Principles of Software Construction:

Objects, Design, and Concurrency
(Part 1: Designing Classes)

Design for Change (class level)

Christian Kastner Bogdan Vasilescu

Computer Science

L J

institute for
@ SOFTWARE

RESEARCH z "
15- 14 1 |Sr SOFTWARE

RESEARC H

> R o
SOFTWARE
RESEARCH

15-214 2

Polar Points

interface Point { interface PolarPoint {
int getX(); double getAngle() ;
int getY(); , double getLength();
}

class PolarPointImpl implements Point, PolarPoint {
double len, angle;
PolarPoint(double len, double angle)
{this.len=len; this.angle=angle;}
int getX() { return this.len * cos(this.angle);}
int getY() { return this.len * sin(this.angle); }
double getAngle() {...}
double getLength() {... }
}
PolarPoint p = new PolarPointimpl(5, .245);
Point g = new PolarPointimpl(5, .245);

15-214 3 tor i

Middle Points

interface Point {
int getX();
int getY();

}

class MiddlePoint implements Point {
Point a, b;
MiddlePoint(Point a, Point b) {this.a = a; this.b =b; }
int getX() { return (this.a.getX() + this.b.getX()) / 2;}
int getY() { return (this.a.getY() + this.b.getY()) / 2; }

}

Point p = new MiddlePoint(new PolarPoint(5, .245),
new CartesianPoint(3, 3));

15-214 s [EHl i

Design Goals for Today

* Design for Change (flexibility, extensibility,
modifiability)

also
e Design for Division of Labor

* Design for Understandability

15-214 s [Ej o

See “UML and
Patterns” Ch. 26.7

STRATEGY DESIGN PATTERN
(EXPLOITING POLYMORPHISM FOR
FLEXIBILITY)

15-214 6 IR sorvinic

RRRRRRRRR

Tradeoffs

void sort (int][]

list,

boolean mustswap;

if
mustswap =
} else if
mustswap =

list[1]

list[1]

String order)

(order.equals ("up")) {

< list[3j];

(order.equals ("down"))

> list[j];

voild sort (int][]

{

{

Comparator cmp)

15-214

boolean mustswap;

mustswap = cmp.compare(list([i], list([j]);

}

interface Comparator {
boolean compare (int i, int 7j);

}

class UpComparator implements Comparator {
boolean compare(int I, int jJ) { return i<j; }}

class DownComparator implements Comparator ({

boolean compare(int I, int j) { return i>j; }}

insizate for
7 I S SOFTWARE
RESEARCH

volid sort(int[] list, Comparator cmp) {

boolean mustswap;
mustswap = cmp.compare (list[i], 1list[j]);

J

interface Comparator {
boolean compare(int 1, 1int 7j);
}
class UpComparator implements Comparator {
boolean compare(int I, 1int j) {
return 1<j;
b}
class DownComparator implements Comparator
boolean compare(int I, 1nt j) {
return 1>73;

b}
15-214 8 sor

One design scenario

 Amazon.com processes millions of orders each

vear, selling in 75 countries, all 50 states,
thousands of cities worldwide. These

and

countries, states, and cities have hundreds of
distinct sales tax policies and, for any order

and destination, Amazon.com must be a

ole to

compute the correct sales tax for the orc
and destination.

15-214 9

er

Another design scenario

* A vision processing system must detect lines in
an image. For different applications the line
detection requirements vary. E.g., for a vision
system in a driverless car the system must
process 30 images per second, but it's OK to
miss some lines in some images. A face
recognition system can spend 3-5 seconds
analyzing an image, but requires accurate
detection of subtle lines on a face.

