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Abstract

We introduce a model-based analysis technique for ex-
tracting and characterizing rhythmic expression profiles
from genome-wide DNA microarray hybridization data.
These patterns are clues to discovering rhythmic genes
implicated in cell-cycle, circadian, or other biological
processes. The algorithm, implemented in a program
called rage (Rhythmic Analysis of Gene Expression),
decouples the problems of estimating a pattern’s peri-
odicity and phase. Our algorithm is linear-time in fre-
quency and phase resolution, an improvement over pre-
vious quadratic-time approaches. Unlike previous ap-
proaches, rage uses a true distance metric for measur-
ing expression profile similarity, based on the Hausdorff
distance. This results in better clustering of expression
profiles for rhythmic analysis. The confidence of each
frequency estimate is computed using Z-scores. We
demonstrate that rage is superior to other techniques
on synthetic and actual DNA microarray hybridization
data. We also show how to replace the discretized phase
search in our method with an exact (combinatorially
precise) phase search, resulting in a faster algorithm
with no complexity dependence on phase resolution.
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1 Introduction

The expression patterns of many genes associated with
circannual (yearly), circadian (daily), cell-cycle and other
periodic biological processes are known to be rhythmic.
Conversely, the expression profiles of genes associated
with aperiodic biological processes (e.g., tissue repair)
are not rhythmic. The functional significance of previ-
ously uncharacterized genes, therefore, may be inferred
if they exhibit rhythmic patterns of expression synchro-
nized to some ongoing biological process.

DNA microarray experiments are an effective tool
for identifying rhythmic genes when a time-series of
expression levels are collected. Unlike Northern blots
and real-time PCR, which study one gene at a time,
DNA microarray hybridization time-series experiments
can reveal the expression patterns of entire genomes.
Chronobiologists are therefore able to assign putative
functional properties to large numbers of genes based on
the results of a single experiment. However, the large
volume of data generated by hybridization experiments
makes manual inspection of individual expression pro-
files impractical. Separating the subset of genes whose
expression profiles are rhythmic from the thousands or
tens of thousands that are not requires computer as-
sistance. Ideally, the algorithms for providing such as-
sistance should be efficient and have well-understood
performance guarantees.

We have designed and implemented an algorithm
to identify and characterize the properties of rhythmic
genes from DNA microarray hybridization time-series
data. Our approach specifically addresses issues of com-
putational complexity, statistical significance and mor-
phological similarity.

The identification of rhythmic genes may be viewed
as a pattern-recognition problem — the goal is to iden-
tify sinusoidal RNA expression patterns in massively
parallel gene expression data. Each expression profile
may be viewed as a scalar function of time. A stored set
of ‘model’ functions may be compared with an unknown
function (expression profile) that has been obtained by
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experiment. The model may be either (a) an ‘ideal’ syn-
thetic sinusoid or (b) another gene expression profile. In
(a), one tries to fit a family of different ideal sinusoids
to the data, to determine if the data is periodic, and if
so, the best fit. The sinusoids may differ in frequency,
phase, and may be damped. In (b), the model may be
a known rhythmic gene, in which case one attempts to
find genes with similar profiles.

In either case, the difference between each model
shape and unknown shape is computed, and the model
that is closest to the unknown shape is reported as the
best match. Strong arguments from the machine vision
and pattern recognition literature argue that for such
applications, the function used to measure the differ-
ence between model and data should be a metric [3, 21].
This means that for a class of expression profiles the dif-
ference function d should obey the following properties,
for any three profiles X, Y , and Z:

d(X,Y ) ≥ 0 for all X and Y. (1)
d(X,Y ) = 0

if and only if X = Y
(Identity). (2)

d(X,Y ) = d(Y,X)
for all X and Y
(Symmetry). (3)

d(X,Y ) + d(Y, Z) ≥ d(X,Z)
for all X,Y and Z
(Triangle Inequality). (4)

As argued in [10], the triangle inequality is of par-
ticular importance, because it guarantees that if several
model expression profiles are similar to a given data ex-
pression profile, then these profiles also must be similar
to one another. Thus, for example, it is not possible
for two highly dissimilar model profiles to be similar to
the data profile for the same gene. Current microar-
ray analysis methods generally compare profiles using
functions that are not metrics, and thus may report
that several dissimilar models match the same data,
which is highly counter-intuitive. In addition to obey-
ing metric properties, an expression profile comparison
method should also be easy to compute in order for it
to be of practical use. The method we describe can
be computed efficiently both in theory and in prac-
tice. Previous algorithms that use hierarchical cluster-
ing (e.g., [11]) run in time O(n2l), where n is the num-
ber of genes represented in the microarray data and l
is the number of time-series points. Other algorithms
(e.g., [15]) that estimate both the frequency and phase
of gene expression profiles using pattern recognition run
in time O(nmp l log l), where m is the frequency resolu-
tion, and p is the phase resolution. These methods can

