
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:	
Objects,	Design,	and	Concurrency
(Part	1:	Designing	Classes)

Design	for	Change	(class	level)

Christian	Kästner Bogdan Vasilescu

215-214

Administrivia

• Homework	1	due	today
• Homework	2:

– out	tonight
– due	next	Thursday	(Feb	2)

• Reading	assignment	due	next	Tuesday	(Jan	31)

315-214

415-214

The	Strategy	Design	Pattern

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

Re
vi
ew

515-214

The	Composite	Design	Pattern
Context

+operation()

Leaf

+operation()
+add(in	c	:	Component)
+remove(in	c	:	Component)

Composite

+operation()

«interface»
Component

-parent

1

-children

*

operation()	{
		for	(c	in	children)
				c.operation();
}

Re
vi
ew

615-214

Design Exercise (on paper)
• You	are	designing	software	for	a	shipping	company.
• There	are	several	different	kinds	of	items	that	can	be	shipped:	letters,	

books,	packages,	fragile	items,	etc.
• Two	important	considerations	are	the	weight of	an	item	and	its	insurance	

cost.
– Fragile	items	cost	more	to	insure.
– All	letters	are	assumed	to	weigh	an	ounce
– We	must	keep	track	of	the	weight	of	other	packages.

• The	company	sells	boxes and	customers	can	put	several	items	into	them.
– The	software	needs	to	track	the	contents	of	a	box	(e.g.	to	add	up	its	weight,	or	

compute	the	total	insurance	value).
– However,	most	of	the	software	should	treat	a	box	holding	several	items	just	

like	a	single	item.
• Think	about	how	to	represent	packages;	what	are	possible	interfaces,	

classes,	and	methods? (letter,	book,	box	only)

Re
vi
ew

715-214

interface Item {
double getWeight();

}

class Letter implements Item {
double weight;
double getWeight() {...}

}

class Box implements Item {
ArrayList<Item> items=new ArrayList<>();
double getWeight() {

double weight = 0.0
for(Item item : items) {

weight += item.getWeight();
}

}
void add(Item item){

items.add(item);
}

}

Context

+operation()

Leaf

+operation()
+add(in	c	:	Component)
+remove(in	c	:	Component)

Composite

+operation()

«interface»
Component

-parent

1

-children

*

operation()	{
		for	(c	in	children)
				c.operation();
}

Re
vi
ew

815-214

Best	practices	for	information	hiding

• Carefully	design	your	API
• Provide	only functionality	required	by	clients

– All other	members	should	be	private
• You	can	always	make	a	private	member	public	
later	without	breaking	clients
– But	not	vice-versa!

Re
vi
ew

915-214

CONTRACTS
(BEYOND	TYPE	SIGNATURES)

1015-214

Contracts	and	Clients

Service*
implementation

Service* interface

Client
environment

Hidden from
service* provider

Hidden from
service* client

* service = object,
subsystem, …

Re
vi
ew

1115-214

What	is	a	contract?

• Agreement	between	an	object	and	its	user
• Includes

– Method	signature	(type	specifications)
– Functionality	and	correctness	expectations
– Performance	expectations

• What	the	method	does,	not	how	it	does	it
– Interface	(API),	not	implementation

• “Focus	on	concepts	rather	than	operations”

Re
vi
ew

1215-214

Who’s	to	blame?
/**
* Returns the correctly rounded positive square root of a
* {@code double} value.
* Special cases:
* If the argument is NaN or less than zero, then the
* result is NaN.
* If the argument is positive infinity, then the result
* is positive infinity.
* If the argument is positive zero or negative zero, then
* the result is the same as the argument.
* Otherwise, the result is the {@code double} value closest to
* the true mathematical square root of the argument value.
*
* @param a a value.
* @return the positive square root of {@code a}.
* If the argument is NaN or less than zero, the result is NaN.
*/

public static double sqrt(double a) { …}

Math.sqrt(-5);