15-214 10 [EX sormimi

RRRRRRRRRR

Behavioral: Strategy

15-214

Context ‘1'
. Strategy
algorithm() execute()
ConcreteStrA ConcreteStrB
execute() execute()

Behavioral: Strategy

* Applicability
— Many classes differ in
only their behavior

— Client needs different variants of
an algorithm

* Consequences

— Code is more extensible with new
strategies
* compare to conditionals
— Separates algorithm from context
* each can vary independently
* design for change and reuse; reduce
coupling
— Adds objects and dynamism
* code harder to understand

— Common strategy interface

* may not be needed for all Strategy
implementations — may be extra
overhead

15-214

Context v
. Strategy
algorithm() execut(-'.’()

T
| |

ConcreteStrA ConcreteStrB

execute()

execute()

* Design for change
— Find what varies and encapsulate it

— Allows changing/adding alternative
variations later

— Class Context closed for
modification, but open for
extension

* Equivalent in functional progr..
languages: Higher-order functions

- :
[’ Gl
SOFTWARE
1 2 RESEARCH

More Design Scenarios

* Change the sorting criteria in a list

* Change the aggregation method for
computations over a list (e.g., fold)

e Compute the tax on a sale
 Compute a discount on a sale
* Change the layout of a form

15-214 13 [Ej i

Design Patterns

e "Each pattern describes a
problem which occurs over and APattern Language
over again in our environment, ol sics
and then describes the core of
the solution to that problem, in
such a way that you can use this
solution a million times over,

Christopher Alexander

W i t h O U t eve I d O i N g it t h e S a m e Sara Ishikawa - ?’.}:rray Silverstein
way twice” Max Jawbs;):l;)l':ir;l“g;sdahl-l(mg

— Christopher Alexander

15-214 14 tor

Benefits of Patterns

* Shared language of design
— Increases communication bandwidth
— Decreases misunderstandings

e Learn from experience
— Becoming a good designer is hard
* Understanding good designs is a first step

— Tested solutions to common problems

* Where is the solution applicable?
* What are the tradeoffs?

15-214

15

-) «
ingitute o
507 TwARD
RESEARCH

How not to discuss design
(from Shalloway and Trott)

e Carpenter 1: How do you think we should build these
drawers?

* Carpenter 2: Well, | think we should make the joint by
cutting straight down into the wood, and then cut back
up 45 degrees, and then going straight back down, and
then back up the other way 45 degrees, and then going
straight down, and repeating...

* SE example: “l wrote this if statement to handle ...
followed by a while loop ... with a break statement so
that...”

15-214 16 [Ef s

Discussion with
design patterns

* Carpenter 1: Should we use a
dovetail joint or a miter joint?

e Subtext:
— miter joint: cheap, invisible, breaks easily \ 1
— dovetail joint: expensive, beautiful, durable 1\ l

e Shared terminology and knowledge of consequences
raises level of abstraction
— CS: Should we use a Strategy?

— Subtext: Is there a varying part in a stable context? Might there
be advantages in limiting the number of possible
implementations?

15-214 17 tor

Elements of a Pattern

* Name
— Important because it becomes part of a design vocabulary
— Raises level of communication

Problem
— When the pattern is applicable

Solution
— Design elements and their relationships
— Abstract: must be specialized

Consequences

— Tradeoffs of applying the pattern
* Each pattern has costs as well as benefits
* [ssues include flexibility, extensibility, etc.
* There may be variations in the pattern with different consequences

15-214 18

Strategy pattern

e Problem: Clients need different
variants of an algorithm

Context

-V

algorithm()

Strategy

execute()

?

ConcreteStrA

ConcreteStrB

execute()

execute()

e Solution: Create an interface for the algorithm,
with an implementing class for each variant of
the algorithm

* Consequences:
— Easily extensible for new algorithm implementations
— Separates algorithm from client context

— Introduces an extra interface and many classes: Code
can be harder to understand; Lots of overhead if the

15-214

strategies are simple

19

» .
ingzute ol
ISTERY
RESEARCH

History: Design Patterns Book

STLIYTE] USTSH(]

2D

SOPISSIIA e LOSUYO[
WIS o PLILUE

TF
i3

15-214

Brought Design Patterns
Into the mainstream

Authors known as the
Gang of Four (GoF)

Focuses on descriptions of
communicating objects
and classes that are
customized to solve a
general design problem in
a particular context

Great as a reference text
Uses C++, Smalltalk

- r
netule o
SOFTWARE
20 RESEARCH

Design Exercise (on paper)

* You are designing software for a shipping company.