take up to a week of wall-clock CPU time to analyze
data from a single gene chip experiment and suffer from
the use of non-metric similarity measurements. We de-
scribe an algorithm that runs in time O(n(m+ p)f(l)),
where f(l) is the time to compute the Hausdorff dis-
tance (f(l) = O(l2) deterministic and O(l) probabilis-
tic time). Next, we replace our discretized phase search
with an exact (combinatorially precise) phase search.
This eliminates the factor of p entirely, resulting in an
overall complexity of O(nmf(l) + nl3α(l) log l), where
α is the extremely slow-growing inverse of Ackerman’s
function. In all cases, l may be treated as a small
constant, since in today’s technology, l is never more
than a small constant lmax � n (for example, typically,
l ≤ 24, and n ≈ 6500 — See Table 1). This simplifi-
cation obtains a complexity bound of O(nmp) for pre-
vious algorithms vs. O(n(m+ p)) and O(nm) for ours.
Our algorithm runs in 2-4 hours on a single processor
Pentium-class workstation.

Our chief contributions are as follows:
1. The use of autocorrelation to define a phase-inde-

pendent search over frequency- and phase-space.
This allows us to perform two linear-time searches,
one in frequency- and one in phase-space, as op-
posed to a quadratic-time search over frequency-
phase space;

2. The use of the undirected Hausdorff (UH) distance
to compare similarity of expression profiles. UH
satisfies the axioms of a distance metric on the
space of expression profiles, unlike previous mea-
sures, resulting in a robust and rigorous basis for
clustering;

3. Testing our methods on publicly available gene ex-
pression data and a comparison of the results to
previous analyses; and

4. The application of our methods to find circadian
genes in a microarray data set that has previously
been searched only for cell-cycle genes.

1.1 Organization of paper

We begin, in Section 2, with a review of the relevant bi-
ology and a summary of three publicly available DNA
microarray hybridization time-series data sets. Section
3 categorizes existing techniques for extracting rhyth-
mic profiles from microarray data, including a discus-
sion of their limitations and computational complexity.
In section 4, we detail our method and analyze its com-
putational complexity. Section 5 presents the results of
the application of rage to simulated and real biological
data. Finally, section 6 discusses these results.
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2 Background

There are many examples of DNA microarray time-
series experiments in the literature (e.g., [8, 9, 14, 20,
22, 15, 24, 18, 27]). In many of these experiments, the
primarily goal was to identify genes whose expression
patterns were periodic over the length of the experi-
ment. For example, cell-cycle regulated (e.g., [8, 24])
and circadian (e.g., [15, 27]) genes have been identified
from their expression profiles in hybridization experi-
ments.

Several research labs have made their raw data avail-
able to the public via [1] facilitating the development of
improved techniques. The Campbell lab at Stanford has
released the yeast data presented in [8] on the CDC28
mutant of yeast. The Botstein lab has released the data
from their yeast experiment on the CDC15 mutant of
yeast presented in [24]. The Brown lab at Stanford has
released the human fibroblast data presented in [18].
The CDC15, CDC28, and fibroblast data sets are often
used as benchmarks for novel microarray data process-
ing techniques. In this section we briefly summarize the
biological background relevant to these data sets.

2.1 Yeast and Fibroblast Data sets

The CDC15, and CDC28 experiments were designed
to identify cell-cycle regulated genes in yeast (Saccha-
romyces cerevisiae). The eukaryotic cell-cycle is the 4
stage process by which a single cell replicates into two
daughter cells. The four stages, named G1, S, G2 and
M, have distinct roles. The chromosomes are prepared
for replication in G1. The DNA and centrioles are repli-
cated in S. The cell is prepared for separation in G2.
Finally, the cell divides in M (mitosis) and the process
begins again. This process takes about 90 minutes in
yeast and 16 hours in fibroblasts. Thus, the authors
of the CDC15, CDC28 and fibroblast experiments were
looking for uncharacterized genes whose expression pro-
files were periodic with those frequencies.

The fibroblast experiment was also designed to iden-
tify cell-cycle regulated genes but in human fibroblast
cells, instead of yeast. Unlike yeast, the cell-cycle for
human fibroblasts is approximately 16 hours. Table 1
details the content of CDC15, CDC28, and fibroblast
data sets.

3 Prior Work

A variety of techniques have been developed to extract
the rhythmic genes from these data sets. The various
techniques fall into two categories: spectral and cluster-
based analyses. In this section we discuss each type,
citing specific examples.

3.1 Spectral Techniques

The Fourier Transform is a standard tool for detecting
periodicities in discretized signals. [24] used the Fourier
transform as one component of a hybrid technique for
determining the frequency and phase of gene expression
profiles in the CDC15 and CDC28 data sets. The lim-
itations of the Fourier transform are well understood.
The range of detectable frequencies within a signal, and
the resolution to which they can be resolved are partic-
ularly relevant to DNA microarray data. The frequency
resolution obtainable on short time series, such as those
generated in typical microarray experiments is often not
adequate for resolving periodicities of interest. The in-
terested reader is directed to Appendix A.1 for a longer
discussion of these limitations.