> 0

Re
vi
ew

1315-214

Method	contract	details
• States	method’s	and	caller’s	responsibilities
• Analogy:	legal	contract

– If	you	pay	me	this	amount	on	this	schedule	I	will	build	
you	a house with	the	following	detailed	
specification…

– Some	contracts	have	remedies	for	nonperformance
• Method	contract	structure

– Preconditions:	what	method	requires	for	correct	operation
– Postconditions:	what	method	establishes	on	completion
– Exceptional	behavior:	what	it	does	if	precondition	violated

• Defines	what	it	means	for	implementation	to	be	
correct

13

1415-214

Formal	contract	specification
Java	Modelling	Language	(JML)
/*@ requires len >= 0 && array != null && array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j]);
@*/

int total(int array[], int len);

• Theoretical	approach
– Advantages

• Runtime	checks	generated	automatically
• Basis	for	formal	verification
• Automatic	analysis	tools

– Disadvantages
• Requires	a	lot	of	work
• Impractical	in	the	large
• Some	aspects	of	behavior	not	amenable	to	formal	specification

Postcondition

Precondition

1515-214

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j])
@*/

float sum(int array[], int len) {
assert len >= 0;
assert array.length == len;
float sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i]; i = i + 1;
}
assert sum …;
return sum;

}

Runtime	Checking	of	Specifications	with	Assertions

Enable	assertions	
with	-ea flag,	e.g.,
> java -ea Main

1615-214

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j])
@*/

float sum(int array[], int len) {
if (len < 0 || array.length != len)

throw IllegalArgumentException(…);
float sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i]; i = i + 1;
}
return sum;

}

Check	arguments	even	when	
assertions	are	disabled.
Good	for	robust	libraries!

Runtime	Checking	of	Specifications	with	Exceptions

1715-214

Textual	contract	specification	- Javadoc
• Practical	approach

– Writing	specifications	is	good	practice
– Especially	necessary	when	reusing	code	and	integrating	code
– Writing	fully	formal	specifications	is	often	unrealistic

• Document
– Every	parameter
– Return	value
– Every	exception	(checked	and	unchecked)
– What	the	method	does,	including

• Purpose
• Side	effects
• Any	thread	safety	issues
• Any	performance	issues

• Do	not document	implementation	details

1815-214

Specifications	in	the	real	world
Javadoc
/**
* Returns the element at the specified position of this list.
*
* <p>This method is <i>not</i> guaranteed to run in constant time.
* In some implementations, it may run in time proportional to the
* element position.
*
* @param index position of element to return; must be non-negative and
* less than the size of this list.
* @return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= this.size()})
*/
E get(int index);

Postcondition

1915-214

Write	a	Specification
• Write	

– a	type	signature,
– a	textual	(Javadoc)	specification,	and
– a	formal	specification	

for	a	function	slice(list,	from,	until) that	returns	all	values	of	a	
list	between	positions	<from>	and	<until>	as	a	new	list

Reminder:	Formal	specification

/*@ requires len >= 0 && array != null &&
@ array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j &&
@ j < len; array[j]);
@*/

int total(int array[], int len);

Reminder:	Javadoc	specification
/**
* Returns …
* @param index position of element …
* @return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= this.size
*/

E get(int index);

2015-214

Contracts	and	Interfaces

• All	objects	implementing	an	interface	must	
adhere	to	the	interface’s	contracts
– Objects	may	provide	different	implementations	
for	the	same	specification

– Subtype	polymorphism:		Client	only	cares	about	
interface,	not	about	the	implementation

p.getX() s.read()

=>	Design	for	Change

2115-214

ASIDE:	
THE	EQUALS	CONTRACT

2215-214

The	class	hierarchy

Object

ToyInstrument

YoyoGuitarRe
vi
ew

• All	Java	objects	inherit	from	java.lang.Object

• Commonly-used/overridden	public	methods:
– equals - returns	true	if	the	two	objects	are	“equal”
– hashCode - returns	an	int that	must	be	equal	for	equal	
objects,	and	is	likely	to	differ	on	unequal	objects