* There are several different kinds of items that can be shipped: letters,
books, packages, fragile items, etc.

 Two important considerations are the weight of an item and its insurance
cost.
— Fragile items cost more to insure.
— All letters are assumed to weigh an ounce
— We must keep track of the weight of other packages.

 The company sells boxes and customers can put several items into them.

— The software needs to track the contents of a box (e.g. to add up its weight, or
compute the total insurance value).

— However, most of the software should treat a box holding several items just
like a single item.

* Think about how to represent packages; what are possible interfaces,
classes, and methods? (letter, book, box only)

15-214 21 [El e

The Composite Design Pattern

Context

«interface»
> Component

*

+operation()

-children

AN

Leaf

+operation()

d

}

operation() {
for (c in children)
c.operation();

15-214

Composite

+operation()
+add(in c : Component)
+remove(in ¢ : Component)

-parent

- -
n &
SOFTWARE

22 RESEARCH

The Composite Design Pattern

e Applicability
— You want to represent part-whole
hierarchies of objects

— You want to be able to ignore the
difference between compositions of
objects and individual objects

* Consequences

— Makes the client simple, since it can
treat objects and composites
uniformly

— Makes it easy to add new kinds of
components

— Can make the design overly general

e QOperations may not make sense

on every class

 Composites may contain only
certain components

15-214

Context

*

}

«interface»
Component
+operation() _children
Leaf Composite
+operation() +operation()
/ +add(in c : Component)
+remove(in ¢ : Component)

operation() {
for (cin children)
c.operation();

-parent

in te fo
»3 _
RESEARCH

We have seen this before

interface Point {
int getX();
int getY();

}

class MiddlePoint implements Point {
Point a, b;
MiddlePoint(Point a, Point b) {this.a = a; this.b = b; }
int getX() { return (this.a.getX() + this.b.getX()) / 2;}
int getY() { return (this.a.getY() + this.b.getY()) / 2; }

15-214 24 [EfJ iorins

ENCAPSULATION
(LANGUAGE FEATURE TO CONTROL
VISIBILITY)

15-214 25

Controlling Access — Best practices

e Define an interface interface Point {

. int getX();
* Client may only use oy
the messages in }
the interface class CartesianPoint implements Point {
. int x,y;
* FIEIdS nOt Point(int x, int y) {this.x=x; this.y=y;}
accessible from int getX() { return this.x; }
client code int getY() { return this.y; }
String getText() { return this.x + “ x “ + this.y; }
* Methods only }
accessible |f Point p = new CartesianPoint(3, -10);
exposed in :Ezgg&ey // not accessible
interface ' ' |

g // not accessible

[Interface Type

15-214 26

Java: Classes as Types

* Classes usable as type

— (Public) methods in classes usable like methods in
interfaces

— (Public) fields directly accessible from other classes

— Language constructs (public, private, protected) to control
access

* Prefer programming to interfaces (variables should
have interface type, not class type)

— Esp. whenever there are multiple implementations of a
concept

— Allows to provide different implementations later
— Prevents dependence on implementation details

int add(CartesianPoint p) { ... // preferably no
int add(Point p) { ... // yes!

