
 1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 1: Designing Classes)

Design for Change (class level)

Christian Kästner Bogdan Vasilescu

 2 15-214
2

 3 15-214

Polar Points
interface Point {
 int getX();
 int getY();
}
class PolarPointImpl implements Point, PolarPoint {
 double len, angle;
 PolarPoint(double len, double angle)
 {this.len=len; this.angle=angle;}
 int getX() { return this.len * cos(this.angle);}
 int getY() { return this.len * sin(this.angle); }
 double getAngle() {…}
 double getLength() {… }
}
PolarPoint p = new PolarPointImpl(5, .245);
Point q = new PolarPointImpl(5, .245);

interface PolarPoint {
 double getAngle() ;
 double getLength();
}

 4 15-214

Middle Points
interface Point {
 int getX();
 int getY();
}
class MiddlePoint implements Point {
 Point a, b;
 MiddlePoint(Point a, Point b) {this.a = a; this.b = b; }
 int getX() { return (this.a.getX() + this.b.getX()) / 2;}
 int getY() { return (this.a.getY() + this.b.getY()) / 2; }
}
Point p = new MiddlePoint(new PolarPoint(5, .245),

 new CartesianPoint(3, 3));

 5 15-214

Design Goals for Today

• Design for Change (flexibility, extensibility,
modifiability)

also

• Design for Division of Labor

• Design for Understandability

5

 6 15-214

STRATEGY DESIGN PATTERN
(EXPLOITING POLYMORPHISM FOR
FLEXIBILITY)

6

See “UML and
Patterns” Ch. 26.7

 7 15-214

Tradeoffs

void sort(int[] list, String order) {

 …

 boolean mustswap;

 if (order.equals("up")) {

 mustswap = list[i] < list[j];

 } else if (order.equals("down")) {

 mustswap = list[i] > list[j];

 }

 …

}

void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) { return i>j; }}

 8 15-214

void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) {

 return i<j;

 }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) {

 return i>j;

 }}

 9 15-214

One design scenario

• Amazon.com processes millions of orders each
year, selling in 75 countries, all 50 states, and
thousands of cities worldwide. These
countries, states, and cities have hundreds of
distinct sales tax policies and, for any order
and destination, Amazon.com must be able to
compute the correct sales tax for the order
and destination.

 10 15-214

Another design scenario

• A vision processing system must detect lines in
an image. For different applications the line
detection requirements vary. E.g., for a vision
system in a driverless car the system must
process 30 images per second, but it's OK to
miss some lines in some images. A face
recognition system can spend 3-5 seconds
analyzing an image, but requires accurate
detection of subtle lines on a face.

 11 15-214

Behavioral: Strategy

Context

Strategy

execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

 12 15-214

Behavioral: Strategy

• Applicability
– Many classes differ in

only their behavior
– Client needs different variants of

an algorithm

• Consequences
– Code is more extensible with new

strategies
• compare to conditionals

– Separates algorithm from context
• each can vary independently
• design for change and reuse; reduce

coupling

– Adds objects and dynamism
• code harder to understand

– Common strategy interface
• may not be needed for all Strategy

implementations – may be extra
overhead

• Design for change
– Find what varies and encapsulate it
– Allows changing/adding alternative

variations later
– Class Context closed for

modification, but open for
extension

• Equivalent in functional progr.
languages: Higher-order functions

Context

Strategy

execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

 13 15-214

More Design Scenarios

• Change the sorting criteria in a list

• Change the aggregation method for
computations over a list (e.g., fold)

• Compute the tax on a sale

• Compute a discount on a sale

• Change the layout of a form

13

 14 15-214

Design Patterns

• "Each pattern describes a
problem which occurs over and
over again in our environment,
and then describes the core of
the solution to that problem, in
such a way that you can use this
solution a million times over,
without ever doing it the same
way twice”
– Christopher Alexander

 15 15-214

Benefits of Patterns

• Shared language of design
– Increases communication bandwidth

– Decreases misunderstandings

• Learn from experience
– Becoming a good designer is hard

• Understanding good designs is a first step

– Tested solutions to common problems
• Where is the solution applicable?

• What are the tradeoffs?

