Principles of Software Construction:
Objects, Design, and Concurrency
(Part 1: Designing Classes)

Design for Change (class level)

Christian Kastner Bogdan Vasilescu

Computer Science

L 4
institute for
I S SOFTWARE
RESEARCH m' institute for
RRRRRRR H

Administrivia

e Homework 1 due today

* Homework 2:
— out tonight
— due next Thursday (Feb 2)

e Reading assignment due next Tuesday (Jan 31)

-
institute f r
15-214 2 [Hl o

) institute for
15-214 I | S [Fuass

Review

The Strategy Design Pattern

15-214

Context v
. Strategy
algorithm() execute()

z?x

ConcreteStrA

ConcreteStrB

execute()

execute()

Review

The Composite Design Pattern

Context «interface» *
> Component
+operation() _children
Leaf Composite
-parent
+operation() +operation() &
/ +add(in ¢ : Component) 1
+remove(in ¢ : Component)

operation() {
for (c in children)
c.operation();

}

-
Institute ’ r
15-214 s [FHH s

Review

Design Exercise (on paper)

* You are designing software for a shipping company.

* There are several different kinds of items that can be shipped: letters,
books, packages, fragile items, etc.

 Two important considerations are the weight of an item and its insurance
cost.
— Fragile items cost more to insure.
— All letters are assumed to weigh an ounce

— We must keep track of the weight of other packages.

* The company sells boxes and customers can put several items into them.

— The software needs to track the contents of a box (e.g. to add up its weight, or
compute the total insurance value).

— However, most of the software should treat a box holding several items just
like a single item.

* Think about how to represent packages; what are possible interfaces,
classes, and methods? (letter, book, box only)

L J
institute |
15-214 6 [H o

Review

. Context «interface» *
interface Item { Component
double getWeight(); +operation() —children
) AN
class Letter implements Item { Leat Composite parent
double Welght; +operation() / +operation() &
. +add(in c : Component) 1
double getWelght () { o oo } . |+remove(in c : Component)
operation() {
} for (cin children)
c.operation();
}

class Box implements Item {
ArraylList<Item> items=new ArraylList<>();
double getWeight() {
double weight = 0.0
for(Item item : items) {
weight += item.getWeight();
}
}
void add(Item item){
items.add(item);

}

15-214 7 SO

Review

Best practices for information hiding

e Carefully design your API
* Provide only functionality required by clients
— All other members should be private

* You can always make a private member public
later without breaking clients

— But not vice-versa!

-
Institute f r
15-214 s [H o

CONTRACTS
(BEYOND TYPE SIGNATURES)

-
institute for
15-214 o [

Contracts and Clients

Hidden from Hidden from
service* client service* provider

Review

Service¥*
implementation

* service = object,
subsystem, ...

- institute for
15-214 10 S

Review

What is a contract?

* Agreement between an object and its user

* |Includes
— Method signature (type specifications)
— Functionality and correctness expectations
— Performance expectations

e What the method does, not how it does it
— Interface (API), not implementation

. institute for
15-214 1 [Hee

Review

th. t(-5);
Who's to blame? Math.sqrt(-3)

> 0
/**
* Returns the correctly rounded positive square root of a
* {@code double} value.
* Special cases:
* <1i>If the argument is NaN or less than zero, then the
* result is NaN.
* <1i>If the argument is positive infinity, then the result
* is positive infinity.
* <1i>If the argument is positive zero or negative zero, then
* the result is the same as the argument.
* Otherwise, the result is the {@code double} value closest to
* the true mathematical square root of the argument value.
k
* @param a a value.
* @return the positive square root of {@code a}.
* If the argument is NaN or less than zero, the result is NaN.
*/

public static double sgrt(double a) { ..}

' institute for
15-214 12 [Hl e

Method contract details

e States method’s and caller’s responsibilities

* Analogy: legal contract
— If you pay me this amount on this schedule | will build
you a house with the following detailed

specification...
— Some contracts have remedies for nonperformance

* Method contract structure
— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion
— Exceptional behavior: what it does if precondition violated

* Defines what it means for implementation to be
correct
1315214 13 [JE e

Formal contract specification
Java Modelling Language (JML)

/*@ requires len >= 0 & array != null && array.length == len; Precondition

@

@ ensures \result ==

@ (\sum int j; © <= j & & j < len; array[j]); Postcondition
@*/
int total(int array[], int len);