15-214 27

Interfaces and Classes (Review)

class PolarPoint implements Point {
double len, angle;
PolarPoint(double len, double angle)
{this.len=len; this.angle=angle;}
int getX() { return this.len * cos(this.angle);}
int getY() { return this.len * sin(this.angle); }

double getAngle() { return angle; }

}

Point p = new PolarPoint(5, .245); PolarPoint pp = ...
p.getX(); pp.getX();
p.getAngle(); // not accessible pp.getAngle();
p.len // not accessible pp.len

15-214 29 tor i

Java: Visibility Modifiers

class Point {
private int x, y;
public int getX() { return this.x; } // a method; getY() is similar
public Point(int px, int py) { this.x = px; this.y = py; }// constructor
}
class Rectangle {
private Point origin;
private int width, height;
public Point getOrigin() { return origin; }
public int getWidth() { return width; }
public void draw() {
drawLine(this.origin.getX(), this.origin.getY(), //first line
this.origin.getX()+this.width, origin.getY());
... // more lines here
}
public Rectangle(Point o, int w, int h) {
this.origin = o; this.width = w; this.height = h;

15-2 14 30 o

Hiding interior state

class Point {

| Some Client Code

Point o = new Point(0, 10); // allocates memory, calls ctor
Rectangle r = new Rectangle(o, 5, 10);

2 r.draw();

| int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

Point o = new Point(0, 10); // allocates memory, calls ctor
Rectangle r = new Rectangle(o, 5, 10);

r.draw();

int rightEnd = r.origin.x + r.width; // trying to “look inside”

}
public Rectangle(Point o, int w, int h) {

this.origin = o; this.width = w; this.height = h;

15;214} 31 so Tt

Hiding interior state

class Point {

 Discussion:

M What are the benefits of private fields?
i,ass . Methods can also be private — why is this

private USEfUI?

private int width, height;

public Point getOrigin() { return origin; }

public int getWidth() { return width; }

public void draw() {
drawLine(this.origin.getX(), this.origin.getY(), //first line

this.origin.getX()+this.width, origin.getY());

... // more lines here

}

public Rectangle(Point o, int w, int h) {
this.origin = o; this.width = w; this.height = h;

15;2 14}

DESIGN PRINCIPLE:
INFORMATION HIDING

15-214 34

Fundamental Design Principle for
Change: Information Hiding

* Expose as little implementation detail as
necessary

* Allows to change hidden details later

Hidden from Hidden from
service* client service* provider

Service*
implementation

* service = object,
subsystem, ...

15-214 35 IS is:b?f\;mu

RRRRRRRRR

Information Hiding

* |nterfaces (contracts) remain stable

 Hidden implementation can be changed easily
 =>|dentify what is likely to change, and hide it
e => Requires anticipation of change (judgment)

* Points example: Minimal stable interface, allows
alternative implementations and flexible composition

* (Not all change can be anticipated, causing
maintenance work or reducing flexibility)

15-214 S | S [EN

Information Hiding promotes Reuse

* Think in terms of abstractions not
implementations

— e.g., Point vs CartesianPoint
 Abstractions can often be reused

* Different implementations of the same interface
possible,

— e.g., reuse Rectangle but provide different Point
implementation

* Decoupling implementations
* Hiding internals of implementations

More on reuse next week

15-214 37 [El o

RRRRRRRRR

INFORMATION HIDING CASE STUDY

15-214 38

in\'.~!g,‘:~‘3.9
SOFTWARE
RESEARCH

15-214 39

CONTRACTS
(BEYOND TYPE SIGNATURES)

15-214 40

Contracts and Clients

Hidden from Hidden from
service* client service* provider

Service*
implementation

* service = object,
subsystem, ...

15-214 a1 Lo

Contracts

 Agreement between provider and users of an
object
* Includes
— Interface specification (types)
— Functionality and correctness expectations
— Performance expectations

* What the method does, not how it does it
— Interface (API), not implementation

15-214 a2 B} sovins

RRRRRRRRR

Who’s to blame?

Algorithms.shortestDistance(g,
CCTom.’J, CCAnneJ)) ;

> ArrayOutOfBoundsException

15-214 a3

Who’s to blame?

Algorithms.shortestDistance(g,
CCTom.’J, CCAnneJ)) ;

> -1

15-214 a4

Who’s to blame?