The size limitations on the datasets are typically not
biological but rather financial. For example, for Ara-
bidopsis studies, each Affymetrix chip costs $400. That
cost will increase to $500 when the full genome chip
for Arabidopsis becomes available. There is also a $400
per chip processing fee. Thus, a 24-data point time se-
ries with a replication factor of 3 costs $57,600. When
these costs drop and the number of points per exper-
iment rises, the Fourier transform will become a more
effective tool. Until that time, non-spectral techniques
will likely dominate. We discuss these techniques in the
next section.

Skiena and co-workers [12] give an algorithm for es-
timating frequencies of periodic genes, using the cor-
relation coefficient and an unusual time-division strat-
egy. While complexity bounds are not given, the algo-
rithm appears to be efficient. The phase search in [12]
is unique: they look for aggregate shifts. They find,
for example, that the CDC15 data set is phase-shifted
relative to the CDC28 set. Our method estimates the
phase offset of individual genes relative to the start of
the experiment.

3.2 Cluster-based Analysis

A clustering algorithm takes as input a set of items
and a method for comparing the similarity between
pairs of items. The outputs of the algorithm are sub-
sets/clusters of the input set where the average similar-
ity between pairs within a cluster is higher than the
average similarity between items from different clus-
ters. The second class of time-series analysis techniques
clusters gene expression profiles to model profiles. Un-
known genes are attributed the properties of the model
to which they are most similar. The two most impor-
tant distinctions among clustering methods are 1) how
the models are generated and 2) which similarity mea-
surements are used. The choice of models and similarity
measurements affect both the complexity and accuracy
of the resulting algorithm.
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Experiment Organism ∆t (minutes) # samples # periods # genes
CDC15[24] S. cerevisiae 10/20 24 3.2 6178
CDC28[8] S. cerevisiae 10 17 1.8 6220
Fibroblast[18] H. sapiens 15/30/60/120/240 12 1.5 9712

Table 1: CDC15, CDC28, and fibroblast data sets. ∆t indicates the time period between successive time points. If there is more than
one ∆t listed, then the data was non-linearly sampled using a combination of the specified times. # periods indicates the number of
cell-cycle periods that fit within the duration of the sample interval.

3.2.1 Model Generation

There are two primary means for generating models for
a clustering algorithm. In the first approach the models
are generated from the data itself. The clustering tech-
nique developed by [11] which was used for the origi-
nal analysis of the CDC15, CDC28, and fibroblast data
sets is an example of a data-generated clustering tech-
nique. It is often the case that among the microarray
data there are a number of genes of known function.
Such genes can be used as models. Data-derived mod-
els have a potential advantage in that they implicitly
include noise models. There are non-trivial variations
found among microarrays and in the steps leading up to
hybridization. Consequently, the actual expression pro-
files of rhythmic genes sometimes deviate from an ideal
model. When these variations are systematic across all
genes, the use of data-derived models is especially use-
ful. Whether or not such noise is in fact systematic is
a valid concern.

The disadvantage of data-derived methods is that
one has no control over the models. This places a par-
ticular burden on the similarity measurement used to
compare profiles. The similarity measurement must be
somewhat forgiving of small variations between other-
wise similar shapes. Consider the following example
(Fig 1 A & B), comparing the shapes of two sinusoids
differing in phase by 90 degrees using the correlation
coefficient (eq. 5):

r =
∑n
i=1(xi − x)(yi − y)√

[
∑n
i=1(xi − x)2][

∑n
i=1(yi − y)2]

(5)

where x and y are the signals being compared and x
and y are the respective means of those signals.

The correlation coefficient is used by quite a few
clustering algorithms (e.g., [11, 12]). The correlation
coefficient of the two signals in Fig. 1 A & B is 0, indi-
cating that they are not similar. Clearly, the two shapes
have a lot in common. Furthermore, the correlation co-
efficient violates 3 of the 4 criteria for being a metric
outlined in Sec. 1. Perhaps most important violation is
that the correlation coefficient does not satisfy the tri-
angle inequality. A related statistical measurement, the
cross-correlation, computes correlation coefficients over
all relative shifts of the two input signals. Consequently,
the cross-correlation is also a non-metric.

Figure 1: The sinusoid in A is 90 degrees out of phase with the
sinusoid in B. The correlation coefficient (eq. 5) of A and B is 0,
or no correlation. The signal in C is the autocorrelation of A. The
signal in D is the autocorrelation of B. Note they are nearly iden-
tical due to the phase-independent nature of the autocorrelation.
Furthermore, unlike the Fourier transform, the autocorrelation is
not affected by non-linearly sampled data. Therefore, it is more
suitable for a larger class of microarray experiments.