* Theoretical approach
— Advantages

* Runtime checks generated automatically
 Basis for formal verification

e Automatic analysis tools
— Disadvantages

* Requires a lot of work
* Impractical in the large

* Some aspects of behavior not amenable to formal specification

- institute for
15-214 14 sof T

Runtime Checking of Specifications with Assertions

/*@ requires len >= 0 && array.length == len

@ ensures \result ==
@ (\sum int j; © <= j & j < len; array[j])
@*/

float sum(int array[], int len) {

15-214

assert len >= 0;

assert array.length == len;
float sum = 0.0;

int 1 = 0;

while (i < len) {

sum = sum + array[i]; 1 = 1 + 1;

} Enable assertions
assert sum ..; with -ea flag, e.g.,
return sum; > java -ea Mailn

-
institute for
15 I S r SOFTWARE
RESEARCH

Runtime Checking of Specifications with Exceptions

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sum int j; © <= j & j < len; array[j])
@*/
float sum(int array[], int len) {
if (len < @ || array.length != len)
throw IllegalArgumentException(..);
float sum = 0.0;
int 1 = 0;
while (i < len) {

sum = sum + array[i]; 1 = 1 + 1;

}

Check arguments even when
return sum;

assertions are disabled.
} Good for robust libraries!

= institute for
15-214 16 ot

Textual contract specification - Javadoc

* Practical approach
— Writing specifications is good practice
— Especially necessary when reusing code and integrating code
— Writing fully formal specifications is often unrealistic

* Document
— Every parameter
— Return value
— Every exception (checked and unchecked)

— What the method does, including

* Purpose
* Side effects

* Any thread safety issues
e Any performance issues

Do not document implementation details

= H:"\m[r[[
15-214 17 [Hlee

Specifications in the real world
Javadoc

/**
* Returns the element at the specified position of this list. Postcondition
*

*

<p>This method is <i>not</i> guaranteed to run in constant time.

*

In some implementations, it may run in time proportional to the
element position.

*

*

@param index position of element to return; must be non-negative and
* less than the size of this 1list.

@return the element at the specified position of this list
@throws IndexOutOfBoundsException if the index is out of range
* ({@code index < @ || index >= this.size()})
*/

E get(int index);

*

*

Institute for
15-214 18 SOt

Write a Specification

* Write
— a type signature,
— a textual (Javadoc) specification, and
— a formal specification

for a function slice(list, from, until) that returns all values of a
list between positions <from> and <until> as a new list

Reminder: Formal specification Reminder: Javadoc specification

k %
/*@ requires len >= 0 && array != null && /*
@ array.length == len; Returns ..
@ * @param index position of element ..
@ ensures \result == . . * @return the element at the specified posi
@ (\sum 1?t J; @<=] &&. * @throws IndexOutOfBoundsException if the
@ J < len; array[3l); * ({@code index < @ || index >= thi
@*/ ode e e =
int total(int array[], int len); */

E get(int index);

15-214 O | S [FEuv

Contracts and Interfaces

* All objects implementing an interface must
adhere to the interface’s contracts

— Objects may provide different implementations
for the same specification

— Subtype polymorphism: Client only cares about
interface, not about the implementation

p.getX() s.read()

=> Design for Change

. institute for
15-214 20 [H e

ASIDE:
THE EQUALS CONTRACT

' institute for
15-214 21 [H e

Review

The class hierarchy

* All Java objects inherit from java.lang.Object

Object
(::Eﬁstrument

Gu 1t a> <Yoyo>

 Commonly-used/overridden public methods:
— equals - returns true if the two objects are “equal”

— hashCode - returns an int that must be equal for equal
objects, and is likely to differ on unequal objects

— toString - returns a printable string representation

15-214 22 [HE &

The .equals (Object obj) contract

* Reflexive — every object is equal to itself
 Symmetric—if a.equals(b) thenb.equals(a)

* Transitive —if a.equals(b) and b.equals(c),
then a.equals(c)

* Consistent — Invoking a.equals(b) repeatedly
returns the same value unless a or b is modified;
implemented by .hashCode()

* “Non-null” —a.equals(null) returns false

* Taken together these ensure that equals is a global
equivalence relation over all objects

. institute for
15-214 23 [H e

The == operator vs. the equals () method

* The == operator determines if two references
are identical to each other

* The equals method determines if objects are
equal

* User classes can override the equals method
to implement a domain-specific test for
equality

= H”'milrf [
15-214 24 [H o

What’s the output?

public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = Xx;
this.y = vy;
}

}...