 16 15-214

How not to discuss design
(from Shalloway and Trott)

• Carpenter 1: How do you think we should build these
drawers?

• Carpenter 2: Well, I think we should make the joint by
cutting straight down into the wood, and then cut back
up 45 degrees, and then going straight back down, and
then back up the other way 45 degrees, and then going
straight down, and repeating…

• SE example: “I wrote this if statement to handle …
followed by a while loop … with a break statement so
that…”

 17 15-214

Discussion with
design patterns
• Carpenter 1: Should we use a

dovetail joint or a miter joint?

• Subtext:
– miter joint: cheap, invisible, breaks easily
– dovetail joint: expensive, beautiful, durable

• Shared terminology and knowledge of consequences
raises level of abstraction
– CS: Should we use a Strategy?
– Subtext: Is there a varying part in a stable context? Might there

be advantages in limiting the number of possible
implementations?

 18 15-214

Elements of a Pattern

• Name
– Important because it becomes part of a design vocabulary
– Raises level of communication

• Problem
– When the pattern is applicable

• Solution
– Design elements and their relationships
– Abstract: must be specialized

• Consequences
– Tradeoffs of applying the pattern

• Each pattern has costs as well as benefits
• Issues include flexibility, extensibility, etc.
• There may be variations in the pattern with different consequences

 19 15-214

Strategy pattern

• Problem: Clients need different
variants of an algorithm

• Solution: Create an interface for the algorithm,
with an implementing class for each variant of
the algorithm

• Consequences:
– Easily extensible for new algorithm implementations
– Separates algorithm from client context
– Introduces an extra interface and many classes: Code

can be harder to understand; Lots of overhead if the
strategies are simple

Context

Strategy

execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

 20 15-214

History: Design Patterns Book
• Brought Design Patterns

into the mainstream
• Authors known as the

Gang of Four (GoF)
• Focuses on descriptions of

communicating objects
and classes that are
customized to solve a
general design problem in
a particular context

• Great as a reference text
• Uses C++, Smalltalk

 21 15-214

Design Exercise (on paper)

• You are designing software for a shipping company.
• There are several different kinds of items that can be shipped: letters,

books, packages, fragile items, etc.
• Two important considerations are the weight of an item and its insurance

cost.
– Fragile items cost more to insure.
– All letters are assumed to weigh an ounce
– We must keep track of the weight of other packages.

• The company sells boxes and customers can put several items into them.
– The software needs to track the contents of a box (e.g. to add up its weight, or

compute the total insurance value).
– However, most of the software should treat a box holding several items just

like a single item.

• Think about how to represent packages; what are possible interfaces,
classes, and methods? (letter, book, box only)

 22 15-214

The Composite Design Pattern

22

Context

+operation()

Leaf

+operation()
+add(in c : Component)
+remove(in c : Component)

Composite

+operation()

«interface»
Component

-parent

1

-children

*

operation() {
 for (c in children)
 c.operation();
}

 23 15-214

The Composite Design Pattern

• Applicability
– You want to represent part-whole

hierarchies of objects

– You want to be able to ignore the
difference between compositions of
objects and individual objects

• Consequences
– Makes the client simple, since it can

treat objects and composites
uniformly

– Makes it easy to add new kinds of
components

– Can make the design overly general

• Operations may not make sense
on every class

• Composites may contain only
certain components

Context

+operation()

Leaf

+operation()
+add(in c : Component)
+remove(in c : Component)

Composite

+operation()

«interface»
Component

-parent

1

-children

*

operation() {
 for (c in children)
 c.operation();
}

 24 15-214

We have seen this before

interface Point {
 int getX();
 int getY();
}
class MiddlePoint implements Point {
 Point a, b;
 MiddlePoint(Point a, Point b) {this.a = a; this.b = b; }
 int getX() { return (this.a.getX() + this.b.getX()) / 2;}
 int getY() { return (this.a.getY() + this.b.getY()) / 2; }
}

 25 15-214

ENCAPSULATION
(LANGUAGE FEATURE TO CONTROL
VISIBILITY)

