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Abstract

Most existing data stream management projects focus on applications in which answers are generated at a fairly
high rate. We identify an important sub-class of data stream applications, Stream Anomaly Monitoring Systems
(SAMS), in which answers are generated very infrequently (i.e. the underlying SQL queries have extremely high
selectivity), but may generate very high-urgency alerts when they do match. We exploit this property to produce
significant optimization via an extension of the Rete algorithm, minimizing intermediate join sizes. A SAMS
monitors transactions or other structured data streams and generates alerts when anomalies or potential hazards
are detected. SAMS applications include but are not limited to potential financial crime monitoring, epidemiology
tracking for first signs of new outbreaks, and potential fraud analysis on stock market transaction streams.

An important secondary objective is to build the SAMS on top of mature DBMS technology, to preserve full
DBMS functionality and to permit full modularization of functions, guaranteeing cross-DBMS portability. The
difficult part is to accomplish this objective while maximizing performance. But, the very-high-selectivity nature
of SAMS applications permits us to achieve both objectives: efficiency and full DBMS compatibility.

We introduce the ARGUS prototype SAMS, which exploits very-high-selectivity via an extension of the Rete
algorithm on a DBMS. The primary Rete extensions in our implementation are User-Defined Join Priority and
Transitivity Inference. Preliminary experiments show the effectiveness and efficiency of the ARGUS approach
over a standard Oracle DBMS. We further investigate several new techniques for Rete optimization: computation
sharing, incremental aggregation, time window detection, and index selection.

Keywords: Stream Data, Continuous Query, Rete, Incremental Query Evaluation, Transitivity Inference,
Database.
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1 Introduction

As data processing and network infrastructure continue to grow rapidly, data stream processing quickly becomes
possible, demanding, and prevalent. A Data Stream Management System (DSMS) [58] is designed to process
continuous queries over data streams. Existing data stream management projects focus on applications in which
answers are generated at a fairly high rate. We identify an important sub-class of data stream applications, Stream
Anomaly Monitoring Systems (SAMS), in which answers are generated very infrequently (i.e. the underlying SQL
queries have extremely high selectivity). We exploit this property to produce significant optimization via an extension
of the Rete algorithm, minimizing intermediate join sizes. A SAMS monitors transaction data streams or other
structured data streams and alert when anomalies or potential hazards are detected. The conditions of anomalies
or potential hazards are formulated as continuous queries over data streams composed by experienced analysts. In
a SAMS, data streams are composed of homogeneous records that record information of transactions or events. For
example, a stream could be a stream of money transfer transaction records, stock trading transaction records, or
in-hospital patient admission records. A SAMS is expected to periodically process thousands of continuous queries
over rapidly growing streams at the daily volume of millions of records in a timely manner.

Examples motivating a SAMS can be found in many domains including banking, medicine, and stock trading.
For instance, given a data stream of FedWire money transfers, an analyst may want to find linkages among big
money transfer transactions connected to suspected people or organizations that may invite further investigation.
Given data streams from all the hospitals in a region, a SAMS may help with early alerting of potential diseases or
bio-terrorist events. In a stock trading domain, connections among suspiciously high profit trading transactions may
draw an analyst’s attention for further check whether insider information is illegally used. Comparing to traditional
On-Line Transaction Processing (OLTP), a SAMS usually runs complex queries with joins and/or aggregations
involving multiple facts and data records. Processing data streams dynamically and incrementally, a SAMS also
distinguishes itself from On-Line Analytic Processing (OLAP).

It has been well recognized that many traditional DBMS techniques are useful for stream data processing.
However, traditional DBMS’s by themselves are not optimal for stream applications because of performance concerns.
While a DSMS benefits from many well-understood DBMS techniques, such as operator implementation methods,
indexing techniques, query optimization techniques, and buffer management strategies, a traditional DBMS is not
designed for stream processing. A traditional DBMS is assumed to deal with rather stable data relations and
volatile queries. In a stream application, queries are rather stable, persistent or residential, and data streams are
rapidly changing. It is usual to expect a stream system to cope with thousands of continuous queries and high
data rates. Therefore, while utilizing traditional DBMS techniques, many general-purpose stream projects, such
as STREAM, TelegraphCQ, Aurora, and NiagaraCQ, are developing stream systems from scratch. However, for
specific applications, such as SAMS’s, it turns out that we can get away with an implementation on top of a DBMS.

ARGUS is a prototype SAMS that exploits the very-high-selectivity property with the adapted Rete algorithm,
and is built upon the platform of a full-fledged traditional DBMS. For illustration purpose in this paper, we assume
ARGUS runs in the FedWire Money Transfer domain. However, ARGUS is designed to be general enough to run
with any streams. In ARGUS, a continuous query is translated into a procedural network of operators: selections,
binary joins, and aggregations, which operates on streams and relations. Derived (intermediate) streams or relations
are conditionally materialized as DBMS tables with old data truncated to maintain reasonable table sizes. A node
of the network, or the operator, is represented as one or more simple SQL queries that perform the incremental
evaluation. The whole network is wrapped as a DBMS stored procedure. Registering a continuous query in ARGUS
involves two steps: create and initialize the intermediate tables, and install and compile the stored procedure.

In this paper, we first identify the unique characteristics of SAMS vs. general stream processing, and compare
the streams with other types of streams, such as network traffic data, sensor data, and Internet data. Keeping
the above observations and comparisons in mind, we then discuss alternative approaches to SAMS including those
explored in other stream projects, and justify our choice of the ARGUS system design. We then present a detailed
description of our Rete-based ARGUS design. We conclude with performance results and motivate future work.

2 Overview of Stream Anomaly Monitoring Systems
Figure 1 shows the SAMS dataflow. Data records in streams arrive continuously. They are matched against contin-

uous queries registered in the system, and are stored in the database. Old stream data are truncated to keep the
database manageable. Analysts selectively formulate the conditions of anomalies or potential hazards as continuous



queries, and register them with the SAMS. Registered queries are scheduled periodical executions over the data
streams, and return new results (e.g. alerts), if any.
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Figure 1: Data Flow of a Stream Anomaly Monitoring System

2.1 SAMS Characteristics

Formulating a query to capture anomalies or potential hazards buried in the data streams is a complex process. For
many cases, an anomaly or hazard is too complex to be accurately represented as a query, and/or an accurate form is
too expensive to evaluate. Therefore, an analyst usually formulates a continuous query that contains necessary but
possibly not sufficient conditions of anomalies or hazards. The results of the continuous query invites the analyst’s
further investigation the scope of which may be far beyond the capability of a declarative or procedural language.
For example, the analyst may search text information in libraries or on Internet to understand correlations between
a disease and patients’ geographies, or to know more about the relations between two organizations.

To formulate a continuous query, the analyst may start with a set of identified anomalies and hazards in historical
data. He may use clustering tools to inspect and analyze the data, and induce/hypothesize necessary conditions of
anomalies or hazards. To ensure that the induced conditions return reasonable results, the analyst may formulate
the conditions as an ad hoc query (an ad hoc query is a one-time query compiled and executed against a Database
snapshot), and run it against the historical data. Based on the returned results, the analyst may refine or rehypoth-
esize the conditions. Several trial and error runs may be needed to decide the proper set of the query conditions.
Therefore, a SAMS should support fast ad hoc query executions, and easy or automated conversion from an ad hoc
query to a continuous query is preferable to reduce the analyst’s query formulating effort.