– toString - returns	a	printable	string	representation

2315-214

• Reflexive – every	object	is	equal	to	itself
• Symmetric – if a.equals(b) then	b.equals(a)
• Transitive – if	a.equals(b) and	b.equals(c),	
then	a.equals(c)

• Consistent – Invoking	a.equals(b) repeatedly	
returns	the	same	value	unless	a or	b is	modified;	
implemented	by	.hashCode()

• “Non-null”	– a.equals(null) returns	false
• Taken	together	these	ensure	that	equals	is	a	global	
equivalence	relation	over	all	objects

The	.equals(Object obj) contract

2415-214

The	== operator	vs.	the	equals()method

• The	== operator	determines	if	two	references	
are	identical	to	each	other

• The	equalsmethod	determines	if	objects	are	
equal

• User	classes	can	override	the	equalsmethod	
to	implement	a	domain-specific	test	for	
equality

2515-214

What’s	the	output?

System.out.println(p1 == p2);

public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
...

}
...
Point p1 = new Point(1, 2);
Point p2 = new Point(1, 2);

False

2615-214

What’s	the	output?
public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
...

}
...
Point p1 = new Point(1, 2);
Point p2 = new Point(1, 2);

System.out.println(p1.equals(p2)); False

2715-214

What’s	the	output?
public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
...

}
...
Point p1 = new Point(1, 2);
Point p2 = new Point(1, 2);

System.out.println(p1.equals(p2));

public boolean equals(Object obj) {
return this == obj;

}

2815-214

What’s	the	output?
public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
...

}
...
Point p1 = new Point(1, 2);
Point p2 = new Point(1, 2);

@Override
public boolean equals(Object obj) {
boolean result = false;
if (obj instanceof Point) {
Point that = (Point) obj;
result =

(this.getX() == that.getX()
&& this.getY() == that.getY());

}
return result;

}

True System.out.println(p1.equals(p2));

2915-214

What’s	the	output?
public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
...

}
...
Point p1 = new Point(1, 2);
Point p2 = new Point(1, 2);

HashSet<Point> coll = new HashSet<Point>();
coll.add(p1);
System.out.println(coll.contains(p2));

@Override
public boolean equals(Object obj) {
boolean result = false;
if (obj instanceof Point) {
Point that = (Point) obj;
result =

(this.getX() == that.getX()
&& this.getY() == that.getY());

}
return result;

}

False

3015-214

The	.hashCode() contract

• Consistent
– Invoking	x.hashCode() repeatedly	returns	same	
value	unless	x is	modified

• x.equals(y) implies x.hashCode() ==
y.hashCode()
– The	reverse	implication	is	not	necessarily	true:

• x.hashCode() == y.hashCode() does	not	imply	
x.equals(y)

• Advice:		Override	.equals() if	and	only	if	you	
override	.hashCode()

3115-214

What’s	the	output?
public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
...

}
...
Point p1 = new Point(1, 2);
Point p2 = new Point(1, 2);

HashSet<Point> coll = new HashSet<Point>();
coll.add(p1);
System.out.println(coll.contains(p2));

@Override
public boolean equals(Object obj) {
boolean result = false;
if (obj instanceof Point) {
Point that = (Point) obj;
result =

(this.getX() == that.getX()
&& this.getY() == that.getY());

}
return result;

}
@Override public int hashCode() {

return (41*(41 + getX()) + getY());
}

True

3215-214

What’s	the	output?
public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
...

}
...
Point p1 = new Point(1, 2);
Point p2 = new Point(1, 2);

But it’s not over; see Effective Java #8
The lesson: Conforming to contracts
can be difficult!