Algorithms.shortestDistance(g,
CCTom.’J, CCAnneJ)) ;

> 0

15-214 a5

Who's to blame?
class Algorithms {

/**
* This method finds the
* shortest distance between to
* verticies. It returns -1 if
* the two nodes are not
* connected. */

int shortestDistance(..) {..}

15-214 o [BliE

Who’s to blame?

Math.sqgrt(-5);

> 0

15-214 a7 [EI it

RESEARC H

Who’s to blame?

/**
* Returns the correctly rounded positive square root of a
* {@code double} value.
* Special cases:
* <1li>If the argument is NaN or less than zero, then the
* result is NaN.
* <1i>If the argument is positive infinity, then the result
* is positive infinity.
* <1i>If the argument is positive zero or negative zero, then
* the result is the same as the argument.
* Otherwise, the result is the {@code double} value closest to
* the true mathematical square root of the argument value.
k
* @param a a value.
* @return the positive square root of {@code a}.
k

If the argument is NaN or less than zero, the result is NaN.

*
~

public static double sqrt(double a) { ..}

15-214 a8

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

= Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

- If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end g file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

= The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1}/, leaving elements b[off+k] through b[off+len-1] unaffected.

= In every case, elements b[0] through b[off] and
elements b[off+|en] through b[b.length-1] are unaffected.

e Throws:

= IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

= NullPointerException - If b is null.

= IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

15-214 a9 tor i

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

= Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

- If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end g file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

= The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1}/, leaving elements b[off+k] through b[off+len-1] unaffected.

= In every case, elements b[0] through b[off] and
elements b[off+|en] through b[b.length-1] are unaffected.

e Throws:

= IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

= NullPointerException - If b is null.

= IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

15-214 50 tor i

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

. Reads up to len bytes of data £ Specification of return

attempt is made to read as maCa Iy 1o V=l o L= A Lo 1 (0] (616 /)
The number of bytes actually

until input data is available, erfid 8 =0 o)A = =R o [=1o

- If len is zero, then no bytes a e len=0=> return 0
attempt to read at least one b
end (t)) file, the value -1 is ret e len>0 && eof = return -1
into b.

e len>0 && !eof =P return >0
Exactly where the data is stored
What parts of the array are not affected

= The first byte read is stored in
on. The number of bytes read
bytes actually read; these byt
li/, leaving elements b[off+k]

= In every case, elements b[0] through D[OfT| and
elements b[of’f+|en] through b[b.length-1] are unaffected.

e Throws: . :
. T0Exception - If the first byte {8 Multiple error cases, each with a

or if the input stream has beefE ¢ T=1ee Ty (s [{{[e]})

= NullPointerException - If b is p - . ” .
([J
. IndexOutOfBoundsException - Includes “runtime exceptions” not in

than b.length - off throws clause

N e
B ngdule o

SOFTWARE
RESEARCH

15-214 51

Specifications

e (Contains

Functional behavior
Erroneous behavior
Quality attributes (performance, scalability, security, ...)

e Desirable attributes

15-214

Complete

* Does not leave out any desired behavior
Minimal

* Does not require anything that the user does not care about
Unambiguous

* Fully specifies what the system should do in every case the user cares about
Consistent

* Does not have internal contradictions
Testable

* Feasible to objectively evaluate

Correct
* Represents what the end-user(s) need

- :
[’ Gl
SOFTWARE
52 RESEARCH

Functional Specification

e States method’s and caller’s responsibilities

* Analogy: legal contract
— If you pay me this amount on this schedule...
— | will build a with the following detailed specification
— Some contracts have remedies for nonperformance

 Method contract structure
— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion
— Exceptional behavior: what it does if precondition violated

* Defines what it means for impl to be correct

53 15.214 sz [EJR oo

=-uetalled specification
s have remedies for nonperformance

 Method contract structure
— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion
— Exceptional behavior: what it does if precondition violated