Point pl = new Point(1, 2);
Point p2 = new Point(1, 2);

System.out.println(pl == p2); | False

15-214 25 [H o

What’s the output?

public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = Xx;
this.y = vy;
}

}...

Point pl = new Point(1, 2);
Point p2 = new Point(1, 2);

System.out.println(pl.equals(p2)); | False

15-214 26 [H o

What’s the output?

public class Point { public boolean equals(Object obj) {
private int x; return this == obj;
private int y; }

public Point(int x, int y) {
this.x = x;
this.y = vy;

}

} ces

Point pl = new Point(1, 2);
Point p2 = new Point(1, 2);

System.out.println(pl.equals(p2)); |

15-214 27 [H o

What's the output?

public class Point { @Override
private int x; public boolean equals(Object obj) {
private int y; boolean result = false;
public Point(int x, int y) { if (obj instanceof Point) {
this.x = Xx; Point that = (Point) obj;
this.y = y; result =
} (this.getX() == that.getX()
. o && this.getY() == that.getY());
} }
cen return result;
Point pl = new Point(1, 2); }

Point p2 = new Point(1, 2);

True System.out.println(pl.equals(p2)); |

15-214 28 [H o

What's the output?

public class Point { @Override
private int x; public boolean equals(Object obj) {
private int y; boolean result = false;
public Point(int x, int y) { if (obj instanceof Point) {
this.x = Xx; Point that = (Point) obj;
this.y = y; result =
} (this.getX() == that.getX()
.o && this.getY() == that.getY());
} }
cen return result;
Point pl = new Point(1, 2); }

Point p2 = new Point(1, 2);

HashSet<Point> coll = new HashSet<Point>();
coll.add(pl);
False |system.out.println(coll.contains(p2));

15-214 20 [H s

The .hashCode() contract

* Consistent
— Invoking x.hashCode () repeatedly returns same
value unless x is modified
* X.equals(y) implies x.hashCode() ==
y.hashCode()

— The reverse implication is not necessarily true:

 Xx.hashCode() == y.hashCode() does not imply
X.equals(y)

* Advice: Override .equals() if and only if you
override .hashCode()

15-214 30 [v

What's the output?

public class Point { @Override
private int x; public boolean equals(Object obj) {
private int y; boolean result = false;
public Point(int x, int y) { if (obj instanceof Point) {
this.x = Xx; Point that = (Point) obj;
this.y = y; result =
} (this.getX() == that.getX()
. o && this.getY() == that.getY());
} }
. oo return result;
Point pl = new Point(1, 2); }
Point p2 = new Point(1, 2); @Override public int hashCode() {
return (41*(41 + getX()) + getY());
}
HashSet<Point> coll = new HashSet<Point>();

coll.add(pl);
True |system.out.println(coll.contains(p2));

15-214 31 [H o

What's the output?

public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = X;
this.y = vy;
}

}...

Point pl = new Point(1, 2);
Point p2 = new Point(1, 2);

@Override
public boolean equals(Object obj) {
boolean result = false;
if (obj instanceof Point) {
Point that = (Point) obj;
result =
(this.getX() == that.getX()
&& this.getY() == that.getY());
}

return result;

}

@Override public int hashCode() {
return (41*(41 + getX()) + getY());

¥

But it’s not over; see Effective Java #8

The lesson: Conforming to contracts

can be difficult!