Satisfaction of a continuous SAMS query is often rare, even if the query only tests necessary conditions of
anomalies or hazards. It is usual that a query returns no new results in days. This is because a query result
represents a potential anomaly or hazard, and by its very nature is rare. Also, to reduce postprocessing work by
human, an analyst refines the query to return as few false positive results as possible, namely formulates the query
with the maximum necessary conditions to filter out as many uninteresting data as possible. This characteristic
distinguishes SAMS from many other stream applications that work with sensor data, network traffic data, or Internet
data. By appropriately arranging the operators of the query plan, it is very likely to make every set of intermediate
results very small. Materialization of intermediate results is therefore a feasible approach to incremental evaluation



and computation sharing.

Many stream projects developed extensions to SQL to support rich sets of window specifications, such as
STREAM CQL [4] and TelegraphCQ’s for-loop constructs [14]. Comparing to these extensions, SAMS uses only
time-based sliding windows, which can be naturally formulated as query predicates over data attributes.

The purpose of introducing sliding windows is to convert the operations on unbounded streams to bounded
data sets. For many stream applications, stream tuples are timestamped at the time they are generated, and
the meaningful sliding windows are defined on the timestamp attribute. Due to various reasons, such as network
delays and hardware failures, the arrival of the data tuples of an input stream may not restrictively conform to
the timestamp order. Some stream systems relax the conformance to the data arrival order. The relaxation of the
conformance is measured by a slackness parameter, which can be defined as a number n, or a fixed length of time
T. When the slackness is defined as a number n, the system assumes that a tuple d generated at time 7 will never
arrive after more than n tuples that are later than 7 arrive to the system. In other words, the system ignores a
tuple d generated at time 7 if the number of tuples later than 7 that arrive before d exceeds the slackness parameter
n. Slackness can also be defined as a fixed length of time T. After the system sees a tuple generated later than
time 7 4+ T, the system assumes that no tuple generated at time 7 or earlier will arrive in the future. The slackness
parameter 7' is used in SAMS to decide when to truncate old stream data without fearing that any future data tuples
may join or aggregate with the discarded data. Data truncated from the stream will not participate in continuous
query evaluation any more, but a substantial portion or its totality may remain in the database for historical data
analysis. It is worth noticing that the SAMS slackness is different from other systems’ slackness notion, such as
Aurora’s slackness. Aurora’s slackness is a query-level parameter that tells query executor what slack data to be
ignored. SAMS slackness is a stream-level parameter. The value of SAMS slackness should conform to the stream
characteristics. For example, assume a stock trading transaction is timestamped at its closing time and it must
be reported to the system once it is closed, then setting the slackness T' = 2 days may be sufficient for truncation
purpose.

In terms of query semantics, a SAMS must support selection, join and aggregation. Support of selection and
join over aggregated values is also needed. We call selection and join over aggregated values post-aggregation. Post-
aggregation can be realized by defining views over aggregated values, and formulating the select-project-join query
over the views. For some stream applications, such as network traffic analysis and sensor data applications, data
aggregations are basic operations. In many cases, data items are first grouped and aggregated before filtering and
joining. Post-aggregation is prevalent in such systems. This is due to the fact that data statistics are very important
for decision making in those systems. The statistic feature of the data streams also justifies the employment of
approximation techniques when the system is overloaded. However, this is not the case for SAMS streams.

We summarize the SAMS characteristics as following:

e A SAMS must support fast ad hoc query executions over a large volume of historical data.

e Easy or automated conversion from an ad hoc query to a continuous query is preferable.

e Matching results for continuous queries is not typically frequent.

e A SAMS uses only application or user settable time-based sliding windows.

e SAMS slackness is a stream-level parameter.

e A SAMS does not require the output to be in strict time order.

e A SAMS supports the following SQL query semantics: selection, join, aggregation, and post-aggregation.
e Aggregation and post-aggregation are not prevalent in a SAMS.

e Approximation techniques are not employed in a SAMS.

e Continuous queries may number in the thousands or tens of thousands.

e Daily stream volumes may exceed millions of records.



2.2 SAMS Query Examples

We choose the FedWire money transfer domain for illustration and experiments in this paper. For this particular
application, there is a single data stream that contains money transfer transaction records, one record per transaction.
A relevant subset of the attributes of the stream is shown below

TRANID NUMBER(10), — transaction id, the primary key
TYPE_CODE NUMBER(4), — transfer type

TRAN_DATE DATE, — transaction date

AMOUNT NUMBER, — transfer amount

SBANK_ABA NUMBER(9), — sending bank ABA number
SBANK_NAME VARCHAR2(100), — sending bank name
RBANK_ABA NUMBER(9), — receiving bank ABA number
RBANK_NAME VARCHAR2 ), — receiving bank name

(100
ORIG_ACCOUNT  VARCHAR2(50), - originator account
BENEF_ACCOUNT VARCHAR2(50), - beneficiary account

We present several continuous query examples, and formulate the queries in SQL language. Post-aggregation is
realized by defining views (subqueries are more expressive in terms of specifying correlated queries).

Example 1 The analyst is interested if there exists a bank, which received an incoming transaction over 1,000,000
dollars and has performed an outgoing transaction over 500,000 dollars on the same day.

The query can be formulated as:

SELECT rl.tranid rtranid, r2.tranid stranid,
rl.rbank_name rbank_name,
rl.tran_date rtran_date,
rl.amount ramount, r2.amount smount

FROM transaction rl, transaction r2

WHERE rl.rbank_aba = r2.sbank_aba AND
to_char(rl.tran_date, 'YYYYMMDD’)
= to_char(r2.tran_date, 'YYYYMMDD') AND
rl.amount > 1000000 AND
r2.amount > 500000;

Example 2 For every big transaction, the analyst wants to check if the money stayed in the bank or left it within
ten days.

The query can be formulated as:

SELECT rl.tranid rtranid, r2.tranid stranid,
rl.rbank_name rbank_name,
rl.benef_account benef _account,
rl.tran_date rtran_date,
r2.tran_date stran_date,
rl.amount ramount, r2.amount smount

FROM transaction rl, transaction r2

WHERE rl.rbank_aba = r2.sbank_aba AND
rl.benef_account = r2.orig_account AND
rl.tran_date <= r2.tran_date AND
rl.tran_date + 10 >= r2.tran_date AND
rl.amount > 1000000 AND

r2.amount = rl.amount;

Example 3 For every big transaction, the analyst again wants to check if the money stayed in the bank or left it
within ten days. However he suspects that the receiver of the transaction would not send the whole sum further at



once, but would rather split it into several smaller transactions. The following query generates an alert whenever the
receiver of a large transaction (over $1,000,000) transfers at least half of the money further within ten days of this
transaction.