@Override
public boolean equals(Object obj) {
boolean result = false;
if (obj instanceof Point) {
Point that = (Point) obj;
result =

(this.getX() == that.getX()
&& this.getY() == that.getY());

}
return result;

}
@Override public int hashCode() {

return (41*(41 + getX()) + getY());
}

3315-214

FUNCTIONAL	CORRECTNESS	
(UNIT	TESTING	AGAINST	INTERFACES)

3415-214

Context

• Design	for	Change	as	goal
• Encapsulation provides	technical	means
• Information	Hiding	as	design	strategy
• Contracts	describe	behavior	of	hidden	details
• Testing	helps	gaining	confidence	in	functional	
correctness	(w.r.t.	contracts)

3515-214

Functional	correctness
• Compiler	ensures	types are	correct	(type-checking)

– Prevents	many	runtime	errors,	such	as	“Method	
Not	Found”	and	“Cannot	add	boolean to	int”

3615-214

Type	Checking	Example

• What	happens?

interface Animal {
void makeSound();

}
class Dog implements Animal {

public void makeSound() { System.out.println("bark!"); }
}
class Cow implements Animal {

public void makeSound() { mew(); }
public void mew() {System.out.println("Mew!"); }

}

1 Animal a = new Animal();
2 a.makeSound();
3 Dog d = new Dog();
4 d.makeSound();
5 Animal b = new Cow();
6 b.mew();
7 b.jump();

Re
vi
ew

3715-214

Functional	correctness
• Compiler	ensures	types are	correct	(type-checking)

– Prevents	many	runtime	errors,	such	as	“Method	
Not	Found”	and	“Cannot	add	boolean to	int”

• Static	analysis	tools	(e.g.,	FindBugs)	recognize	many	
common	problems	(bug	patterns)
– Warns	on	possible	NullPointerExceptions or	
forgetting	to	close	files

3815-214

Fi
n

d
B

u
g

s

3915-214

C
h

ec
kS

ty
le

4015-214

Functional	correctness
• Compiler	ensures	types are	correct	(type-checking)

– Prevents	many	runtime	errors,	such	as	“Method	
Not	Found”	and	“Cannot	add	boolean to	int”

• Static	analysis	tools	(e.g.,	FindBugs)	recognize	many	
common	problems	(bug	patterns)
– Warns	on	possible	NullPointerExceptions or	
forgetting	to	close	files

• How	to	ensure	functional	correctness	of	contracts	
beyond	type	correctness	and	bug	patterns?

4115-214

Formal	verification

• Use	mathematical	methods	to	prove	correctness	
with	respect	to	the	formal	specification

• Formally	prove	that	all	possible	executions	of	
an	implementation	fulfill	the	specification

• Manual	effort;	partial	automation;	not	
automatically	decidable

4215-214

Testing

• Executing	the	program	with	selected	inputs	in	a	
controlled	environment

• Goals
– Reveal	bugs,	so	they	can	be	fixed	(main	goal)
– Assess	quality
– Clarify	the	specification,	documentation

4315-214

Re:	Formal	verification,	Testing

"Testing	shows	the	presence,	not	the	
absence	of	bugs.”

Edsger W.	Dijkstra,	1969

“Beware	of	bugs	in	the	above	code;	I
have	only	proved	it	correct,	not	tried	it.”

Donald	Knuth,	1977

4415-214 Binary	search	from	java.util.Arrays

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

Q:	Who’s	right,	Dijkstra	or	Knuth?

4515-214 Binary	search	from	java.util.Arrays

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

Q:	Who’s	right,	Dijkstra	or	Knuth?

Fails	if	
low + high >	MAXINT	(231 - 1)
Sum	overflows	to	negative	value

Spec:	sets	mid to	the	average	of	
low and	high,	truncated	down	
to	the	nearest	integer.

4615-214

A:	They’re	both	right

• There	is	no	silver	bullet!
• Use	all	the	tools	at	your	disposal

– Careful	design
– Testing
– Formal	methods	(where	appropriate)
– Code	reviews	
– …

• You’ll	still	have	bugs,	but	hopefully	fewer.