15-214

L J
I tulte
32 [s
RESEARCH

FUNCTIONAL CORRECTNESS
(UNIT TESTING AGAINST INTERFACES)

. institute for
15-214 33 [Hi e

Context

* Design for Change as goal

* Encapsulation provides technical means

* Information Hiding as design strategy

* Contracts describe behavior of hidden details

e Testing helps gaining confidence in functional
correctness (w.r.t. contracts)

= H”'m[wf r
15-214 O | S [Ea

Functional correctness

* Compiler ensures types are correct (type-checking)

— Prevents many runtime errors, such as “Method
Not Found” and “Cannot add boolean to int”

15-214 3s [v

Review

NOuvih wpNBR

Type Checking Example

interface Animal {
void makeSound();
}
class Dog implements Animal {
public void makeSound() { System.out.println("bark!"); }
}
class Cow implements Animal {
public void makeSound() { mew(); }
public void mew() {System.out.println("Mew!"); }

¥

Animal a = new Animal();
a.makeSound() ;

Dog d = new Dog();
d.makeSound() ;

Animal b = new Cow(); o 5
Sl) What happens:

b.jump();

15-214 36 [N s

Functional correctness

* Compiler ensures types are correct (type-checking)

— Prevents many runtime errors, such as “Method
Not Found” and “Cannot add boolean to int”

 Static analysis tools (e.g., FindBugs) recognize many
common problems (bug patterns)

— Warns on possible NullPointerExceptions or
forgetting to close files

' institute for
15-214 37 [H e

FindBugs

15-214

|

® - 0 Jiva cdiWsFBRe MReence/srgliests/Nokinlozicjava RiEclipSedow Help

1< 1 B S B A -~ 1 2 BN Gy O vQ v
@ v = =S T 4 w § ¢ B 1 F2 R ARTERR A SR A=A A
‘Q | B | &’Java| 9=Plug-in Development %5 Debug
= | Y HelloTest.java iJ] ProgramPoint.ja 4] NoUnlock.java % ™ = O ||5'
1
i El
% @0verride e
public void run() { | =
Ju Lock localLock = new ReentrantLock();
— L.lock(); e

int a

if (a

}

}

return;

} else {

1;

localLock.lock();

2) {

1.unlock();

// do nothing

5 proble 2 ‘ @ Javad [Declar 4’ Search B Consol 2*cCallHi [Analysi ¥ Debug = O

0 errors, 12 warnings, 0 others
Description

. £k i oh |} o

45 Iterator is a raw type. References to generic type Iterator<E> should be parameterized
‘w1 Iterator is a raw type. References to generic type Iterator<E> should be parameterized
4 No required execution environment has been set
& plugin.ProgramPoint defines equals and uses Object.hashCode() [Troubling(14), High confidence]

tests.NoUnlock$T3.run() does not release lock on all paths [Troubling(12), High confidence]
& tests.NoUnlock$T4.run() might ignore java.lang.Exception [Troubling(14), High confidence]

W Type safety: Unchecked cast from Object to Map.Entry<String,ProgramPoint.LockState>

F Fram Nhiark Fa Man EnFrusQhrina PranaramPaink | arkQrakas

tests.NoUnlock$T3.run() does not release..| paths [Troubling(12), High confidence] :

&

CheckStyle

15-214

AJ] CartesianPoint.java &

public final class CartesianPoint {

@) private int X,Y;

this.X=x;
this.Y = y;

H

£ e public int GetY() {
return Y;
}

- public int getX() {
return X;
}

5"_' Pro 8 @ Jav [& Dec Sea B Co

0 errors, 9 warnings, 0 others
Description
v & Checkstyle Problem (9 items)
& ''is not followed by whitespace.
& '="is not followed by whitespace.
% '="is not preceded with whitespace.

&
& File contains tab characters (this is the first instance).
& Name 'GetY' must match pattern ' [a-z][a-zA-Z0-9]*S".
& Name 'X' must match pattern '~ [a-z][a-zA-Z0-9]*S".
& Name'Y' must match pattern '~ [a-z][a-zA-Z0-9]*S".

= 2 L L o Il

wiriFable Smark Incerk

CartesianPoint(int x, int y) {

Q

LN

BlTaskL 8 = O

® Connect Mylyn

Connect to your task
and ALM tools or crei

C=outlin & = B
Bla | e
v g

v 9F cartesianPoint
4@ X:int
8 Y. inkt

Resoxl

Carte
Carte
Carte
Carte
Carte
Carte

Carte!

kb

Functional correctness

* Compiler ensures types are correct (type-checking)

— Prevents many runtime errors, such as “Method
Not Found” and “Cannot add boolean to int”

 Static analysis tools (e.g., FindBugs) recognize many
common problems (bug patterns)

— Warns on possible NullPointerExceptions or
forgetting to close files

e How to ensure functional correctness of contracts
beyond type correctness and bug patterns?