Another approach to model-based clustering is im-
plemented in the program CorrCos [15]. CorrCos

clusters gene expression data to synthetic sinusoidal mod-
els using cross correlations. The advantage of synthetic
models is that the program has complete control over
the models. CorrCos generates one thousand sinu-
soidal models of differing frequencies. For each fre-
quency model, 101 phase variations are also generated.
Each gene expression profile is then compared, using
the cross-correlation, to each of the 101,000 synthetic
models. The frequency and phase of the model most
closely matching the expression profile are assigned to
that gene.

The time complexity of CorrCos is O(nmp l log l),
where n is the number of genes, m is the number of
frequency models, p is the number of phase variants
generated for each frequency model, and l is the length
of the time series. O(l log l) is the time to compute
a cross correlation. Hence this brute-force search over
frequency and phase grows quadratically with the fre-
quency and phase resolution (m and p) of the search.
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In practice, CorrCos (compiled fortran code) takes
about 1 week to run on microarray data of size 32,000
genes. In contrast, our method only takes about 4 hours
(interpreted matlab code) on the same data set.

In summary, there are a number of problems with
the existing approaches for detecting and characterizing
rhythmic genes in microarray time-series data. Spec-
tral methods are not appropriate because the typical
microarray experiment generates relatively short time-
series. Consequently, cluster-based techniques are re-
quired. Of the cluster-based approaches, data-derived
models are problematic because they lack flexibility and,
when using a phase-sensitive similarity measurement
such as the correlation coefficient, can lead to nonin-
tuitive results. Synthetic model-based clustering ad-
dresses some of these problems at the expense of compu-
tational complexity. Any generate-and-test based tech-
nique using a phase-dependent similarity measurement
will have similar properties.

In contrast, we introduce the autocorrelation to ren-
der our search algorithm phase-independent (Sec. 4.1).
The (hypothetical) use of a non-metric similarity mea-
surement (such as the correlation coefficient) on an au-
tocorrelated phase-independent representation would still
suffer from the drawbacks presented in Sec. 1. There-
fore, we employ the Hausdorff distance (a true metric)
on the autocorrelated signals in order to obtain superior
matching and clustering performance (Sec. 4.2). By at-
tacking the problem of time-series analysis using these
new methods, we hope to strengthen the computational
armamentarium of the chronobiologist.

4 rage (Rhythmic Analysis Of Gene Expression)

We have developed an algorithm named rage to ad-
dresses these problems. Like CorrCos, rage is a
synthetic model-based clustering technique. However,
rage is more efficient than CorrCos, running in time
O(n(m + p)f(l)), where f(l) is the time to compute
the undirected Hausdorff distance between an l-point
model function and an l-point gene expression profile
(Sec. 4.2). Hence, the time complexity of rage grows
linearly with increased frequency (m) and phase (p)
resolution. rage achieves the better bound by using
phase-independent transformations of the data and mod-
els. rage also utilizes a true mathematical metric, the
undirected Hausdorff distance metric, for computing ex-
pression profile similarities. A summary of the rage

algorithm is given in Fig. 2.

4.1 Phase-Independence

The computational complexity of the CorrCos algo-
rithm stems from a brute-force search over the space of
frequency and phase. We claim it is not necessary to

search this entire space. It is possible to decouple the
phase and frequency searches by transforming both the
raw data and the models into a phase-independent form.
The autocorrelation Ψx of a signal x is a frequency-
sensitive but phase-independent representation of x:

Ψx(l) =
∫ +∞

−∞
x(t)x(t− l)dt (6)

where x is the function, x(t) is the function evaluated
at t, and x(t − l) is a translated version the function.
Figures 1 C and D show the autocorrelation of the two
signals from Fig. 1 A and B, respectively. Note that
the two autocorrelations are nearly identical. The in-
terested reader is directed to Appendix A.2 for more
information on the autocorrelation. In our implemen-
tation, each signal is zero-meaned and normalized prior
to computing the autocorrelation.

rage estimates the frequency of expression profiles
using the autocorrelations of both the model and gene
data. After the frequency has been estimated, phase-
variations of the winning frequency model are generated
and a second clustering is performed using these phase
models and the original, non-autocorrelated data. Note
that the phase search is conducted over a single fre-
quency, and not all frequencies (unlike CorrCos).

