Object interaction diagrams Defining a

Model / diagram a potential solution solution
— Object model _

15-214 39 tor i

Object-Oriented Analysis

* Find the concepts in the problem domain
— Real-world abstractions, not necessarily software objects

* Understand the problem

e Establish a common vocabulary

« Common documentation, big picture

* For communication!

e Often using UML class diagrams as (informal) notation

e Starting point for finding classes later (low
representational gap)

15-214 a0 [EJJ i

Why domain modeling?

e Understand the domain

— Details matter! Does every student have exactly one
major?

* Ensure completeness
— A student’s home college affects registration
¢ Agree on a common set of terms
— freshman/sophomore vs. first-year/second-year

* Prepare to design

— Domain concepts are good candidates for OO classes (->
low representational gap)

A domain model is a (often visual) representation of
the concepts and relationships in a domain

15-214 a1 [E] o

Input to the design process:
Requirements and use cases

e Typically prose:

15-214

Point of sale (POS) or checkout is the place where a retail
transaction is completed. It is the point at which a customer
makes a payment to a merchant in exchange for goods or
services. At the point of sale the merchant would use any of a
range of possible methods to calculate the amount owing - such
as a manual system, weighing machines, scanners or an
electronic cash register. The merchant will usually provide
hardware and options for use by the customer to make
payment. The merchant will also normally issue a receipt for
the transaction.

For small and medium-sized retailers, ...

SOFTWARE
42 Im RESEARCH

Running Example in Book

© CC License by

http://www.fotopedia.com/redirect?u=http://www.flickr.com/photos/90514086@N00
http://www.fotopedia.com/redirect?u=http://www.flickr.com/photos/90514086@N00/1437093077

ldentify concepts

Store

Sale

Customer

Ledger

Register ltem
Sales _
_ Cashier
Lineltem
Cash Product
Payment Catalog
15-214

Product
Description

44

- N r
netule o

S0r TwARD
RESEARCH

Running Example

* Point of sale (POS) or checkout is the place where a retail transaction is
completed. It is the point at which a customer makes a payment to a merchant in
exchange for goods or services. At the point of sale the merchant would use any of
a range of possible methods to calculate the amount owing - such as a manual
system, weighing machines, scanners or an electronic cash register. The merchant
will usually provide hardware and options for use by the customer to make
payment. The merchant will also normally issue a receipt for the transaction.

* For small and medium-sized retailers, the POS will be customized by retail industry
as different industries have different needs. For example, a grocery or candy store
will need a scale at the point of sale, while bars and restaurants will need to
customize the item sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to cater to different
verticals, such as inventory, CRM, financials, warehousing, and so on, all built into
the POS software. Prior to the modern POS, all of these functions were done
independently and required the manual re-keying of information, which resulted
in a lot of errors.

http://en.wikipedia.org/wiki/Point_of_sale

15-214 a5

Read description carefully, look for
nouns and verbs

* Point of sale (POS) or checkout is the place where a retail transaction is
completed. It is the point at which a customer makes a payment to a merchant in
exchange for goods or services. At the point of sale the merchant would use any of
a range of possible methods to calculate the amount owing - such as a manual
system, weighing machines, scanners or an electronic cash register. The merchant
will usually provide hardware and options for use by the customer to make
payment. The merchant will also normally issue a receipt for the transaction.

* For small and medium-sized retailers, the POS will be customized by retail industry
as different industries have different needs. For example, a grocery or candy store
will need a scale at the point of sale, while bars and restaurants will need to
customize the item sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to cater to different
verticals, such as inventory, CRM, financials, warehousing, and so on, all built into
the POS software. Prior to the modern POS, all of these functions were done
independently and required the manual re-keying of information, which resulted
in a lot of errors.

http://en.wikipedia.org/wiki/Point_of_sale

15-214 a6

Hints for Identifying Concepts

* Read the requirements description, look for nouns
* Reuse existing models

* Use a category list
— tangible things: cars, telemetry data, terminals, ...
— roles: mother, teacher, researcher
— events: landing, purchase, request
— interactions: loan, meeting, intersection, ...
— structure, devices, organizational units, ...