4715-214

What	to	test?
• Functional	correctness	of	a	method	(e.g.,	
computations,	contracts)

• Functional	correctness	of	a	class	(e.g.,	class	invariants)
• Behavior	of	a	class	in	a	subsystem/multiple	
subsystems/the	entire	system

• Behavior	when	interacting	with	the	world
– Interacting	with	files,	networks,	sensors,	…
– Erroneous	states
– Nondeterminism,	Parallelism
– Interaction	with	users

• Other	qualities	(performance,	robustness,	usability,	
security,	…)

O
ur
	fo

cu
s	n

ow

4815-214

Manual	testing

• Live	System?
• Extra	Testing	System?
• Check	output	/	assertions?
• Effort,	Costs?
• Reproducible?

4915-214

Automated	testing

• Execute	a	program	with	specific	inputs,	
check	output	for	expected	values

• Easier	to	test	small	pieces	than	testing	user	
interactions

• Set	up	testing	infrastructure
• Execute	tests	regularly

– After	every change

5015-214

/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the array values
*/

int total(int array[], int len);

Black box testingExample

5115-214

Example

• Test	empty	array
• Test	array	of	length	1	and	2
• Test	negative	numbers
• Test	invalid	length	(negative	/	longer	than	array.length)
• Test	null	as	array
• Test	with	a	very	long	array

/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the array values
*/

int total(int array[], int len);

Black box testing

5215-214

Unit	Tests
• Tests	for	small	units:	functions,	classes,	subsystems

– Smallest	testable	part	of	a	system
– Test	parts	before	assembling	them
– Intended	to	catch	local	bugs

• Typically	written	by	developers
• Many	small,	fast-running,	independent	tests
• Little	dependencies	on	other	system	parts	or	
environment

• Insufficient	but	a	good	starting	point,	
extra	benefits:
– Documentation	(executable	specification)
– Design	mechanism	(design	for	testability)

5315-214

• Popular	unit-testing	framework	for	Java
• Easy	to	use
• Tool	support	available
• Can	be	used	as	design	mechanism

JUnit

5415-214

JUnit
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
@Test
public void testSanityTest(){

Graph g1 = new AdjacencyListGraph(10);
Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(true, g1.addVertex(s1));
assertEquals(true, g1.addVertex(s2));
assertEquals(true, g1.addEdge(s1, s2));
assertEquals(s2, g1.getNeighbors(s1)[0]);

}

@Test
public void test….

private int helperMethod…
}

Set up
tests

Check
expected
results

5515-214

assert, Assert
• assert	is	a	native	Java	statement	throwing	an	AssertionError exception	

when	failing
– assert expression:	"Error	Message";

• org.junit.Assert is	a	library	that	provides	many	more	specific	methods
– static void	assertTrue(java.lang.String message,	boolean condition)

// Asserts	that	a	condition	is	true.

– static void	assertEquals(java.lang.String message,	long expected,	long actual);
//	Asserts	that	two	longs	are	equal.

– static void	assertEquals(double expected,	double actual,	double delta);
//	Asserts	that	two	doubles	are	equal	to	within	a	positive	delta

– static void	assertNotNull(java.lang.Object object)
// Asserts	that	an	object	isn't	null.

– static void	fail(java.lang.String message)
//Fails	a	test	with	the	given	message.

5615-214

JUnit conventions
• TestCase	collects	multiple	tests	(in	one	class)
• TestSuite	collects	test	cases	(typically	package)
• Tests	should	run	fast
• Tests	should	be	independent

• Tests	are	methods	without	parameter	and	return	value
• AssertError	signals	failed	test	(unchecked	exception)

• Test	Runner	knows	how	to	run	JUnit	tests
– (uses	reflection	to	find	all	methods	with	@Test	annotat.)