= H:"\m[r[r
15-214 a0 [H o

Formal verification

e Use mathematical methods to prove correctness
with respect to the formal specification

 Formally prove that all possible executions of
an implementation fulfill the specification

* Manual effort; partial automation; not
automatically decidable

15-214 a1 [v

Testing

e Executing the program with selected inputs in a
controlled environment
* Goals

— Reveal bugs, so they can be fixed (main goal)
— Assess quality
— Clarify the specification, documentation

= H:‘wm[rr r
15-214 a2 [H s

Re: Formal verification, Testing

“Beware of bugs in the above code; |
have only proved it correct, not tried it.”
Donald Knuth, 1977

"Testing shows the presence, not the
absence of bugs.”
Edsger W. Dijkstra, 1969

= H”'m[wf r
15-214 a3z [H o

Q: Who's right, Dijkstra or Knuth?

W 0 N O U1 p W N B

R R R R R R R R
N OO L1 D W N R ® -

15-214

public static int binarySearch(int[] a, int key) {

int low = ©;
int high = a.length - 1;

while (low <= high) {
int mid = (low + high) / 2;
int midval = a[mid];

if (midval < key)
low = mid + 1
else if (midVal > key)
high = mid - 1;
else
return mid; // key found

}
return -(low + 1); // key not found.

Binary search from java.util.Arrays as [o

RESEARCH

Q: Who's right, Dijkstra or Knuth?

1: public static int binarySearch(int[] a, int key) {
2: int low = ©; .
3 int high = a.length - 1; Spec: sets r.nld to the average of
4 low and high, truncated down
c. Al (Clam <=) to the nearest integer.
6: int mid = (low + high) / 2;
7: int midval = a[mid]; —
g Fails if

' , , low + high > MAXINT (23! -1)
9: if (midval < key) :

, Sum overflows to negative value

10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

15-214 Binary search from java.util.Arrays as [s

RESEARCH

A: They’re both right

e There is no silver bullet!

e Use all the tools at your disposal
— Careful design
— Testing
— Formal methods (where appropriate)
— Code reviews

* You'll still have bugs, but hopefully fewer.

15-214 as [o

What to test?

* Functional correctness of a method (e.g.,
computations, contracts)

* Functional correctness of a class (e.g., class invariants)

* Behavior of a class in a subsystem/multiple
subsystems/the entire system

* Behavior when interacting with the world
— Interacting with files, networks, sensors, ...
— Erroneous states
— Nondeterminism, Parallelism
— Interaction with users

e Other qualities (performance, robustness, usability,
security, ...)

= institute for
15-214 47 ot

Manual testing

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Mam Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
e Live System? 7 Select “Send Message” Message 1s correctly sent

* Extra Testing System?

* Check output / assertions?
e Effort, Costs?

* Reproducible?

= institute for
15-214 a8 ot

Automated testing

* Execute a program with specific inputs,
check output for expected values

* Easier to test small pieces than testing user
Interactions

* Set up testing infrastructure

* Execute tests regularly
— After every change

= H”'milrf [
15-214 a0 [HI o

Example

/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at lLeast Llength Len
* @param Len number of elements to sum up
* @return sum of the array values
*/

int total(int array[], int 1len);

- institute for
15-214 50 S

Example

/**
* computes the sum of the first lLen values of the array
*

* @param array array of integers of at Least Llength Llen
* @param Len number of elements to sum up
* @return sum of the array values

i:é total(int array[], int len);

* Test empty array

* Test array of length 1 and 2

* Test negative numbers

e Test invalid length (negative / longer than array.length)
e Test null as array

* Test with a very long array

' institute for
15-214 s1 [e

Unit Tests

e Tests for small units: functions, classes, subsystems
— Smallest testable part of a system
— Test parts before assembling them
— Intended to catch local bugs

e Typically written by developers
e Many small, fast-running, independent tests

* Little dependencies on other system parts or
environment

* |nsufficient but a good starting point,
extra benefits:

— Documentation (executable specification)
— Design mechanism (design for testability)

. institute for
15-214 s2 [i

JUnit

e Popular unit-testing framework for Java
* Easy to use

* Tool support available

* Can be used as desigh mechanism

Ju JUnit 52 4 ¢ e BE @ B H v Y = B

Finished after 0.012 seconds

Runs: 4/4 B Errors: 0 B Failures: 1 0]