4.2 Undirected Hausdorff Distance

rage uses the Undirected Hausdorff distance metric
(UH) instead of the correlation coefficient to cluster
expression profiles. The undirected Hausdorff distance
(H, Eq. (7)) calls the directed Hausdorff distance (h,
Eq. (8)) as a subroutine [10, 16]:

H(A,B) = max
(
h(A,B), h(B,A)

)
(7)

h(A,B) = max
a∈A

min
b∈B

(
ρ(a, b)

)
, (8)

where A and B are two point sets in the plane and ρ
is a distance metric. In our implementation ρ is the
Euclidean distance in the plane between two points. ρ
can, in fact, be any metric. The UH distance essen-
tially measures the maximum outlier between two sets
of points. It is commonly used in the computer vision
community for object recognition tasks. We treat the
model and data expression profiles as scalar functions;
the Hausdorff distance is used to compare the similar-
ity of their graphs, treated as point sets, in the plane.
The deterministic time-complexity f(l) for computing
the Hausdorff distance is O(l2). UH distance can be
computed on curves (such as our functions) in expected
time O(l) [5]. One potential limitation of the UH is
that it can be sensitive to outliers. However, this can
be easily solved using quantiles [10]. The basic strategy
is to compute the UH on a subset of the complete set of
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Let G ← Gene Data
Let A ← AutoCorr(G)
for ω = ωlo to ωhi

Mω ← AutoCorr(GenerateModel(ω, 0))
for i = 1 to num-genes

Ωi ← ClusterFreq(Ai,M)
for i = 1 to num-genes

for φ = φlo to φhi
Pφ ← GenerateModel(Ωi,φ)

Φi ← ClusterPhase(Gi,Ωi,P )
for i = 1 to num-genes

Zi ← Z-Score(Gi, Ωi, G)

Figure 2: rage algorithm. The function AutoCorr takes a set of gene expression profiles as input and returns a
set of autocorrelated gene expression profiles. GenerateModel takes a frequency (ω) and phase (φ) as input and
returns a sinusoid of the specified frequency and phase. The length of the model is assumed to be the same size
as the length of the expression profiles in G. M is the set of autocorrelated (i.e., phase-independent) models, and
Mω is the model of frequency ω. ClusterFreq takes as an autocorrelated expression profile and a set of models and
returns the frequency of the model that has the lowest Hausdorff distance to the input expression profile. Ω is the
set of frequency assignments, as determined by ClusterFreq and Ωi is the frequency assigned for each gene Gi in
G. P is the set of phase-sensitive models, and Pφ is the model of phase φ and frequency Ωi. ClusterPhase takes as
input a single gene expression profile, the frequency that has been assigned to that gene and a set of phase-sensitive
models and returns the phase of the model that has the lowest Hausdorff distance to the input expression profile.
Note that P , the set of models for a given frequency (Ωi) can be cached for better performance. Φ is the set of
phase-assignments, as determined by ClusterPhase, for each of the genes in G, and Φi is the phase for gene Gi.
Z-Score takes as input an expression profile, the frequency assigned to that gene and G. Z-score randomly chooses a
constant-sized set R of genes from G. The distribution of Hausdorff distances between Gi and the expression profiles
in R is used to compute the Z-score of the Hausdorff distance between the model of frequency Ωi and Gi.

distances measured using ρ. For example, h might be
computed using only the 75 % quantile of maximum dis-
tances. However, by using quantiles some metric prop-
erties of the UH are lost. We did not use quantiles in
our implementation.

4.3 Statistical Significance

Any cluster-based approach computes the similarity be-
tween each gene and model. The gene is assigned to the
model with the highest similarity. In algorithms such
as CorrCos and rage, all of the models are rhythmic.
Thus, aperiodic genes are initially clustered to rhythmic
models. A post-processing step is required to filter such
genes from each cluster. There are number of ways to
approach this problem. rage employs a statistical ap-
proach.

The Z-score (z = x−µ
σ where x is a member of the

distribution, µ is the mean of the distribution and σ is
the standard deviation), is a common statistical tech-
nique for estimating the significance of a given score.
Given a normal distribution of similarity scores, the Z-
score of any individual similarity measurement is the
number of standard deviations from the mean that score
lies. The Z-score can in turn be transformed into a

probability (P (z) = 1√
2π
e−

z2
2 ). Hence, the confidence

of a given estimate is 1− P (z).
For each gene, rage pre-computes a distribution of

UH distances between the gene and a constant number
of randomly selected genes from the data set1. The con-
fidence associated with the UH distance of the winning
frequency model is computed using this distribution.
One-sided probabilities are used so that only statisti-
cally small UH distances are considered. The biologist
may then sort the genes by these confidence scores.

4.4 Algorithmic Complexity

The analysis of rage is as follows. The conversion
of the raw gene data to its autocorrelated form can
be computed in time O(nl log l) where n is the num-
ber of genes and l is the length of the time-series for
each gene. The generation of the set of models, M is
computed in time O(ml log l) where m is the number
of models (determined by the desired frequency reso-
lution, m). The clustering of each gene to its near-
est model is done by computing the Hausdorff distance