The query can be formulated as:

SELECT r.tranid tranid, r.rbank_aba rbank_aba,
r.bene f_account benef _account,
AV G(r.amount) ramount,
SUM (s.amount) samount

FROM transaction r, transaction s

WHERE r.rbank_aba = s.sbank_aba AND
r.bene f_account = s.orig_account AND
r.itran_date <= s.tran_date AND
s.tran_date <= r.tran_date 4+ 10 AND

r.amount > 1000000
GROUP BY r.tranid, r.rbank_aba, r.benef _account
HAVING SUM (s.amount) > AV G(r.amount) * 0.5;

Example 4 Suppose for every big transaction of type code 1000, the analyst wants to check if the money stayed
in the bank or left within ten days. An additional sign of possible fraud is that transactions involve at least one
intermediate bank. The query generates an alert whenever the receiver of a large transaction (over $1,000,000)
transfers at least half of the money further within ten days of this transaction using an intermediate bank.

The query can be formulated as:

SELECT rl.sbank_aba sbank, rl.orig_account saccount,
rl.rbank_aba rbank, rl.benef_account raccount,
rl.amount ramount, rl.tran_date rdate,
r2.rbank_aba ibank, r2.benef _account iaccount,
r2.amount iamount, r2.tran_date idate,
r3.rbank_aba frbank, r3.benef_account fraccount,
r3.amount framount, r3.tran_date frdate

FROM transaction rl, transaction r2, transaction r3

WHERE r2.type_code = 1000 AND
r3.type_code = 1000 AND
rl.type_code = 1000 AND
rl.amount > 1000000 AND
rl.rbank_aba = r2.sbank_aba AND
rl.benef _account = r2.orig_account AND
r2.amount > 0.5 x rl.amount AND
rl.tran_date <= r2.tran_date AND
r2.tran_date <= rl.tran_date + 10 AND
r2.rbank_aba = r3.sbank_aba AND
r2.benef_account = r3.orig_account AND
r2.amount = r3.amount AND
r2.tran_date <= r3.tran_date AND

r3.tran_date <= r2.tran_date + 10;

Example 5 Check whether there is a bank, having incoming transactions for more than $100,000,000 and outgoing
transactions for more than $50,000,000 on one particular day.

The formulated query is composed of three SQL statements. The first two are view definitions, and the last one
is the query on the views.



CREATE VIEW  rbank_money AS

SELECT rl.rbank_aba rbank_aba,
rl.tran_date tran_date,
SUM (rl.amount) rsum

FROM transaction rl
GROUP BY rl.rbank_aba, rl.tran_date
HAVING SUM (rl.amount) > 100000000;

CREATE VIEW  sbank_money AS

SELECT r2.sbank_aba sbank_aba,
r2.tran_date tran_date,
SU M (r2.amount) ssum

FROM transaction r2
GROUP BY r2.sbank_aba, r2.tran_date
HAVING SUM (r2.amount) > 50000000;

SELECT r.rbank_aba rbank_aba,

s.sbank_aba sbank_aba,

r.tran_date tran_date,

T.TSUM TSUIM,

S.S5UMm SsuUM
FROM rbank_money r, sbank_money s
WHERE r.rbank_aba = s.sbank_aba AND

ritran_date = s.tran_date;
Example 6 Get the transactions of Citibank and Fleet in a period of time.

The query can be formulated as:

SELECT rl.tranid tranid,
rl.sbank_name sbank_name,
rl.tran_date tran_date,
rl.amount amount

FROM transaction rl

WHERE (rl.sbank_name =' Citibank (New York State) OR
rl.sbank_name =" Fleet Bank') AND
rl.tran_date >= to_date(’20021120', 'YYYYMMDD’) AND
rl.tran_date <= to_date('20021130', 'YYYYMMDD');

Example 7 The analyst is interested whether Citibank has conducted a transaction on a particular day with the
amount exceeding 1,000,000 dollars.

The query can be formulated as:

SELECT rl.tranid tranid,
rl.sbank_name sbank_name,
rl.tran_date tran_date,
rl.amount amount

FROM transaction rl

WHERE rl.sbank_name =" Citibank (New York State) AND
to_char(rl.iran_date, 'YYYYMMDD'") =" 20021126’ AND
rl.amount > 1000000;



3 Designs of Stream Anomaly Monitoring Systems

Many stream systems use an extension to SQL as their query language, such as STREAM CQL [4], and Tele-
graphCQ’s extension of SQL [14] with for-loop constructs. The purpose of the extensions is to support rich window
specifications over streams. Some projects, such as Aurora, use a procedural query language. Aurora’s query
language is a GUI tool to specify a query as a network of connected operator boxes.

A stream system may also face the problem of resource management and plan scheduling. Depending on im-
plementation, some stream systems simplify and decouple resource management, scheduling, and query execution.
ARGUS is such an example. Resource management in ARGUS is handled by the underlying DBMS and the schedul-
ing is simplified as pushing stream data through the shared query plan network.

3.1 Alternative Approaches to SAMS

In terms of implementation methodology, there are two distinctive approaches, DBMS-based and workflow-oriented.
We compare the stream systems in this classification dimension.

Workflow-oriented approaches employ procedural query languages to specify continuous queries over streams.
Aurora [1][12] is such an example. An Aurora query is specified as a network of connected operator boxes over
streams. Without compilation and optimization, the network represents an execution plan ready to be executed.
Aurora performs optimization on the network by rearranging subnetworks when it is necessary. With such an
approach, a user has extensive control over the query execution logic, and may create optimized network for multiple
queries (exploiting computation sharing to the extent possible). This approach requires users to have very detailed
knowledge of the system and to devote considerable manual effort. When there are many queries, a user is less likely
to create an optimized network, and the optimization must be left to the system.

A DBMS-based approach uses a declarative query language, usually an extension to SQL, to specify continuous
queries over streams. Such an approach allows a user to focus only on query semantics, and not to worry about how
a query is executed. Although a user may manually modify an execution plan, the practice is not common. It is up
to the DSMS to optimize the query execution plan, and share computation among multiple queries.

A DSMS developed with DBMS-based approach looks like an extension to a DBMS, and employs many DBMS
techniques. How the DBMS techniques are applied in a DSMS distinguishes two sub-approaches of this methodol-
ogy. One sub-approach uses well-understood DBMS techniques at the source code level. This sub-approach may
either extend and adapt a DBMS code base to stream processing architecture, such as TelegraphCQ [14][46], or
implementing the whole system from scratch including well-known DBMS algorithms, such as STREAM [58][7].
The other sub-approach uses full-fledged DBMS as a platform upon which a stream processing module is built. This
approach decouples optimization and execution between the underlying DBMS and the stream processing module.
The platform sub-approach is employed by two earlier systems, Alert [67] and Tapestry [78], and also by ARGUS.

The clear advantage of the platform approach is the reusability of well-honed DBMS systems and their trans-
portability across platforms. Many processing issues are handled by the underlying DBMS, such as access path
selection, join methods, and resource management, etc. The platform approach leads to fast implementations with
possible loss of some flexibility. The platform approach may not be a good general choice, but for SAMS, it is a very
logical and appropriate one.