> Fi edu.cmu.cs.cs214.hwi.tests.AlgorithmTest [Runner: JUnit 4] (0.000s) = Failure Trace e
v @i edu.cmu.cs.cs214.hwi.tests.AdjacencyMatrixTest [Runner: JUnit 4] (0.000 s)
gl
el basicNullTest2 (0.000 s)
> Ei edu.cmu.cs.cs214.hwi.tests.AdjacencyListTest [Runner: JUnit 4] (0.000s)

70 java.lang.AssertionError: Expected exception: java.lang.NullPointerException

15-214 53 [[YE s

RESEARCH

JUnit

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {

15-214

@Test

public void testSanityTest () {

Graph gl = new AdjacencyListGraph (10) | Set Up
Vertex sl = new Vertex ("A"); t tS
Vertex s2 = new Vertex ("B"); €S
assertEquals (true, gl.addVertex(sl));
assertEquals (true, gl.addVertex(s2)):;
assertEquals(true, gl.addEdge(sl, s2));
(s 1)

14

assertEquals (s gl.getNeighbors(sl) [0]) ;
}
@Test expected
public void test... results

private int helperMethod..

institute for
SOFTWARE
54 AN RESEARCH

assert, Assert

e assertis a native Java statement throwing an AssertionError exception
when failing

— assert expression: "Error Message";
e org.junit.Assert is a library that provides many more specific methods

— static void assertTrue(java.lang.String message, boolean condition)
// Asserts that a condition is true.

— static void assertEquals(java.lang.String message, long expected, long actual);
// Asserts that two longs are equal.

— static void assertEquals(double expected, double actual, double delta);
// Asserts that two doubles are equal to within a positive delta

— static void assertNotNull(java.lang.Object object)
// Asserts that an object isn't null.

— static void fail(java.lang.String message)
//Fails a test with the given message.

z »vv.!\lut('[N4
15-214 55 sormmse

JUnit conventions

e TestCase collects multiple tests (in one class)

e TestSuite collects test cases (typically package)
e Tests should run fast
* Tests should be independent

e Tests are methods without parameter and return value
e AssertError signals failed test (unchecked exception)

* Test Runner knows how to run JUnit tests
— (uses reflection to find all methods with @Test annotat.)

= H”'milrf [
15-214 T | S [Ea

Test organization

e Have a test class FooTest for

* Have a source directory and a

Conventions (not
requirements)

each public class Foo

test directory

15-214

— Store FooTest and Foo in the

same package

— Tests can access members with
default (package) visibility

v 1= hwi
v iBsrc
v # edu.cmu.cs.cs214.hw1.graph
> [J) AdjacencyListGraph.java
> [J) AdjacencyMatrixGraph.java
> [J] Algorithm.java
2 edu.cmu.cs.cs214.hwi.sols
> # edu.cmu.cs.cs214.hw1.staff
> 8 edu.cmu.cs.cs214.hw1.staff.tests
v i3 tests
v i edu.cmu.cs.cs214.hw1.graph
> 1) AdjacencyListTest.java
> 1)) AdjacencyMatrixTest.java
> 1)) AlgorithmTest.java
> [J) GraphBuilder.java
> B edu.cmu.cs.cs214.hw1.staff.tests
> = JRE System Library [jdk1.7.0]
> =i JUnit 4
> = docs
> = theory

-
institute for
57 I S r SOF TWARE
RESEARCH

Selecting test cases: common strategies

* Read specification
* Write tests for
— Representative case
— Invalid cases
— Boundary conditions
e Are there difficult cases? (error guessing)
— Stress tests?
— Complex algorithms?

* Think like an attacker
— The tester’s goal is to find bugs!