1In our experiments, 500 other gene expression profiles were ran-
domly selected.
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between each of the n genes and each of the m mod-
els. This can be done in time O(nmf(l)), where f(l) is
the time to compute the Hausdorff distance (Sec. 4.2).
The creation of the set P of phase models takes O(npl)
time where p is the number of phase models (deter-
mined by the desired phase resolution, p). The clus-
tering of each (frequency assigned) gene to the near-
est phase model takes O(npf(l)). Finally, computing
the Z-scores takes time O(cnf(l)) where c is a con-
stant corresponding to the number of genes randomly
selected to compute the distribution required for cal-
culating Z-scores. Note that c is determined by the
need for statistical significance. It does not grow as the
size of n increases. This gives an overall complexity of
O(nl log l +ml log l + nmf(l) + npl + npf(l) + cnf(l)).
Since l is O(1) in today’s experiments, the expression re-
duces to O(n(m+ p)), asymptotically faster than Cor-

rCos’ complexity of O(nmp). In the future, if gene-
chip experiments become cheaper, l will not be a con-
stant, although we can still expect l � n, and l � m
is likely for the foreseeable future. Hence, our algo-
rithm would run in time O(n(m + p)l2) (determinis-
tic) or O(n(m+ p)l) (probabilistic) time, as opposed to
O(nmp l log l) for CorrCos.

4.5 Exact Phase Search and Improved Algorithm

We can improve on this algorithm as follows. For each
of the n genes, the phase search as presented above
takes time O(pf(l)) per gene. We can replace this dis-
cretized phase search with an exact (combinatorially
precise) phase search, with running time O(l3α(l) log l)
per gene, where α is the inverse of Ackerman’s func-
tion. This eliminates the factor of p entirely, resulting
in an overall complexity of O(nmf(l) + nl3α(l) log l).
We achieve this as follows. Given two point sets A and
B in the plane, [10] gives an algorithm for computing

argmin
t

H(At, B), (9)

where At is a rigid translation of set A by vector t ∈
R

2. If A and B have p and q points, respectively, the
algorithm runs in time O(pq(p+ q)α(pq) log(pq)).

Definition 1 (Voronoi Surface [10]) Given a set S
of points in R

2, and a metric ρ on R
2, consider the

function d(x) = min
s∈S

ρ(x, s). The Voronoi surface of S

is the graph of d, {(x, d(x)) | x ∈ R2} ⊂ R3.

The Voronoi surface is a two dimensional surface in
a three dimensional space. Intuitively, the Voronoi sur-
face looks like an “irregular egg carton”. Following [10],
to determine the translation t that minimizes Eq. (9),
we must identify the value of t that minimizes the up-
per envelope U of all the Voronoi surfaces defined by
the sets Si = ai	B and S′j = A	 bj , for all ai ∈ A and

all bj ∈ B. 	 denotes the Minkowski difference, so that
Si = {ai − b | b ∈ B}, and S′j = {a− bj | a ∈ A}. The
Voronoi surface has O(pq(p + q)α(pq)) local minima.
Hence,

Claim 2 [10] The minimum undirected Hausdorff dis-
tance under translation of two sets of points in the plane
(and the translation that achieves this minimum) can be
computed in time O(pq(p+ q)α(pq) log(pq)).

We use this algorithm as follows. B is the expres-
sion profile for a gene Gi. A = Ωi is a frequency model,
and At is the frequency model translated by t. We
restrict t to be a phase shift (pure one-dimensional x-
translation), as follows. The algorithm finds the mini-
mum of the upper envelope U . We are only interested
in a one-dimensional translation (the phase) along the
x-axis. We can use the [10] algorithm, by intersecting
the upper envelope U of the Voronoi Surfaces, with the
plane π−1

y (0), where πy : R3 −→ R
1, πy(x, y, z) = y,

and then finding minima in U ∩ π−1
y (0). It is also pos-

sible to construct the Voronoi surface of a collection
of one-dimensional distance functions directly, as a 1D
surface in a 2D space.

5 Results

rage has been applied to both synthetic and real mi-
croarray data. In section 4, we demonstrated that rage

is computationally more efficient than CorrCos due
to the use of a phase-independent search. Our second
claim is that the Hausdorff distance metric is superior
to the correlation coefficient as a distance measure. To
assess the benefit of using the Hausdorff distance met-
ric, we implemented two versions of rage. The first one
is as described in this paper. The second implementa-
tion (rage-cc) is exactly the same as rage except that
it uses the correlation coefficient to compare function
shapes instead of the Hausdorff distance metric.

5.1 Simulated Data

Our first comparison of rage vs. rage-cc was on a
set of 6500 simulated gene profiles. rage outperforms
rage-cc in accuracy of phase and frequency estima-
tion. That is, the average difference between the actual
periodicity of the synthetic gene and the estimated fre-
quency is smaller when using the Hausdorff metric. The
interested reader is directed to Appendix A.3 for more
details on this experiment.