 26 15-214

Controlling Access – Best practices

• Define an interface
• Client may only use

the messages in
the interface

• Fields not
accessible from
client code

• Methods only
accessible if
exposed in
interface

Interface Type

interface Point {
 int getX();
 int getY();
}
class CartesianPoint implements Point {
 int x,y;
 Point(int x, int y) {this.x=x; this.y=y;}
 int getX() { return this.x; }
 int getY() { return this.y; }
 String getText() { return this.x + “ x “ + this.y; }
}
Point p = new CartesianPoint(3, -10);
p.getX();
p.getText(); // not accessible
p.x; // not accessible

 27 15-214

Java: Classes as Types

• Classes usable as type
– (Public) methods in classes usable like methods in

interfaces
– (Public) fields directly accessible from other classes
– Language constructs (public, private, protected) to control

access

• Prefer programming to interfaces (variables should
have interface type, not class type)
– Esp. whenever there are multiple implementations of a

concept
– Allows to provide different implementations later
– Prevents dependence on implementation details

int add(CartesianPoint p) { … // preferably no
int add(Point p) { … // yes!

 29 15-214

Interfaces and Classes (Review)
class PolarPoint implements Point {

 double len, angle;

 PolarPoint(double len, double angle)

 {this.len=len; this.angle=angle;}

 int getX() { return this.len * cos(this.angle);}

 int getY() { return this.len * sin(this.angle); }

 double getAngle() { return angle; }

}

Point p = new PolarPoint(5, .245);

p.getX();

p.getAngle(); // not accessible

p.len // not accessible

PolarPoint pp = …

pp.getX();

pp.getAngle();

pp.len

 30 15-214

Java: Visibility Modifiers
class Point {

 private int x, y;

 public int getX() { return this.x; } // a method; getY() is similar

 public Point(int px, int py) { this.x = px; this.y = py; }// constructor

}

class Rectangle {

 private Point origin;

 private int width, height;

 public Point getOrigin() { return origin; }

 public int getWidth() { return width; }

 public void draw() {

 drawLine(this.origin.getX(), this.origin.getY(), // first line

 this.origin.getX()+this.width, origin.getY());

 … // more lines here

 }

 public Rectangle(Point o, int w, int h) {

 this.origin = o; this.width = w; this.height = h;

 }

}

 31 15-214

Hiding interior state
class Point {

 private int x, y;

 public int getX() { return this.x; } // a method; getY() is similar

 public Point(int px, int py) { this.x = px; this.y = py; }// constructor

}

class Rectangle {

 private Point origin;

 private int width, height;

 public Point getOrigin() { return origin; }

 public int getWidth() { return width; }

 public void draw() {

 drawLine(this.origin.getX(), this.origin.getY(), // first line

 this.origin.getX()+this.width, origin.getY());

 … // more lines here

 }

 public Rectangle(Point o, int w, int h) {

 this.origin = o; this.width = w; this.height = h;

 }

}

Some Client Code

Point o = new Point(0, 10); // allocates memory, calls ctor
Rectangle r = new Rectangle(o, 5, 10);
r.draw();
int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

Client Code that will not work in this version

Point o = new Point(0, 10); // allocates memory, calls ctor
Rectangle r = new Rectangle(o, 5, 10);
r.draw();
int rightEnd = r.origin.x + r.width; // trying to “look inside”

 32 15-214

Hiding interior state
class Point {

 private int x, y;

 public int getX() { return this.x; } // a method; getY() is similar

 public Point(int px, int py) { this.x = px; this.y = py; }// constructor

}

class Rectangle {

 private Point origin;

 private int width, height;

 public Point getOrigin() { return origin; }

 public int getWidth() { return width; }

 public void draw() {

 drawLine(this.origin.getX(), this.origin.getY(), // first line

 this.origin.getX()+this.width, origin.getY());

 … // more lines here

 }

 public Rectangle(Point o, int w, int h) {

 this.origin = o; this.width = w; this.height = h;

 }

}

Discussion:
• What are the benefits of private fields?
• Methods can also be private – why is this

useful?