* How many test should you write?
— Aim to cover the specification
— Work within time/money constraints

. institute for
15-214 s [H i

Testable code

* Think about testing when writing code
* Unit testing encourages you to write testable code

e Separate parts of the code to make them
independently testable

* Abstract functionality behind interface, make it
replaceable

* Test-Driven Development

— A design and development method in which you write
tests before you write the code

. institute for
15-214 so [H i

Write testable code

//700LOC
public boolean foo() {
try {
synchronized () {
if () {
} else {
¥
for () {
if () {
if () {
if () {
if ()?

if () {
for () {

15-214 =

Unit testing
as design
mechanism

* Code with low
complexity

* Clear interfaces
and specifications

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

-
institute for
60 m SOFTWARE
RESEARCH

When to stop writing tests?

e Outlook: statement coverage
— Trying to test all parts of the implementation
— Execute every statement, ideally

Does 100% coverage

?
arantee COITECU\ESS :

gu

15-214 61

A: No

1: public static int binarySearch(int[] a, int key) {
2: int low = ©;

3: int high = a.length - 1;

4

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midval = a[mid];

8:

9: if (midval < key)

10: low = mid + 1

11: else if (midval > key)

12: high = mid - 1;

13: else

14 return mid; // key found

15: }

16: return -(low + 1); // key not found.
17: }

15-214 62 SO

When to stop writing tests?

e Outlook: statement coverage
— Trying to test all parts of the implementation
— Execute every statement, ideally

15-214

' N “

_ M coverage-test/pom.xml | @ coverage-test0.0.1-... | [J] SampleTest.java

10 °
1140 public int subtract(int a, int b) { A ° N O
12/1 int x = a - b;
134
14)% return x; |
15/ }
' 16
17 1~ public boolean conditional(int a, int b) {
181 return a == b;
191 }
20
2109 public void uncoveredMethod() {
w22 0 String line = "not covered”;
230 }
24
251 public String coveredMethod() {
261 String a = "hello"; String b = "world"; return a.concat (b):
271 ¥
28 }
29

<

ng Problems l @ Javadoc |@ Declaration |E Console |49 Search IB Coverage (.,:) Coverage Sessi 33\(%3 Clover Dashbo"’| & Coverage Expl] 3 Te

Name Lines Total % Branches
= All Packages (2010-10-21 21:38:34) 38 46 8261 % 1
3 com.copperykeenclaws 38 46 8261 % 1

© Sample 11 14 78.57 % 1

® SampleS_CLR3_0_100gfkflng8 1 1 100.00 % 0

©® SampleTest 25 30 8333 % 0

M -~ LT uf ~iRm A e . “ - 4nAn AR Ar n

cr institute for
15-214 64 [Fi:ne

Packages Coverage Report - All Packages
Al

net.sourceforge.cobertura.ant . EClassta
All Packages 55 64%
net.sourceforge.cobertura.check
ot sourcelone.coberkura,covaraoedel net.sourceforge.cobertura.ant 11 43%
net.sourceforge.cobertura.instrument fetscuicefoioecobenuiachedh 3 o
net sourceforge cobertura.merge net.sourceforge.cobertura.coveragedata 13 N/A | N/A | N/A | N/A |
net sourceforge.cobertura.reporting net.sourceforge.cobertura.instrument 10 ooe | aeaisi0 7550 [azaes
net. sourceforge.cobertura.reporting.h net.sourceforge.cobertura.merge 1 sex [ssv [aae
net.souroeforqe.oobertura.reDorﬁnq.hlLJj e = 3 ar [eos IS
et sourcelore coberiura reporting ! net.sourceforge.cobertura.reporting html 4 o [EEESE oy |
net.sourceforge.cobertura.util o || ‘net.sourceforge.cobertura.reporting htmifiles 1 sm (S 2% [
" . | net.sourceforge.cobertura.reporting.xml 1 1000 [o5 [
i —— net sourceforge.cobertura.uti 9 | sove [7o
All Packages | 1 s (IS NA | N/A I
Report generated by Cobertura 1.9 on 6/9/07 12:37 AM.
Classes
AntUtil (88%)
Archive (100%)
ArchiveUtil (80%)
BranchCoverageData (N/A)
CheckTask (0%)
ClassData (N/A)
ClassInstrumenter (949%)
ClassPattern (100%)
CoberturaFile (73%)
CommandLineBuilder (96%)

CommonMatchingTask (88%)
ComplexityCalculator (100%)
ConfigurationUtil (50%)
CopyFiles (87%)

CoverageData (N/A)
CoverageDataContainer (N/A)
CoverageDataFileHandler (N/A)
CoverageRate (0%)
ExcludeClasses (100%)
FileFinder (96%)

FileLocker (0%)
FirstPassMethodInstrumenter (100%)
HTMLReport (94%)
HasBeenlInstrumented (N/A)
Header (80%)