5.2 CDC15, CDC28 and Fibroblast Data

We applied rage and rage-cc to the CDC15, CDC28
and fibroblast data sets. The results of that analysis are
in Tables 2 A-C. rage is more accurate than rage-cc

7



CDC15 rage rage-cc

Mean ∆ω (minutes) 4.39 7.99
St. Dev ∆ω (minutes) 15.05 24.41

(A)

CDC28 rage rage-cc

Mean ∆ω (minutes) 8.57 11.62
St. Dev ∆ω (minutes) 15.8 35.05

(B)

Fibroblast rage rage-cc

Mean ∆ω (hours) 2.68 3.05
St. Dev ∆ω (hours) 2.89 3.12

(C)

Gene Periodicity (hours)

Cry1 21
BMAL 24
Per2 24

(D)

Table 2: Results on actual microarray data. rage is more ac-
curate than rage-cc at estimating the periodicity of cell-cycle
regulated genes. A & B compare rage and rage-cc’s accuracy
at estimating the periodicity of 104 known cell cycle-regulated
yeast genes identified by [26, 7, 23, 19, 2, 13, 25, 17, 6]. The pe-
riodicity of those genes is assumed to be 90 minutes. ∆ω is the
average difference (in minutes) between each program’s estimate
and 90 minutes. (C) compares rage and rage-cc’s accuracy at
estimating the periodicity of the 517 fibroblast genes identified in
[18]. The periodicity of those genes is assumed to be 16 hours.
∆ω is the average difference (in hours) between the program’s
estimate and 16 hours. (D) 3 of the 7 genes identified as circa-
dian in [27] are present in the fibroblast cell-cycle data set. rage

correctly estimates the frequency of those genes.

at estimating the frequency on the real microarray data.
Furthermore, on a list of 104 genes reported to be cell
cycle-regulated [26, 7, 23, 19, 2, 13, 25, 17, 6], rage

finds 6 of the 9 genes that were missed by [24]. Figures
3 A-C show some selected clusters of genes that rage

estimated as highly periodic.
As noted in Sec. 2.1, the human fibroblast data set

was collected over a 24-hour time period. While not a
true circadian experiment, it is known that the clock
genes are expressed in peripheral tissues such as fibrob-
lasts [4]. Hence, it should be possible to look for cir-
cadian genes in the same data set. This had not been
done before; we ran rage to try it. Our results were
compared to [27], who found circadian genes in cultured
rat fibroblasts, using (different) microarray experiments
and data. rage processed the human microarray fi-
broblast data set and found three out of the seven genes
(Cry1, Per2 and BMAL) that are close human homologs
of the rat circadian genes identified by [27]. In Table
2 D, rage’s estimate of periodicity for Cry1, Per2 and
BMAL is reported. rage successfully estimates the pe-
riodicity of these three genes as being circadian. Figure
3 D shows the expression profiles for Cry1, Per2 and
BMAL from the human fibroblast data set.

6 Conclusion

Genome-wide RNA expression time-series experiments
are an important source of biological information. The
discovery of periodic gene expression profiles is espe-
cially useful for the study of rhythmic processes like the
cell cycle and the circadian clock. The sheer volume
of data generated by microarray experiments prohibits
manual inspection of all the data. Therefore, algorithms
for identifying rhythmic genes are needed.

Fourier-based techniques are not yet appropriate for
microarray data because the number of time-points in
a typical experiment is too small to yield adequate fre-
quency resolution. Model-based techniques are there-
fore needed. Of the existing model-based techniques,
those using synthetic models, like CorrCos, are very
accurate, but are computationally inefficient. We have
presented a novel technique that is computationally much
more efficient. It gains its efficiency through the use of
a phase-independent search of frequency-space. Fur-
thermore, rage uses a true mathematical metric to
compute the similarity between gene expression pro-
files. The Hausdorff distance is a more accurate mea-
surement and therefore, rage tends to give more accu-
rate frequency and phase estimates on both simulated
and actual microarray data. The Hausdorff distance
may prove useful in other microarray data applications,
such as clustering. We are presently exploring its per-
formance in that application.
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A Appendix

A.1 Fourier Transform

The Nyquist frequency is the maximum frequency that
can be detected within a sampled signal. It is one half
the sampling rate. The minimum frequency that can
be detected in a sampled signal is determined by the
sampling interval. If the signal is collected over n time
units, then the lowest detectable frequency is 1 cycle
per n time units. The resolution of a spectrum is deter-
mined by the number of points collected. If there are
m points in the signal, the resulting spectrum will have
m equally spaced frequency intervals from the lowest
frequency to the Nyquist frequency.

An important assumption made by the Fourier Trans-
form is that the data is linearly sampled. The CDC15
data set, for example, is non-linearly sampled, making
the Fourier transform inappropriate. Of course, it is
sometimes possible to discard data points in order to
create a linearly-sampled signal, but as noted above,
eliminating data points reduces the resolution of the
resulting spectrum.