* Defines what it means for impl to be correct

>4 15-214 e m %

Formal Specifications

/*@ requires lLen >= 0 && array != null && array.length == len;

@

@ ensures \result ==
@ (\sum int j; © <= j && j < len; array[j]);
@*/

int total(int array[], int len);

15-214

Runtime Checking of Specifications with Assertions

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sum intj; 0 <=j &&j < len; array[j])
@*/

float sum(int array[], int len) {
assert len >= 0;

assert array.length == len;
float sum = 0.0;
inti = 0;
while (i < len) {
sum = sum + array[i]; i=1i+ 1;
by

assert sum ...;

java -ea Main

return sum;

15214 ss (B0 i

Runtime Checking with Exceptions

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sum intj; 0 <=j&&j < len; array[j])
@*/

float sum(int array[], int len) {
if (len < 0 || array.length = len)
throw IllegalArgumentException(...);
float sum = 0.0;

inti =0;
while (i < len) {
sum = sum + array[i]; i=1i+ 1;
by
return sum;
assert ...;
by
15-214

6_, i‘, ina:.‘fu,lu’ fey
"B soTwaRE
57 B RescaRCH

Specifications in the real world
Javadoc

/**

*

Returns the element at the specified position of this list. postcondition

*

<p>This method is <i>not</i> guaranteed to run in constant time.
* In some implementations, it may run in time proportional to the

*

element position.

*

@param index position of element to return; must be non-negative and

* less than the size of this list.
precondition

*

@return the element at the specified position of this list

*

@throws IndexOutOfBoundsException if the index is out of range
* ({@code index < @ || index >= this.size()})

*/

E get(int index);

15-214 58 forria

Write a Specification

* Write
— a type signature,
— a textual specification, and
— a formal specification

for a function slice(list, from, until) that
returns all values of a list between positions
<from> and <until> as a new list

15-214 so [it

Contacts and Interfaces

* All objects implementing an interface must
adhere to the interface’s contracts

— Objects may provide different implementations
for the same specification

— Subtype polymorphism: Client only cares about
interface, not about the implementation

p.getX() s.read()
=> Design for Change

15-214 60 [EJH sovne

RRRRRRRRR

Specifications in Practice

* Describe expectations beyond the type signature
* |deally formal pre- and post-conditions

* Textual specifications in practice
— Best effort approach

* |f any specification at all

* Specification especially necessary when reusing code
and integrating code

* Writing specifications is good practice
* Writing fully formal specifications is often unrealistic

15-214 61 [EYJ o

ASIDE:
SPECIFICATION OF CLASS INVARIANTS

15-214 62

Data Structure Invariants (cf. 122)

struct list {
elem data;
struct list* next;
¥
struct queue {
list front;
list back;
¥

bool is_queue(queue Q) {
If (Q == NULL) return false;
If (Q->front == NULL || Q->back == NULL) return false;
return is_segment(Q->front, Q->back);

15-214 63

Data Structure Invariants (cf. 122)

* Properties of the Data Structure

* Should always hold before and after method
execution

* May be invalidated temporarily during
method execution

void eng(queue Q, elem s)

//@requires is_queue(Q);
//@ensures is_queue(Q);

{..)

15-214 64

Class Invariants

* Properties about the fields of an object
e Established by the constructor

* Should always hold before and after execution
of public methods

* May be invalidated temporarily during
method execution

15-214 65 [EYf iorins

Class Invariants

* Properties about the fields of an object
o ahlished hv the can

public class SimpleSet {
int contents[]; ef int contents[];

int size; - int size;

SimpleSet(int capacity) { ... }

public class SimpleSet {

SimpleSet(int capacity) { ... }

boolean add(inti) { ... }
boolean add(int i) { ... }

boolean contains(inti) { ... }

}

boolean contains(inti) { ... }

» .
RESEARCH

Java: Constructors

Special “Methods” to create objects

— Same name as class, no return type

May initialize object during creation

Implicit constructor without parameters if
none provided

ingiule o
7 SOFT
RESEARCH

WARE
ARE

EXCURSION: TECHNICAL REALIZATION
OF SUBTYPE POLYMORPHISM

15-214 o [Hl i

Reminder: Subtype Polymorphism

* Atype (e.g. Point) can have many forms (e.g.,
CartesianPoint, PolarPoint, ...)