Run tests frequently

* You should only commit code that is passing all tests

* Run tests before every commit

* |f entire test suite becomes too large and slow for rapid
feedback:

— Run local tests ("smoke tests", e.g. all tests in package)
frequently

— Run all tests nightly

— Medium sized projects easily have 1000s of test cases and
run for minutes

* Continuous integration servers help to scale testing

= H”'milrf [
15-214 TR | S [Ea

Continuous integration - Travis ClI

r

5 Build #17 - wyvernla: x \
€« C A 8 https://travis-ci.org/wyvernlang

Blog

Automatically
builds, tests, and
displays the
result

15-214

i) o | |

(B SimpleWyvern-devel A works on Linux, so its C 17

erting fal

X= Remove Log J= Download Log

Using worker: worker-1linux-827f@49@-1.bb.travis-ci.org:travis-linux-2 []

Build system information system_info

$ git clone --depth=5@ --branch=SimplelWyvern-devel git.checkout

$ jdk_switcher use oraclejdk8

Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to /usr/lib/jvm/java-8-oracle
$ java -Xmx32m -version

java version "1.8.0_31"

Java(TM) SE Runtime Environment (build 1.8.0_31-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b@7, mixed mode)
$ javac -J-Xmx32m -version

javac 1.8.0_31

$ cd tools

The command "cd tools" exited with ©.
$ ant test
Buildfile: /home/travis/build/wyvernlang/wyvern/tools/build.xml

t for
IARE
RCH

copper-compose-compile:

Continuous integration - Travis ClI

7

& Builds - wyvernlang, x \7

."g

IEEQ

Tra\/iS C| Blog Status

My Repositories

Duration: 1
Finished: 3

You can see the
results of builds
over time

15-214

A=
_ -k —

€« C' A | & https://travis-ci.org/wyvernlang/wyvern/builds

Help

wyvernlang / wyvern ©

Current Branches Build History Pull Requests

SimpleWyvern-devel Asserting false (works or 17 passed

potanin committed fd7belc

SimpleWyvern-devel Debugging mac bug. 16 passed

potanin committed Oe2afif

SimpleWyvern-devel Zoomingin on Mac's IRE 14 passed

potanin committed 8b3606f

SimpleWyvern-devel Zoomingin on Mac LLV! 13 passed

potanin committed 727fc84
SimpleWyvern-devel Removed outdated tests 7 passed
e Jonathan Aldrich committed 4684fb5
newlexer Merge branch 'master’ of https://gitt 6 passed

e Jonathan Aldrich committed 876a074

master Build with JDK 8

5 passed
e Jonathan Aldrich committed b15273c
master fixed Travis build script syntax error 4 failed
e Jonathan Aldrich committed 737a89f

1 X Xl X1 X] (0 K

mactor _mavad the VMI filo inta thao richt nlacs

w =

Jonathan Aldrich

16 sec

3 days ago

22 sec |
3 days ago |
15 sec ‘

4 days ago

16 sec

4 days ago

15 sec »1

11 days ago

14 sec

11 days ago

13 sec

11 days ago

5 sec

11 days ago

Testing, Static Analysis, and Proofs

* Testing

Observable properties
Verify program for one execution

Manual development with automated
regression

Most practical approach now
Does not find all problems (unsound)

e Static Analysis

15-214

Analysis of all possible executions

Specific issues only with conservative
approx. and bug patterns

Tools available, useful for bug finding

Automated, but unsound and/or
incomplete

* Proofs (Formal
Verification)

Any program property
Verify program for all
executions

Manual development with
automated proof checkers

Practical for small programes,
may scale up in the future

Sound and complete, but not
automatically decidable

What strategy to
use in your project?

-
institute for
69 m SOFTWARE
RESEARCH

SUMMARY: DESIGN FOR CHANGE/
DIVISION OF LABOR

. institute for
15-214 70 [Fi e

Design Goals

* Design for Change such that

— Classes are open for extension and modification without
invasive changes

— Subtype polymorphism enables changes behind interface

— Classes encapsulate details likely to change behind (small)
stable interfaces

* Design for Division of Labor such that
— Internal parts can be developed independently

— Internal details of other classes do not need to be
understood, contract is sufficient

— Test classes and their contracts separately (unit testing)

. institute for
15-214 71 [Hi e