For a SAMS, the platform approach provides ready-made powerful ad hoc query support over historical data,
and a baseline stream system for comparison. SQL, the ad hoc query language, can also serve as the continuous
query language. Thus, an ad hoc query, tested and refined by analysts over historical data, can be registered as a
continuous query without modification. Many DBMS’s provide procedural language extensions to SQL for handling
complex logics [26][66]. Such advances allow incremental evaluation schemes, such as Rete [27], to be implemented
inside a database.

With various query rewriting and optimization techniques, many rarely-matched queries can be compiled to
execution plans with small intermediate result tables. SAMS’s assumption of rare matching justifies the choice of
intermediate result materialization. No intensive requirement on Quality of Service for each query and requirement
of no approximation justify the decoupling of incremental execution and sharing from resource management and
scheduling. Resource management is indirectly controlled by optimization of the incremental execution scheme and
sharing to minimize intermediate result sizes.

Alert [67] and Tapestry [78] are two other platform-based systems. Alert targets an active database, and uses
triggers to check the query conditions, and modified cursors to fetch satisfied tuples. This method may not be



efficient to handle high data rates and the large number of queries in a stream processing scenario. Tapestry is
closer to ARGUS. Tapestry’s incremental evaluation scheme is also wrapped in a stored procedure. However, its
incremental evaluation is realized by rewriting the query with sliding window specifications on the append-only
relations (streams). A sliding window specifies the period of time from the last time that the query is executed to
the current time. Data tuples accumulated during this period of time are the new ones that need to be processed.
This approach becomes inefficient when the append-only table is very large. Although adding an index on the
timestamp attribute to the table can speed up the query execution significantly, maintenance overhead of the index
on the fast changing tables may be too high to make the performance acceptable. Also, the nature of the rewritten
query makes the computation sharing among multiple queries very difficult.

3.2 Adapted Rete Algorithm

Figure 2 shows the ARGUS system architecture. The new data elements are appended to database tables. The
continuous queries are converted to Rete networks with ReteGenerator, and installed in the database. The Rete
networks run periodically on new data arrivals, store and update intermediate results, and generate alerts when any

continuous query matches the new data.

Intermediate Tables

Storing
Rete Networks

Rete Network
Generator

Identified Threats ﬂ

Figure 2: The Architecture of the ARGUS Profile System

The Rete match algorithm was developed by Charles L. Forgy [27] for use in production system interpreters.
It is an efficient method for matching a large collection of patterns to a large collection of objects. Because of its
efficiency, many commercial rule-based production systems use Rete for pattern matching. Rete can be adopted for
incremental query evaluation. A Rete network can be viewed as a tree that data streams flow through and join on
the internal nodes. TREAT [55] is similar to Rete except that it joins the data streams all together at one node,
and thereby omits the internal join nodes. Readers are referred to [27] for details on the Rete algorithm. Here, we
demonstrate how we adapt Rete algorithm to incremental query evaluation.

Let n and m denote the old data sets, and An and Am the new much smaller incremental data sets, respectively.
By Relational Algebra, a selection operation o on data n + An is equivalent to o(n + An) = o(n) + o(An). o(n) is
the set of old results that is materialized. To evaluate incrementally, only the computation on An portion is needed
(o(An)). Similarly, for a join operation X on (n 4+ An) and (m + Am), we have (n + An) X (m + Am) = n X
m+AnXm+n X Am+ An X Am. n X m is the set of old results that is materialized. Only the computations on

10



An X m +n X Am + An X Am portion are needed, which can be decomposed to three joins. When An and Am
are small compared to n and m, the time complexity of the incremental join is linear to O(n + m).

Consider Example 4 in Section 2. A satisfied result set contains joins of three tuples. The first tuple is the
originating transaction that the original sender transferred at least $1,000,000 to an intermediate account. The
second is an intermediate transaction in which the money is transferred from the intermediate account to the
destination account. And the third is a transaction in which at least half of the money is distributed to another
account. Each tuple in the result set has to satisfy a set of intra-tuple features (selection predicates). They are
Pattern 1:

rl.type_code = 1000 AND
rl.amount > 1000000
Pattern 2:
r2.type_code = 1000
and Pattern 3:
r3.type_code = 1000

respectively.
Other conditions are inter-tuple features, or join predicates. Particularly, following are the inter-tuple features
that join the first two tuples:

r2.sbank_aba AND
r2.orig_account AND

rl.rbank_aba
rl.benef_account

r2.amount > 0.5 %xrl.amount AND
rl.tran_date < r2tran_date AND
r2.tran_date < rl.tran_date + 10
and the following are that join the last two tuples:
r2.rbank_aba = r3.sbank_aba AND
r2.benef_account = r3.orig-account AND
r2.amount = r3.amount AND
r2.tran_date < 7r3.tran_date AND
r3.tran_date < 7r2.tran_date + 10

Figure 3 shows a Rete network of the query. In this Rete network, data tuples that pass Pattern 1 and Pattern
2 are joined first, then the results are joined with data tuples that pass Pattern 3. Joining Pattern 2 and Pattern 3,
then Pattern 1 is also logically correct. However, the different orders of joins could affect performance dramatically
as observed with traditional query optimization techniques.

Figure 4 shows the dataflow of a possible logical plan for the query which could be generated by a conventional
DBMS query compiler. Figure 5 shows the dataflow of the Rete network. The logical plan and the Rete network
have similar data access paths. However, in the Rete network, only necessary computations on the new data are
carried out. The intermediate results are materialized in the database tables.

Now we use a small data set shown in Table 1 to illustrate how the Rete network works as new data continuously
arrive. Suppose that the data records (tuples) arrive in the order of the ¢tranid. At Time 0, there are 2 records, and
the Rete network is in the status shown in Figure 6. Note that if no new data satisfy at a certain node, then none
of its succeeding nodes needs to be evaluated. In this case, no data satisfies the node joining Pattern 1 and Pattern
2, so its succeeding nodes does not need to be evaluated. At Time 1, two new records arrive. The Rete network is
updated as in Figure 7. At Time 2, one more new record arrives, as shown in Figure 8, it triggers the generation of
an alert.

A continuous query may contain multiple SQL statements and a single SQL statement may contain unions of
multiple SQL terms. Multiple SQL statements allow an analyst to define views. Each SQL term is mapped to a
sub-Rete network. These sub-Rete networks are then connected to form the statement-level sub-networks. And the
statement-level sub-networks are further connected based on the view references to form the final query-level Rete
network.