* All implementations of an interface can be used
interchangeably

 When invoking a method p.x() the specific
implementation of x() from object p is executed

— The executed method depends on the actual object p, i.e.,
on the runtime type

— |t does not depend on the static type, i.e., how p is
declared

15-214 6o [EYH o

RRRRRRRRR

Objects and References (example)

// allocates memory, calls constructor
Point o = new PolarPoint(0, 10);

Rectangle r = new MyRectangle(o, 5, 10);
r.draw();

int rightEnd = r.getOrigin().getX() +
r.getWidth(); // 5

15-214 70 [Hlie

What's really going on?

o : Point

x=0
y=10

Method Stack
getX()

main()
> —1r : Rectangle)

o
rightEnd=5 otk = &

height = 10
getOrigin()
getWidth()

draw()
Point o = new Point(0, 10); //
Rectangle r = new Rectangle(o, 5, 10);
r.draw();

int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

15-214 71 o

Anatomy of a Method Call

r.setX(5)

" The receiver,
an implicit argument,

Method arguments,
just like function

called this inside the arguments
_ method Y,
4 The method name.
Ildentifies which method to use,
of all the methods the receiver’s
_ class defines)
15-214 72 sr

IFT
RRRRRRRRR

Static types vs dynamic types

15-21

Static type: how is a variable declared

Dynamic type: what type has the object in
memory when executing the program (we
may not know until we execute the program)

Point createZeroPoint() {
if (new Math.Random().nextBoolean())
return new CartesianPoint(0, 0);

else return new PolarPoint(0,0);
}

Point p = createZeroPoint();
p.getX();
p.getAngle();

Method dispatch (conceptually)

e Step 1 (compile time): determine what type to look in
— Look at the static type (Point) of the receiver (p)
e Step 2 (compile time): find the method in that type

— Find the method in the interface/class with the right name

int getX();
— Error if there is no such method

— Error if the method is not accessible (e.g., private)
e Step 3 (run time): Execute the method stored in the

object R =
q : PolarPoint

len =5
angle = .34

getX()

15-214

Method dispatch (actual; simplified)

e Step 3 (run time): Determine the run-time
type of the receiver

— Look at the object in the heap and get its class

e Step 4 (run time): Locate the method
implementation to invoke

— Look in the class for an implementation of the

method e 5
. . lr Runtime data area
— Invoke that implementation o |[remn [z [|[[e
I .

15-214 76 [icvinst

RRRRRRRRR

The Java Virtual Machine

(sketch)
.class Class
))
file loader
1 Runtime data area
Method | | heap Java pC Native
area stacks registe | | method
rs stacks
Execution
engine

15-214

- ’
mdule Gl
SOFTWARE
77 RESEARCH

The Java Virtual Machine

(sketch)
.class Class
.)
file load D
len = 4
ngle = .34 untime data area
I
Method heap g Native
area ﬂ'en =5 ers | | method
angle = .34 stacks
PolarPoint |
getX() { ... }
ExXecution
engine

15-214 78 [EJ] ioia

SUMMARY: DESIGN FOR CHANGE/
DIVISION OF LABOR

15-214 79 [El sorvan

RRRRRRRRRR

Design Goals

* Design for Change such that

— Classes are open for extension and modification without
invasive changes

— Subtype polymorphism enables changes behind interface

— Classes encapsulate details likely to change behind (small)
stable interfaces

* Design for Division of Labor such that
— Internal parts can be developed independently

— Internal details of other classes do not need to be
understood, contract is sufficient

— Test classes and their contracts separately (unit testing)

15-214 80