 34 15-214

DESIGN PRINCIPLE:
INFORMATION HIDING

34

 35 15-214

Fundamental Design Principle for
Change: Information Hiding

• Expose as little implementation detail as
necessary

• Allows to change hidden details later

35

Service*
implementation

Service* interface

Client
environment

 Hidden from
service* provider

 Hidden from
service* client

* service = object,
subsystem, …

 36 15-214

Information Hiding

• Interfaces (contracts) remain stable

• Hidden implementation can be changed easily

• => Identify what is likely to change, and hide it

• => Requires anticipation of change (judgment)

• Points example: Minimal stable interface, allows
alternative implementations and flexible composition

• (Not all change can be anticipated, causing
maintenance work or reducing flexibility)

36

 37 15-214

Information Hiding promotes Reuse

• Think in terms of abstractions not
implementations
– e.g., Point vs CartesianPoint

• Abstractions can often be reused
• Different implementations of the same interface

possible,
– e.g., reuse Rectangle but provide different Point

implementation

• Decoupling implementations
• Hiding internals of implementations

More on reuse next week

 38 15-214

INFORMATION HIDING CASE STUDY

38

 39 15-214

39

 40 15-214

CONTRACTS
(BEYOND TYPE SIGNATURES)

40

 41 15-214

Contracts and Clients

Service*
implementation

Service* interface

Client
environment

 Hidden from
service* provider

 Hidden from
service* client

* service = object,
subsystem, …

 42 15-214

Contracts

• Agreement between provider and users of an
object

• Includes

– Interface specification (types)

– Functionality and correctness expectations

– Performance expectations

• What the method does, not how it does it

– Interface (API), not implementation

42

 43 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> ArrayOutOfBoundsException

 44 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> -1

 45 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> 0

 46 15-214

Who’s to blame?

class Algorithms {

 /**

 * This method finds the

 * shortest distance between to

 * verticies. It returns -1 if

 * the two nodes are not

 * connected. */

 int shortestDistance(…) {…}

}

 47 15-214

Who’s to blame?

Math.sqrt(-5);

> 0

 48 15-214

Who’s to blame?

/**
 * Returns the correctly rounded positive square root of a
 * {@code double} value.
 * Special cases:
 * If the argument is NaN or less than zero, then the
 * result is NaN.
 * If the argument is positive infinity, then the result
 * is positive infinity.
 * If the argument is positive zero or negative zero, then
 * the result is the same as the argument.
 * Otherwise, the result is the {@code double} value closest to
 * the true mathematical square root of the argument value.
 *
 * @param a a value.
 * @return the positive square root of {@code a}.
 * If the argument is NaN or less than zero, the result is NaN.
 */

public static double sqrt(double a) { …}

 49 15-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

 50 15-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

 51 15-214

Textual Specification
public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

 Multiple error cases, each with a
precondition

 Includes “runtime exceptions” not in
throws clause

 Specification of return
 Timing behavior (blocks)
 Case-by-case spec

 len=0  return 0
 len>0 && eof  return -1
 len>0 && !eof return >0

 Exactly where the data is stored
 What parts of the array are not affected

 52 15-214

Specifications

• Contains
– Functional behavior
– Erroneous behavior
– Quality attributes (performance, scalability, security, …)

• Desirable attributes
– Complete

• Does not leave out any desired behavior

– Minimal
• Does not require anything that the user does not care about

– Unambiguous
• Fully specifies what the system should do in every case the user cares about

– Consistent
• Does not have internal contradictions

– Testable
• Feasible to objectively evaluate

– Correct
• Represents what the end-user(s) need

 53 15-214

Functional Specification

• States method’s and caller’s responsibilities

• Analogy: legal contract
– If you pay me this amount on this schedule…
– I will build a with the following detailed specification
– Some contracts have remedies for nonperformance

• Method contract structure
– Preconditions: what method requires for correct operation
– Postconditions: what method establishes on completion
– Exceptional behavior: what it does if precondition violated

• Defines what it means for impl to be correct

53

 54 15-214

Functional Specification

• States method’s and caller’s responsibilities

• Analogy: legal contract
– If you pay me this amount on this schedule…
– I will build a with the following detailed specification
– Some contracts have remedies for nonperformance

• Method contract structure
– Preconditions: what method requires for correct operation
– Postconditions: what method establishes on completion
– Exceptional behavior: what it does if precondition violated