In summary, a Rete network performs incremental query evaluation over the delta part (new stream data) and
materializes intermediate results. The incremental evaluation makes the execution much faster. However, there
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Figure 3: A Rete Network for Example 4

r1.rbank_aba = r2.sbank_aba
r1.benef_account = r2.orig_account

DataTable . r2.amount > r1.amount*0.5
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8| r2.tran_date <= r3.tran_date
= r3.tran_date >= r2.tran_date+10

Figure 4: An Sample Logical Query Execution Plan for Example 4

is a potential problem when any materialized intermediate table is very large, which deteriorates the incremental
evaluation performance severely. Only when the intermediate tables are fairly small, can the incremental evaluation
scheme show consistent big advantages. Fortunately, since queries are not expected to be satisfied frequently, there
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r1.rbank_aba = r2.sbank_aba
r1.benef_account = r2.orig_account
r2.amount > r1.amount*0.5
r1.tran_date <= r2.tran_date
r2.tran_date >= r1.tran_date+10

DataTable

Amount>1000000

DataTable

r2

r2.rbank_aba = r3.sbank_aba
r2.benef_account = r3.orig_account
r2.amount = r3.amount
r2.tran_date <= r3.tran_date
r3.tran_date >= r2.tran_date+10

Type_code£1000 Type_codes1000

Figure 5: The Data Flow of the Rete Network for Example 4

tran | type | tran amount sbank rbank orig benef

id code | date name name account | account
1 1000 | 12/01/02 | 400,000 PNC Fleet 1000001 | 1000009
2 1000 | 12/02/02 | 1,200,000 | PNC Citibank | 3000001 | 2000001
3 1000 | 12/03/02 | 305,000 Citibank | Fleet 3000001 | 2000009
4 1000 | 12/05/02 | 800,000 Citibank | Chase 2000001 | 4000001
5 1000 | 12/06/02 | 800,000 Chase Citizen’s | 4000001 | 5000009

Table 1: A Small Data Set to show how the Rete Network works

are usually highly selective conditions that make the intermediate tables fairly small. We investigated several effective
ways of reducing the sizes of the intermediate tables. We will also discuss the cases in which intermediate tables can
not be reduced to small sizes.

4 ARGUS Profile System Design

As shown in Figure 2, the ARGUS Profile System contains two components. One is the database created on the
Oracle DBMS, and the other is the Rete construction module, ReteGenerator. A profile is translated into a Rete
network by ReteGenerator. Then the Rete network is registered in the database. The registration includes creating
the intermediate tables, initializing the tables based the historical data, and storing and compiling the Rete network
wrapped in the stored procedure. The database schedules periodical runs of the active Rete networks against new
data.

4.1 Database Design

A simplified ARGUS database schema is shown in Figure 9. New data arrives continuously and is appended to the
data table. Do_queries() is a system level procedure that finds all the active queries from QueryTable in the order of
their priorities, and executes them one by one. If any query is satisfied, an alert is generated. The job of running the
procedure Do_queries() is scheduled periodically. QueryTable records query information, one entry per query. Each
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Figure 6: The Status of the Rete Network for Example 4 at Time 0. Records in the intermediate tables are
represented by their tranids.
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Figure 7: The Status of the Rete Network for Example 4 at Time 1. Records in the intermediate tables are
represented by their tranids.
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Figure 8: The Status of the Rete Network for Example 4 at Time 2. Records in the intermediate tables are
represented by their tranids.

entry contains the query ID, the procedure name to call, the query priority, and a boolean flag indicating whether
the query is active or not. Only active queries are executed in a scheduled run. The query priorities set the order in
which the query procedures are called. For example, a procedure with priority 1 precedes a procedure with priority
10.

4.2 Restrictions on the SQL

To apply the Rete algorithm, we impose some restrictions to the SQL queries. Therefore, the set of queries that
the Rete networks support is a subset of the standard SQL language. Nevertheless, the subset is rich enough for a
SAMS.

The first restriction is that the selection conditions of an SQL statement should be in a relaxed Disjunctive
Normal Form. This means that the disjunctive selections should be specified by UNION unless the disjunctive
predicates operate on a single table. For example, for the following SQL:

SELECT rl.a

FROM tablel r1, table2 r2

WHERE (rl.a <72.b OR rl.a >r2.c) AND
(rl.d <1 OR rl.e > 2);

The Rete algorithm expects the input of the equivalent form:

15



Data
Table

Q1

Q3

\/—

Rete Networks & Intermediate Tables

N

L / Scheduler

Query

N Do_queries Table

Stream Anomaly Monitoring

Figure 9: ARGUS Database Design

SELECT
FROM
WHERE

UNION
SELECT
FROM
WHERE

Note that the disjunctive form of (rl.d <1 OR rl.e > 2) is allowed in an SQL because all the conditions in the
form involve only one table. However, the other disjunctive form, (rl.a < r2.b OR rl.a > r2.c), is expected to be

rl.a
tablel rl, table2 r2
rl.a <r2.b

AND

(rl.d <1 OR rl.e > 2)

rl.a
tablel rl, table2 r2
rl.a > r2.c

AND

(rl.d <1 OR rl.e > 2);

realized with UNION of two SQLs because the conditions in the form involve multiple tables.

For the Rete algorithm, selection predicates on a single table, even with disjunctions, are easily evaluated in one
step. However, disjunctive selection predicates over multiple tables are not easy. By pushing up disjunctions to the
top level, we restrict each sub-Rete network in a conjunctive form, and results are unioned in the last step.

The second restriction is that the current system doesn’t support multiple-way joins. It will reject an SQL
statement with purely multiple-way joins, which is rare in real applications. For example, the following multiple-way

join statement is not accepted by the ReteGenerator:

SELECT

FROM

WHERE

rl.a

tablel r1, table2 r2, table3 r3

rl.a+r2.b =r3.c

But it accepts the following equivalent statement:
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SELECT rl.a

FROM tablel r1, table2 r2, table3 r3

WHERE rl.e=r2.e AND
r2.f=r3.f AND
rl.a+r2.b =r3.c

4.3 Translating SQL Queries into Rete Networks

A query formulated by an analyst is a set of SQL statements. The corresponding Rete network is a database stored
procedure translated by ReteGenerator. Appendix A shows a sample translation of the query in Example 4 into a
Rete network wrapped in an Oracle stored procedure.

To simulate the topological connections of the Rete network, each node is associated with a Rete Flag, and
maintains a list of Rete Flags of its children nodes (children flag list). A Rete Flag indicates whether the node needs
to be updated or not. The default value of a Rete Flag is false. It is set to true only if any children flag is true which
indicates that the update to the associated table is necessary. If none of children Rete Flags is true, then the node
doesn’t need to be updated.

To install a Rete network, we need both the procedure and a set of auxiliary DDL statements that create the
intermediate tables and initialize the tables to contain the results on historical data. The initialization is necessary
when the old data is present. Appendix B shows the corresponding DDL statements for the Rete network of Example
4.

ReteGenerator contains three components: the SQL Parser, the Rete Topology Constructor, and the Rete Coder.
The SQL Parser parses a set of SQLs to a set of parse trees, the Rete Topology Constructor rearranges the connections
of nodes in a parse tree to obtain the desired Rete network topology, and the Rete Coder traverses the reconstructed
tree, and generates the Rete network code in Oracle PL/SQL language.

The SQL Parser takes the query (a set of SQLs) as input, and outputs a set of parse trees. Figure 10 shows the
structure and the data flow of the parser. It contains an SQL parsing module and a lexer module. The SQL parsing
module is a Perl package generated by a compiler compiler Perl-byacc [20] based on an SQL grammar [48]. The
lexer module is also a Perl package [82]. The lexer is called by the SQL parsing module to tokenize the input query.
The stream of tokens is fed to the SQL parsing module to generate the parse trees. The tools we used, namely,
Perl-byacc, Perl Lexer, and the SQL grammar, were all from open sources, and were modified to meet our special
needs.