* Analyze typical use scenarios, analyze behavior
* Brainstorming

* Collect first; organize, filter, and revise later

15-214 47

Modeling a problem domain

* |dentify key concepts of the domain description
— ldentify nouns, verbs, and relationships between concepts
— Avoid non-specific vocabulary, e.g. "system"
— Distinguish operations and concepts
— Brainstorm with a domain expert

* Visualize as a UML class diagram, a domain model

— Show class and attribute concepts
* Real-world concepts only
* No operations/methods
 Distinguish class concepts from attribute concepts

— Show relationships and cardinalities

15-214 a8

Building a domain model for a library
system

* A publiclibrary typically stores a collection of books,
movies, or other library items available to be borrowed by
people living in a community. Each library member
typically has a library account and a library card with the
account’s ID number, which she can use to identify herself
to the library.

« A member’s library account records which items the
member has borrowed and the due date for each borrowed
item. Each type of item has a default rental period, which
determines the item’s due date when the item is borrowed.
If a member returns an item after the item’s due date, the
member owes a late fee specific for that item, an amount
of money recorded in the member’s library account.

15-214 a0 [EJ i

One domain model for the library system

Notes on the library domain model

* All concepts are accessible to a non-programmer
e The UML is somewhat informal
— Relationships are often described with words

* Real-world "is-a" relationships are appropriate for a domain
model

* Real-word abstractions are appropriate for a domain model

* Iterationis important

— This example is a first draft. Some terms (e.g. Item vs.
Libraryltem, Account vs. LibraryAccount) would likely be revised
in a real design.

* Aggregate types are usually modeled as classes

* Primitive types (numbers, strings) are usually modeled as
attributes

15-214 51

Reminder: Classes vs. Attributes

Sale

store

VS.

Sale

Store

phoneNr

* "If we do not think of some conceptual class X as
text or a number in the real world, it's probably a

conceptual class, not an attribute”
* Avoid type annotations

15-214

SOFTW
RRRRRRRRR

Reminder: Associations

Store

stocks

O%

ltem

Cardinality of the role

* When do we care about a relationship between two
objects? (in the real world)

* |Include cardinality (aka multiplicity) where relevant

15-214

sz [ot

RRRRRRRRR

Reminder: Lowering the
Representational Gap (Congruency)

* Classes in the object model and
implementation will be inspired by domain
model

— similar names

— possibly similar connections and responsibilities

* Facilitates understanding of design and
implementation

e Eases tracking and performing of changes

15-214 sa [EYR s

RRRRRRRRRR

Hints for Object-Oriented Analysis
(see textbook for details)

A domain model provides vocabulary
— for communication among developers, testers, clients, domain experts, ...
— Agree on a single vocabulary, visualize it

* Focus on concepts, not software classes, not data
— ideas, things, objects
— Give it a name, define it and give examples (symbol, intension, extension)
— Add glossary
— Some might be implemented as classes, other might not

* There are many choices

* The model will never be perfectly correct
— that’s okay
— start with a partial model, model what's needed
— extend with additional information later
— communicate changes clearly
— otherwise danger of "analysis paralysis"

15-214 55

Documenting a Domain Model

* Typical: UML class diagram

— Simple classes without methods and essential
attributes only

— Associations, inheritances, ... as needed

— Do not include implementation-specific details, e.g.,
types, method signatures

— Include notes as needed

e Complement with examples, glossary, etc as
needed

* Formality depends on size of project
* Expect revisions

15-214

Three perspectives of class diagrams

 Conceptual: Draw a diagram that represents the
concepts in the domain under study

— Conceptual classes reflect concepts in the domain
— Little or no regard for software that might implement it
e Specification: Describing the interfaces of the software,
not the implementation
— Software classes representing candidates for implem.

— Often confused in OO0 since classes combine both
interfaces and implementation

* Implementation: Diagram describes actual
implementation classes

15-214 s7 [EYJ iorrist

Domain Model Distinctions

* Vs. data model (solution space)

— Not necessarily data to be stored

* Vs. object model and Java classes (solution
space)

— Only includes real domain concepts (real objects
or real-world abstractions)

— No “Ul frame”, no database, etc.