• Defines what it means for impl to be correct

54

 55 15-214

Formal Specifications

 /*@ requires len >= 0 && array != null && array.length == len;
 @
 @ ensures \result ==
 @ (\sum int j; 0 <= j && j < len; array[j]);
 @*/
int total(int array[], int len);

 56 15-214

/*@ requires len >= 0 && array.length == len

 @ ensures \result ==

 @ (\sum int j; 0 <= j && j < len; array[j])

 @*/

float sum(int array[], int len) {

 assert len >= 0;

 assert array.length == len;

 float sum = 0.0;

 int i = 0;

 while (i < len) {

 sum = sum + array[i]; i = i + 1;

 }

 assert sum …;

 return sum;

}

Runtime Checking of Specifications with Assertions

java -ea Main

 57 15-214

/*@ requires len >= 0 && array.length == len

 @ ensures \result ==

 @ (\sum int j; 0 <= j && j < len; array[j])

 @*/

float sum(int array[], int len) {

 if (len < 0 || array.length != len)

 throw IllegalArgumentException(…);

 float sum = 0.0;

 int i = 0;

 while (i < len) {

 sum = sum + array[i]; i = i + 1;

 }

 return sum;

 assert …;

}

Runtime Checking with Exceptions

Check arguments
even when
assertions are
disabled.
Good for robust
libraries!

 58 15-214

Specifications in the real world
Javadoc
/**

 * Returns the element at the specified position of this list.

 *

 * <p>This method is <i>not</i> guaranteed to run in constant time.

 * In some implementations, it may run in time proportional to the

 * element position.

 *

 * @param index position of element to return; must be non-negative and

 * less than the size of this list.

 * @return the element at the specified position of this list

 * @throws IndexOutOfBoundsException if the index is out of range

 * ({@code index < 0 || index >= this.size()})

 */

E get(int index);

postcondition

precondition

 59 15-214

Write a Specification

• Write

– a type signature,

– a textual specification, and

– a formal specification

 for a function slice(list, from, until) that
returns all values of a list between positions
<from> and <until> as a new list

59

 60 15-214

Contacts and Interfaces

• All objects implementing an interface must
adhere to the interface’s contracts
– Objects may provide different implementations

for the same specification

– Subtype polymorphism: Client only cares about
interface, not about the implementation

 p.getX() s.read()

=> Design for Change

60

 61 15-214

Specifications in Practice

• Describe expectations beyond the type signature

• Ideally formal pre- and post-conditions

• Textual specifications in practice
– Best effort approach

• If any specification at all

• Specification especially necessary when reusing code
and integrating code

• Writing specifications is good practice

• Writing fully formal specifications is often unrealistic

 62 15-214

ASIDE:
SPECIFICATION OF CLASS INVARIANTS

62

 63 15-214

Data Structure Invariants (cf. 122)

struct list {

 elem data;

 struct list* next;

};

struct queue {

 list front;

 list back;

};

bool is_queue(queue Q) {

 if (Q == NULL) return false;

 if (Q->front == NULL || Q->back == NULL) return false;

 return is_segment(Q->front, Q->back);

}

 64 15-214

Data Structure Invariants (cf. 122)

• Properties of the Data Structure

• Should always hold before and after method
execution

• May be invalidated temporarily during
method execution

void enq(queue Q, elem s)
//@requires is_queue(Q);
//@ensures is_queue(Q);
{ … }

 65 15-214

Class Invariants

• Properties about the fields of an object

• Established by the constructor

• Should always hold before and after execution
of public methods

• May be invalidated temporarily during
method execution

 66 15-214

Class Invariants

• Properties about the fields of an object

• Established by the constructor

• Should always hold before and after execution
of public methods

• May be invalidated temporarily during
method execution

public class SimpleSet {

 int contents[];
 int size;

 //@ ensures sorted(contents);
 SimpleSet(int capacity) { … }

 //@ requires sorted(contents);
 //@ ensures sorted(contents);
 boolean add(int i) { … }

 //@ requires sorted(contents);
 //@ ensures sorted(contents);
 boolean contains(int i) { … }
}

public class SimpleSet {

 int contents[];
 int size;

 //@invariant sorted(contents);