4.3.1 Rete Topology Construction

Rete Topology Constructor constructs the network topology based on the selection predicates and join predicates.
Only the where_clause subtree decides the Rete Topology. Figure 11 shows the schematic subtree of the query in
Example 4. Note that this subtree is pretty flat with all conditions on the same level, which is purposely done during
parsing for easy reconstruction of the Rete network.

Rete Topology Constructor, a Perl function, goes through the following three steps to construct the Rete topology.

First, predicates are classified based on the tables they use. For the subtree in Figure 11, the classifications are
shown in Figure 12.

Second, the classified sets of the predicates are sorted based on the number of tables that the sets contain:

[r1, r2, r3, (rl, r2), (r2, r3)]

Each set corresponds to a node in the reconstructed subtree. From now on, we will use the term node to refer a
classified set of predicates.

Finally, the new subtree is reconstructed bottom-up. We first look for a pair of single-table nodes for the merge
step. A pair of single-table nodes can be merged if there is a joint-table node joining just these two tables. Merge
continues until all nodes are merged into a single node. Figure 13 shows the reconstructed subtree.

4.3.2 Aggregation and Union

An SQL statement may contain groupby/having clauses. If it also contains a where_clause, the Rete network is
generated for the where_clause and the output of the Rete network is stored in a table, which will be the input to
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Figure 10: Building the SQL Parser

r1.type_code =1000

r2.type_code =1000

r3.type_code =1000
r1.amount >1000000

r1.rbank_aba = r2.sbank_aba

r1.benef_account = r2.orig_account

Where) 4 r2.amount > r1.amount*0.5 ‘
clause/ r1.tran_date <= r2.tran_date ‘

r2.tran_date <= r1.tran_date+10 ‘

r2.rbank_aba = r3.sbank_aba ‘

r2.benef_account = r3.orig_account ‘

r2.amount = r3.amount ‘

r2.tran_date <= r3.tran_date ‘

r3.tran_date = r2.tran_date+10 ‘

Figure 11: The where_clause parse tree for Example 4

groupby /having clauses. We tried two methods for handling groupby/having clauses. The first method, implemented
in our system, does the operations of grouping and having always on the whole input table, and finds the difference
between the current results and the previous results. The difference is considered as the incremental results. The
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rl:
rl.type_code = 1000
rl.amount > 1000000

r2:
r2.type_code = 1000

r3:
r3.type_code = 1000

rl, r2:
rl.rbank_aba = r2.sbank_aba
rl.benef _account = r2.orig_account
r2.amount > 0.5 x rl.amount
rl.tran_date <= r2.tran_date
r2.tran_date <= rl.tran_date + 10

r2, r3:

r2.rbank_aba = r3.sbank_aba
r2.benef_account = r3.orig_account
r2.amount = r3.amount
r2.tran_date <= r3.tran_date
r3.tran_date <= r2.tran_date + 10

Figure 12: Condition Classifications for Example 4

Where
clause

r2.rbank_aba = r3.sbank_aba
r2.benef_account = r3.orig_account
r2.amount = r3.amount
r2.tran_date <= r3.tran_date
r3.tran_date = r2.tran_date+10

/

r1.rbank_aba = r2.sbank_aba
r1.benef_account = r2.orig_account
r2.amount > r1.amount*0.5
r1.tran_date <= r2.tran_date
r2.tran_date <= r1.tran_date+10

r3.type_code =1000

/\

r1.type_code =1000 ~
1.amount >1000000 | | 2-type_code =1000

Figure 13: The reconstructed where_clause parse tree for Example 4
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second method extracts the records whose groups need updates from the input table, regroups these records with
new data records, and applies the having conditions. The rationale for the second method is that by grouping only
the groups that are changed, we save the computations on unchanged groups. However, experiments show that the
second method is rather slow, probably because a large portion of groups need to be updated in our data sets. The
overhead introduced are not effectively compensated by the computation reduction.

A query may contain multiple SQL statements and a single SQL statement may contain unions of multiple SQL
terms. When there are no group/having clauses in any term of a query, a Rete network is constructed bottom-up as
usual. If there are groupby/having clauses somewhere in a UNION term or in a view, Rete sub-networks are con-
structed from all the branches bottom-up until a groupby clause is encountered. The presence of the groupby_clause
voids the incremental evaluation. The first groupby_clause in each branch is a split point. The operations preceding
the split point are handled incrementally by Rete networks as usual, and the operations succeeding the split point
are always handled on whole inputs, and no materialized results are maintained.

Example 3 and Example 5 in Section 2.2 demonstrate the two different places of groupby/having clauses in queries.
Appendix C shows the generated procedure code for Example 5. Because the views only have groupby/having clauses
and no where_clause, there is no Rete network generated for this query. The procedure code is almost the same
as the original query except that the code for detecting differences between the new results and the old results are
generated. For this special case, we don’t have a way to use Rete. The query in Example 3 contains a where_clause,
so a Rete network is generated for it. The output of the Rete network is the input to the groupby/having clauses.
Appendix D shows the generated procedural code.

5 Improvements on Rete Network

Various optimization techniques can be used to minimize intermediate result sizes. We have tried and integrated two
methods into the current ReteGenerator: User-Defined Join Priority, and Transitivity Inference. Our experiments
show that each can have significant effects on performance.

5.1 User-Defined Join Priority

Join priority specifies, among all possible join orders, which should be followed. This is very similar to the reordering
of join operators in traditional query optimization. To see why this priority makes difference, let’s again look at
Example 4. Assume we have 100000 records, type_code = 1000 is a non-selective condition with selectivity factor of
90%(90% of the records meet the condition), and amount > 1,000,000 is a selective condition with selectivity factor
of 0.1%. We also assume type_code is independent of amount. Therefore, the numbers of the records in the three
intermediate tables corresponding to the three sets of single-table selection predicates are 100000 * 0.9 % 0.001 = 9,
100000 * 0.9 = 90000, and 100000 x 0.9 = 90000, respectively. According to the joint-conditions, we can either merge
the first two single-table nodes, or the last two. We expect much less intermediate results for merging the first
two, and we should do this merge first. However, without the knowledge of the table statistics, it is hard for the
ReteGenerator to choose the best join order, and thus is left to the analyst. The ReteGenerator accepts user-defined
join priority. It assumes that the order of the tables appearing in the from_clause of an SQL is the order of joining.
Applying query optimization techniques based on cost models for Rete network construction is left as one piece of
our future work.

5.2 Transitivity Inference

Transitivity Inference explores the transitivity property of comparison operators, such as >, <, and =, to infer
hidden selective single-table conditions from a set of existing conditions. For illustration, let’s again look at Example
4. We have the following conditions:

rl.amount > 1000000 and
r2.amount > rl.amount*0.5 and
r3.amount = r2.amount

rl.amount > 1000000 is very selective. Actually, by the transitivity property of operator >, r1.amount > 1000000
and r2.amount > rl.amount % 0.5 imply a selective condition on r2: r2.amount > 500000.
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Further, with the condition 73.amount = r2.amount, another selective condition on r3 can be derived: r3.amount >
500000.