5715-214

Test	organization

• Conventions	(not	
requirements)

• Have	a	test	class	FooTest for	
each	public	class	Foo

• Have	a	source	directory	and	a	
test	directory
– Store	FooTest and	Foo	in	the	
same	package

– Tests	can	access	members	with	
default	(package)	visibility

5815-214

Selecting	test	cases:	common	strategies

• Read	specification
• Write	tests	for

– Representative	case
– Invalid	cases
– Boundary	conditions

• Are	there	difficult	cases?	(error	guessing)
– Stress	tests?	
– Complex	algorithms?

• Think	like	an	attacker
– The	tester’s	goal	is	to	find	bugs!

• How	many	test	should	you	write?
– Aim	to	cover	the	specification
– Work	within	time/money	constraints

5915-214

Testable	code
• Think	about	testing	when	writing	code
• Unit	testing	encourages	you	to	write	testable	code
• Separate	parts	of	the	code	to	make	them	
independently	testable

• Abstract	functionality	behind	interface,	make	it	
replaceable

• Test-Driven	Development
– A	design	and	development	method	in	which	you	write	
tests	before	you	write	the	code

6015-214

Write	testable	code
//700LOC
public boolean foo() {

try {
synchronized () {

if () {
} else {
}
for () {

if () {
if () {

if () {
if ()?
{

if () {
for () {
}

}
}

} else {
if () {

for () {
if () {
} else {
}
if () {
} else {

if () {
}

}
if () {

if () {
if () {

for () {
}

}
}

} else {
}

}
} else {

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

Unit testing
as design
mechanism

* Code with low
complexity

* Clear interfaces
and specifications

6115-214

When	to	stop	writing	tests?

• Outlook:	statement	coverage
– Trying	to	test	all	parts	of	the	implementation
– Execute	every	statement,	ideally

6215-214

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

A:	No

6315-214

When	to	stop	writing	tests?

• Outlook:	statement	coverage
– Trying	to	test	all	parts	of	the	implementation
– Execute	every	statement,	ideally

6415-214

A:	No

6515-214

6615-214

Run	tests	frequently
• You	should	only	commit	code	that	is	passing	all	tests
• Run	tests	before	every	commit
• If	entire	test	suite	becomes	too	large	and	slow	for	rapid	
feedback:
– Run	local	tests	("smoke	tests",	e.g.	all	tests	in	package)	
frequently

– Run	all	tests	nightly
– Medium	sized	projects	easily	have	1000s	of	test	cases	and	
run	for	minutes

• Continuous	integration	servers	help	to	scale	testing

6715-214

Continuous	integration	- Travis	CI

Automatically
builds, tests, and
displays the
result

6815-214

Continuous	integration	- Travis	CI

You can see the
results of builds
over time

6915-214

Testing,	Static	Analysis,	and	Proofs
• Testing

– Observable	properties
– Verify	program	for	one	execution
– Manual	development	with	automated	

regression
– Most	practical	approach	now
– Does	not	find	all	problems	(unsound)

• Static	Analysis
– Analysis	of	all	possible	executions
– Specific	issues	only	with	conservative	

approx.	and	bug	patterns
– Tools	available,	useful	for	bug	finding
– Automated,	but	unsound	and/or	

incomplete

• Proofs	(Formal	
Verification)
– Any	program	property
– Verify	program	for	all	

executions
– Manual	development	with	

automated	proof	checkers
– Practical	for	small	programs,	

may	scale	up	in	the	future
– Sound	and	complete,	but	not	

automatically	decidable

What strategy to
use in your project?

7015-214

SUMMARY:	DESIGN	FOR	CHANGE/	
DIVISION	OF	LABOR

7115-214

Design	Goals
• Design	for	Change	such	that

– Classes	are	open	for	extension and	modification	without	
invasive	changes

– Subtype	polymorphism	enables	changes	behind	interface
– Classes	encapsulate	details	likely	to	change	behind	(small)	
stable	interfaces

• Design	for	Division	of	Labor	such	that
– Internal	parts	can	be	developed independently
– Internal	details	of	other	classes	do	not	need	to	be	
understood,	contract	is	sufficient

– Test	classes	and	their	contracts	separately	(unit	testing)