 SimpleSet(int capacity) { … }

 boolean add(int i) { … }

 boolean contains(int i) { … }
}

 67 15-214

Java: Constructors

• Special “Methods” to create objects

– Same name as class, no return type

• May initialize object during creation

• Implicit constructor without parameters if
none provided

class BPoint {

 int x,y;

 BPoint(int x, int y)

 {this.x=x; this.y=y;}

}

BPoint p = new BPoint(3, -10);

class APoint {

 int x,y;

}

APoint p = new APoint();

p.x=3;

p.y=-10;

 68 15-214

EXCURSION: TECHNICAL REALIZATION
OF SUBTYPE POLYMORPHISM

 69 15-214

Reminder: Subtype Polymorphism

• A type (e.g. Point) can have many forms (e.g.,
CartesianPoint, PolarPoint, …)

• All implementations of an interface can be used
interchangeably

• When invoking a method p.x() the specific
implementation of x() from object p is executed
– The executed method depends on the actual object p, i.e.,

on the runtime type
– It does not depend on the static type, i.e., how p is

declared

 70 15-214

Objects and References (example)
// allocates memory, calls constructor

Point o = new PolarPoint(0, 10);

Rectangle r = new MyRectangle(o, 5, 10);

r.draw();

int rightEnd = r.getOrigin().getX() +
r.getWidth(); // 5

 71 15-214

What’s really going on?

Point o = new Point(0, 10); // allocates memory, calls ctor
Rectangle r = new Rectangle(o, 5, 10);
r.draw();
int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

main()
 o
 r
 rightEnd=5

Method Stack

r : Rectangle
origin
width = 5
height = 10
getOrigin()
getWidth()
draw()

o : Point
x = 0
y = 10
getX()

 72 15-214

Anatomy of a Method Call

r.setX(5)

The receiver,

an implicit argument,

called this inside the

method

The method name.

Identifies which method to use,

of all the methods the receiver’s

class defines

Method arguments,

just like function

arguments

 74 15-214

Static types vs dynamic types

• Static type: how is a variable declared

• Dynamic type: what type has the object in
memory when executing the program (we
may not know until we execute the program)

Point createZeroPoint() {

 if (new Math.Random().nextBoolean())

 return new CartesianPoint(0, 0);

 else return new PolarPoint(0,0);

}

Point p = createZeroPoint();

p.getX();

p.getAngle();

 75 15-214

Method dispatch (conceptually)

• Step 1 (compile time): determine what type to look in
– Look at the static type (Point) of the receiver (p)

• Step 2 (compile time): find the method in that type
– Find the method in the interface/class with the right name

int getX();

– Error if there is no such method

– Error if the method is not accessible (e.g., private)

• Step 3 (run time): Execute the method stored in the
object

p : PolarPoint
len = 4
angle = .34
getX()

q : PolarPoint
len = 5
angle = .34
getX()

 76 15-214

Method dispatch (actual; simplified)

• Step 3 (run time): Determine the run-time
type of the receiver

– Look at the object in the heap and get its class

• Step 4 (run time): Locate the method
implementation to invoke

– Look in the class for an implementation of the
method

– Invoke that implementation Metho
d area

heap Java

stacks
pc
registe
rs

Native
metho
d
stacks

Runtime data area

Class
loader

.class
file

Execution
engine

 77 15-214

Method
area

heap Java

stacks
pc
registe
rs

Native
method
stacks

Runtime data area

Class
loader

.class
file

Execution
engine

The Java Virtual Machine
(sketch)

 78 15-214

Method
area

heap Java

stacks
pc
registers

Native
method
stacks

Runtime data area

Class
loader

.class
file

Execution
engine

The Java Virtual Machine
(sketch)

PolarPoint
getX() { … }

p
len = 4
angle = .34

q
len = 5
angle = .34

 79 15-214

SUMMARY: DESIGN FOR CHANGE/
DIVISION OF LABOR

79

 80 15-214

Design Goals

• Design for Change such that
– Classes are open for extension and modification without

invasive changes

– Subtype polymorphism enables changes behind interface

– Classes encapsulate details likely to change behind (small)
stable interfaces

• Design for Division of Labor such that
– Internal parts can be developed independently

– Internal details of other classes do not need to be
understood, contract is sufficient

– Test classes and their contracts separately (unit testing)

 80