15-214 ss YR s

RRRRRRRRR

SYSTEM SEQUENCE DIAGRAMS

15-214 59

15-214

X

: Cashier : System
makeNewSale
>
enterItem(itemID, quantity) »
description, total
endSale
>

total with taxes

——

makePayment(amount)

change due, receipt

——

60

.00

e
SOFTWARE
RESEARCH

System Sequence Diagrams

* A system sequence diagram is a model that
shows, for one scenario of use, the sequence of
events that occur on the system’s boundary

* Design goal: Identify and define the interface of
the system

— Two components: A user and the overall system
— Useful for identifying tests later

* Input: Domain description and one use case

 QOutput: A sequence diagram of system-level
operations

— Include only domain-level concepts and operations

15-214 61 YR s

RRRRRRRRRR

One sequence diagram for the library
system

Use case scenario: A library member should be able to use her library card to
log in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the
book’s due date by adding its rental period to the current day, and record the
book and its due date as a borrowed item in the member’s library account.

15-214

Outlook:
System Sequence Di%rams to Tests

: Cashier : System

s = new System();

makeNewSale

>

a = s.makeNewSale(); | |
t = a.enterltem(...); enterltem(itemID, quantity) >
assert(50.30, t); ... description, total |
. ’ ’ : i

tt = a.endSale(); endSale »
assert(52.32, tt); ool witheaxes
| makePayment(amount) I

change due, receipt

——

15-214 63 [EYf iorins

Interaction diagrams

* See textbook for notation of UML
communication and sequence diagrams

15-214 62 [EJH iorvnc

RRRRRRRRR

Sequence vs Communication Diagrams

e Sequence diagrams are better to visualize the
order in which things occur

e Communication diagrams also illustrate how
objects are statically connected

* Communication diagrams often are more
compact

* You should generally use interaction diagrams
when you want to look at the behavior of
several objects within a single use case.

15-214 65 [EYB o

RRRRRRRRRR

SYSTEM BEHAVIORAL CONTRACTS

15-214 66

Behavioral Contracts: What do These
Operations Do? %

* Behavioral contract ~ * “@shier - System \
— Like a pre-/post- makeNewsale g
condition ’ ’
specification for code enterItem(itemID, quantity)
— Often written in SR description, total |
natural language | e |
— Focused on system >

interfaces <o otElwith taxes

* may or may not be :
methods | makePayment(amount)

change due, receipt

——

15-214 67 tor

Example Point of Sale Contract

Operation: makeNewSale()
Preconditions: none

Postconditions: - A Sale instance s was created
- S was associated with a Register

SalesLineltem . 1 ProductDesc
quantity Described-by itemID
description
1. % price
Contained-in
1
Sale Register
0..1 1
dateTime id
total Captured-on

15-214 68

Example Point of Sale Contracts

ProductDesc

Described-by

0..1 1

itemID
description
price

Register

Captured-on

15-214

- sli.quantity became quantity

- sli was associated with a ProjectDescription,

based on itemID match

Postconditions: - A SalesLineltem instance sli was created
- sli was associated with the sale s

SalesLineltem
Operation: makeNewSale() quantity
Preconditions: none
1.%
Postconditions: - A Sale instance s was created " |,
- S was associated with a Register sale
dateTime
total
Operation: enterltem(itemID : ItemID, quantity : integer)
Preconditions: There is a sale s underway

oo [Hi

id

SO \&AR[
RESEARCH

A system behavioral contract for the
library system

e Operation: borrow(item)
* Pre-conditions:

e Post-conditions:

15-214

Distinguishing domain vs.
implementation concepts

 Domain-level concepts:
— Almost anything with a real-world analogue

* Implementation-level concepts:
— Implementation-like method names
— Programming types
— Visibility modifiers
— Helper methods or classes
— Artifacts of design patterns

15-214 71 B o

Take-Home Messages

To design a solution, problem needs to be understood
Know your tools to build domain-level representations
— Domain models — understand domain and vocabulary

— System sequence diagrams + behavioral contracts — understand interactions
with environment

Be fast and (sometimes) loose
— Elide obvious(?) details
— |terate, iterate, iterate, ...
Domain classes often turn into Java classes

— Low representational gap principle to support design for understanding and
change

— Some domain classes don’t need to be modeled in code; other concepts only
live at the code level

Get feedback from domain experts
— Use only domain-level concepts

15-214 72