These inferred conditions have significant impact on performance. The first level intermediate tables, filtered
by the highly selective single-table selection predicates, are made very small, which saves many computations on
subsequent joins. Section 6 gives details on the performance analysis with respect to Transitivity Inference.

Currently, we implemented a simple version of the transitivity inference in the Rete Topology Constructor.
Among many derivable cases, the current module only derives several special yet commonly-seen cases. Given a
pair of conditions, if one condition contains exactly one column a, which we call Single-Table Condition with Single-
Column (STCSC), and the other contains exactly two columns a, and b from two different tables, which we call
Joint-Table Conditions with Single-Columns (JTCSC), then the inference module will try to infer some predicate
on b. Just for convenience, in the following text, STCSC and JTCSC also refer to the parse trees of the conditions.

The inference module is comprised of two parts. The first part builds up the data structures from the existing
conditions. The second part loops through the data structures to look for the hidden conditions. Figure 14 shows
the data structures and work flow of the inference module.

[JTCID1,JTCID2, .) ra H¥ ra {\ stc1 | [ stCc2 | - ‘
+ b
JTCSCHash ANN STCSCHash
STCSCList
JTCID1 {\ Jtc1 | [ Jrc2 | ‘ (r1.2,2.b, )
JTCHash

Figure 14: Data Structures for Transitivity Inference

JTCHash is a hash table that stores all the JTCSCs. The key of JTCHash is a numerical ID, and the value is
a JTCSC. STCSCHash is a hash table that stores all the STCSC. The key of the STCSCHash is a column name,
and the value is the list of STCSCs that contain the key column. JTCSCHash is a hash table that stores all the
JTCSCs. The key of the JTCSCHash is a column name, and the value is the list of IDs of JTCSCs that contains
the key column. STCSCList is the list containing all the keys of STCSCHash.

Following is the inference algorithm.

1. Pop up a column r1l.a from the STCSCList.

2. If there is an entry rl.a in JTCSCHash, we do transitivity inference on each pair of the matching conditions:
JTC1 and STCI.

If a hidden condition C on column r2.b is inferred from JTC1 and STC1,

— Add C to the where_clause parse tree.
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— Add C to STCSCHash, and add r2.b to STCSCList. This allows inferred conditions to serve for further
inference.

— Remove JTCI from JTCHash. This step avoids endless cycle of inferring the same conditions. If we can’t
find the entry for a given a JTCSC ID in JTCHash, then we simply skip this JTCSC.

3. Repeat 1. and 2. until STCSCList is empty.

A transform function is developed to facilitate inference. Given a pair of STCSC STC1, and JTCSC JTCI1, the
function transforms the conditions into the following format:

STC1:  rl.a>=< fi(c)
JTCL: rl.a >=< fo(r2.b)

where f1(c) is a function of constant ¢, and f2(r2.b) is a function of r2.b. >=< is the comparison operator, which
could be one of the following: <, <, >, >, =. Based on the operator, a hidden condition on r2.b may or may not
be inferred.

6 Experimental Results

6.1 Experiment Setting

The experiments were conducted on the prototype ARGUS on an HP computer with 1.7G CPU and 512M RAM,
running Windows XP.

6.1.1 Data Sets

The data sets are derived from a database of synthesized FedWire money transfer transactions. The database D
contains 320006 records. The timestamps of the data spans 3 days.

For the experiments, we split the data in two ways, and the most of the experiments were conducted on both
data conditions:

e Data Condition 1 (Datal). Old data: the first 300000 records of D. New data: the remaining 20006 records
of D. This data condition provides alerts for most of the queries on testing.

e Data Condition 2 (Data2). Old data: the first 300000 records of D. New data: the next 20000 records of D.
This data condition doesn’t generate alerts for most of the queries on testing.

6.1.2 Queries

We used the seven queries described in Section 2.2 for the experiments. To test the effect of Transitivity Inference,
we also ran queries of Example 2 and Example 4 in variant forms. Query variants with respect to Transitivity
Inference differ with each other in two orthogonal dimensions. First, the original SQL query may or may not contain
the manually added hidden conditions. Second, the Rete network may be generated with or without the Transitivity
Inference module turned on.

Table 2 summarizes the features and settings of each query or query variant used in the experiments. Each query
or query variant is assigned a unique query ID. Q1-Q7 are for the queries of the seven examples in a common setting:
no hidden condition is added to the original queries, and Transitivity Inference module is turned on. Q8-Q11 are the
variants of Example 2 and Example 4. Q8 and Q10 are variants of Example 2 and Example 4 whose Rete networks
are generated without Transitivity Inference. Q9 is the variant of Example 4 whose original SQL query is enhanced
with hidden conditions. Q11 is a variant of Example 4 whose Rete network is slightly different. This variant will be
described later with respect to Partial Rete generation.

For each query, we run the original SQL query and the Rete network on the two data conditions. When running
the original SQL queries, the data is the combination of the old data part and the new data part. Note that
Rete networks need initialization which takes some time. However, the initialization is a one-time operation. Rete
networks provide incremental new results, while original SQL queries only provide whole sets of results.
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QueryID | Example | Having | CondAdd | UseTI iff
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
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Table 2: Experimental Queries. “Having”: whether the query involves any aggregation functions. “CondAdd”:
whether hidden conditions that can be inferred by Transitivity Inference module are manually added to the original
SQL query or not. “UseTT”: whether the Rete network is generated with the Transitivity Inference module turned
on. “Diff”: whether there are hidden conditions that the Transitivity Inference may infer for the query. If there
are, then we may expect performance difference between two Rete networks generated from a same query with
one network uses Transitivity Inference and the other not. “Having” and “Diff” reflect the properties of a query.
“CondAdd” and “UseTT” reflect settings for Rete network generation.

6.2 Results Interpretation

Table 3 summarizes the results of running the queries on the two data conditions. To be clearer, relevant information
in Table 3 is also depicted in charts when we present detailed interpretations in later subsections.

Queryld | Rete SQL Alerts | Rete SQL Alerts
Execution | Execution | Datal | Execution | Execution | Data2
Time(s) Time(s) Time(s) Time(s)
Datal Datal Data2 Data2

Q1 1 14 Y 1 12 Y

Q2 1 20 Y 1 19 N

Q3 16 20 Y 16 19 N

Q4 3 45 Y 3 31 N

Q5 14 14 Y 15 17 Y

Q6 1 6 N 1 7 N

Q7 1 6 Y 6 N

Q8 18 20 Y 17 19 N

Q9 2 20 Y 12 N

Q10 44 45 Y 27 31 N

Q11 38 45 Y 17 31 N

Table 3: Execution Times of the Queries on Datal and Data2. “Rete Execution Time(s)”: the time in seconds to
run the Rete network of the query on the specified data condition. “SQL Execution Time(s)”: the time in seconds
to run the original SQL query on the specified data condition. “Alerts”: whether the running of the query on the
specified data conditions generates an alert or not.