For example, the CDC15 data set was collected over
290 minutes. The sampling was non-linear. It is pos-
sible to create a linearly sampled data set of 15 time
points spaced 1 every 20 minutes. The Nyquist fre-
quency of this reduced set is one cycle per forty minutes
and the minimum frequency is one cycle per 290 min-
utes. Since there are 15 time points in the reduced
set, the resolution of the spectrum is one cycle per
(290 − 40)/(15 − 1) = 17.9 minutes. In other words,
two periodic functions must differ by one cycle per 17.9
minutes (or more) in order to be well-resolved (distin-
guishable) by the Fourier Transform.
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[24] used a variant of the Discrete Fourier Transform
(eq. 10).

X(ω) =
1
N

N−1∑
n=0

x(n)e
−2πiωn

N (10)

[24] notes “...the magnitude of the Fourier transform
was unstable for small variations of ω ...” and was
forced to average the results of multiple transforms in
order to come to a final frequency estimate. The issue
was primarily one of resolution in the actual signal. Not
surprisingly, the authors resorted to a hybrid approach
including non-spectral methods to estimate frequencies.
The final frequency and phase estimate was a combina-
tion of both spectral and non-spectral methods.

A.2 Autocorrelation

The autocorrelation is truly phase-independent for peri-
odic signals of infinite length. For finite-length signals,
the numeric error associated with signals differing only
in phase, is proportional to the difference in phase and
inversely proportional to the number of periods in the
signal. In our experiments on simulated data modeled
on the CDC15, CDC28 and fibroblast data sets, that
error represents approximately a 1% error in frequency
estimation. By contrast, the caculated frequency reso-
lution of the real data sets used in this paper represents
between a 15% and 25% error (see Sec. A.1). The noise
in the real data sets is also likely to mask the error
associated with the autocorrelation.

A.3 Simulated Data Results

A set of 6,500 simulated gene expression profiles were
generated. Of those, 1500 were periodic and the remain-
ing ones were aperiodic random signals. The elements
of that set are detailed in Table 3 A. The results of run-
ning rage and rage-cc on that data set are reported
in Table 3 B. rage outperforms rage-cc in accuracy
of phase and frequency estimation. That is, the av-
erage difference between the actual periodicity of the
synthetic gene and the estimated frequency is smaller
when using the Hausdorff metric. rage also has a lower
rate of false-positives. We conclude that the Hausdorff
metric is superior to the correlation coefficient.

Models Number % noise

Random 5000 N/A
10 ± 2-hr periodic 500 5%
15 ± 2-hr periodic 500 5%
24 ± 2-hr periodic 500 5%

(A)
rage rage-cc

Number 1498 2199
Mean ∆ frequency (hours) 2.1 8.5
Mean ∆ phase (hours) 2.2 15.7
False-Positives 6% 33%
False-Negatives 7% 1%

(B)

Table 3: (A) Synthetic Gene Expression Profiles. A
set of 6,500 signals were generated. 5,000 of these were
random signals. The remaining 1,500 were sinusoids.
The sinusoids were grouped into three categories, 10,
15 and 24 -hr periodic of 500 genes each. The actual
frequency of each sinusoid was randomly chosen at ±
2-hrs from the category. All genes were assigned ran-
dom phases. (B) Simulation Results. After running
rage and rage-cc on the simulated gene data, the ac-
curacy of the results were evaluated. Given a sorted
list of the confidence scores assigned to each gene, the
top 50% of the non-zero scorers were investigated. The
number of genes in that set is reported in the first row.
Since the actual phase and frequency of the simulated
genes were known, it is possible to compare the esti-
mated frequency and phases against their true values.
The 2nd and 3rd rows give the mean deviation of the
estimated frequency and phase from their true values.
False-positives indicates what percentage of the identi-
fied genes were from the set of random genes. False-
negatives indicates the percentage of the 1,500 periodic
genes were missed. Smaller numbers for false positives
and negatives are better.
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(A)

(B)

(C)

(D)

Figure 3: (A-C) Representative clusters from results on actual microarray data. (D) shows Circadian genes identified
by rage. (A) rage identified 561 genes from the CDC15 data set as 90 ± 10 minute periodic with a confidence
score ≥ 50%. 4 of these (YOR076C, YCR017C, YKL186C, YLL065W) are shown whose periodicities were judged
equal (80 minutes) with roughly equal phases (11 minutes). (B) rage identified 748 genes from the CDC28 data set
as 90 ± 10 minute periodic with a confidence score ≥ 50%. 9 of these (YKL045W, YNL283C, YNL309W,YJR112W,
YFR027W, YKL113C, YML060W, YOR373W, YPR076W) are shown whose periodicities were judged equal (81
minutes) with roughly equal phases (0 minutes). (C) rage identified 81 genes from the fibroblast data set as 16 ±
2 hr periodic with a confidence score ≥ 50%. 4 of these (W38444, N70172, W52203, AA044583) are shown whose
periodicities were judged equal (15 hours) with roughly equal phases (11 hours). (D) The expression profile of three
genes (Cry1, Per2 and BMAL) from the human fibroblast data set. These genes were identified as circadian by
rage. Cry1, Per2 and BMAL are close human homologs of rat circadian genes identified by [27].
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