Figure 15 and Figure 16 show the results in charts for Q1-Q7. For most of the queries, Rete networks with
Transitivity Inference gain significant improvements over directly running the SQL queries.

6.2.1 Aggregation

Q3 and Q5 are the two queries involving aggregations. Although they both have groupby/having clauses, they are
slightly different to each other. Q3 has a where_clause before the grouping operator, while Q5 doesn’t have any
where_clause before any grouping operator. Therefore, Q3 has a Rete network, but Q5 doesn’t.

Q5 is a post-aggregation query. We can not apply Rete on such queries for incremental evaluations. In our
system, the generated procedure reevaluates the query on the whole data set, and then finds the difference between
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the whole new results and the previous results. As shown in Figure 15 and Figure 16, it is not surprising that the
Rete version (no actual Rete network inside) of Q5 doesn’t gain improvement over the SQL query.

For Q3, the where_clause is mapped to a Rete network. The output table of the network is the input to the
subsequent grouping operator. As shown in Figure 15 and Figure 16, the Rete network of Q3 does slightly better
than the SQL query. It is important to note that the where_clause specifies a join on a small table (after selection)
and a large table (the original data table). This operation is the major time consumer in the Rete network because
the join involves a large table. Here the benefits of incremental evaluation on only small incremental parts are not
achieved.

6.2.2 Transitivity Inference

Example 2 and Example 4 are the two queries that benefit from Transitivity Inference. Figure 17 and Figure 18
show the execution times for these two examples respectively. In the legends of the figures,

o Rete TI stands for the Rete network generated with Transitivity Inference,
e Rete Non-TI stands for the Rete network generated without Transitivity Inference,
e SQL Non-TT stands for the original SQL query,

e and SQL TI stands for the original SQL query with hidden conditions manually added.

The inferred condition amount > 500000 is very selective with selectivity factor of 0.1%. Clearly, when Tran-
sitivity Inference is applicable and the inferred conditions are selective, a Rete network runs much faster than its
non-TT counterpart and the original SQL.

It is interesting to note in Figure 18 that SQL TI (Q9), the SQL query of Example 4 with manually added
conditions, runs significantly faster than the original one. This means that transitivity inference is not applied in
the DBMS query optimization, and actually can be a potential query optimization method for traditional DBMS
queries.

6.2.3 Partial Rete Generation

In previous subsections, we see that the execution time of a Rete network without Transitivity Inference may be
close to the original SQL query (Q8 and Q10). There are queries that Transitivity Inference is not applicable and
single-table selection predicates for some of the join tables are not selective or do not exist at all. For such queries,
we have to do joins with large tables.

In ARGUS, if single-table selection predicates are not present, the Rete network will not materialize the entire
stream table, which significantly saves both space and execution time. However, when there are any single-table
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Figure 17: Effect of Transitivity Inference. Query Figure 18: Effect of Transitivity Inference. Query
execution times of Example 2 on Datal and Data2. execution times of Example 4 on Datal and Data2.

selection predicates present, even highly non-selective ones, the Rete network will materialize the selection results.
Because materialization on large intermediate results requires many I/O operations, it deteriorates the performance
of a Rete work significantly. In such cases, pipelined operation is preferable than materialization.

Assume Transitivity Inference is not applicable by turning the module off, Q10 of Example 4 is such a query.
The two single-table selection predicates (r2.type_code = 1000, r3.type_code = 1000) on two of the three join tables
are highly non-selective, the sizes of the intermediate results are close to that of the original data table. As shown
in Figure 18, the performance gain by the Rete network is very limited.

If ReteGenerator is aware of table statistics, such a materialization can be skipped. We tested a Rete network
(Q11) with the two materializations replaced by the internal pipeline operation provided by the DBMS. We call this
Partial Rete Generation. As this technique is not automatically implemented yet, the Rete network is generated
by generating a Rete network with the SQL query that the non-selective conditions are removed, so corresponding
intermediate results are not materialized, then the non-selective conditions are added manually back to the generated
Rete codes.

Figure 19 shows the execution times of the Partial Rete network, the Rete network, and the original SQL. It is
clear that in case of non-selective conditions present, Partial Rete is superior to the original Rete network.

50
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- 40
35 || [0 Partial Rete

30 || (Q11)
25 | H Rete (Q10)

20
15 1 H SaL (Q10, Q11)

10 +—

Execution Time(s

Data1 Data2

Figure 19: Effect of Partial Rete Generation. Comparing the execution times of Partial Rete, Non-Partial Rete, and
SQL for Example 4 on Datal and Data2.
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6.2.4 Using Indexes

All the experiments discussed so far were conducted WITHOUT any secondary indexes on the original stream data
table. Indexing can speed up the execution of equal or range predicates on the tables of large cardinalities. However,
it also imposes heavy maintenance overheads [9][60][47] upon frequent updates to the stream table which is essential
for a SAMS.

To study the effect of indexing on ARGUS, we conducted experiments with two indexes created on the stream ta-
ble. One was created on a pair of attributes: (rbank_aba, benef_account), and the other on another pair: (sbank_aba,
orig-account). The choice of the indexes is based on the observation that indexing attributes are the join attributes
of the queries in our experiments.

Here we discuss the results of running queries Q3 and Q4 over Datal. Table 4 shows the execution times of
running Q3 and Q4 over Datal with Rete and SQL under two conditions: index is present and index is not present.
Figure 20 shows the same results in charts. When indexes are present, both queries’ SQLs are executed mush faster.
But the two Rete networks response differently. The performance of Q3 Rete network is boosted significantly with
the indexes, and Q4 Rete network doesn’t gain any benefits from the indexes. The different responses of the Rete
networks of Q3 and Q4 to the indexes become clear when we recall the following. Q3 doesn’t have selective single-
table selection predicates for one of the join tables, so the Rete network has to join with the large original data table.
When the table is equipped with the indexes on join attributes, the Rete network takes advantage of the indexes.
For Q4, with Transitivity Inference, each join table is filtered with highly selective single-table selection predicates
and is very small.

It is worth mentioning the index maintenance overhead. When there are the indexes, inserting 20006 records
(the new data part of Datal) takes about five minutes. When there is no index, inserting the same amount of data
takes 20 seconds. Using indexes is a tradeoff balancing the benefits of joining with large tables and the cost of the
index maintenance. It should be an empirical decision. A guideline is that if there are many queries whose Rete
networks have to join with large original tables, so that the benefits exceed the maintenance cost, we should create
appropriate indexes.

QueryID | Rete Index(s) | SQL Index(s) | Rete Non-Index(s) | SQL Non-Index(s)
Q3 16 19 2 10
Q1 3 31 3 14

Table 4: Comparing Index and Non-Index. Showing Execution Times in Seconds of Running Query Q3 and Q4 on
Datal under conditions: 1) Rete with Index, 2) SQL with Index, 3) Rete without Index, and 4) SQL without Index.
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Figure 20: Comparing Index and Non-Index on Datal. Rete and SQL of Query Q3 and Q4 were run against Datal
under two conditions: indexes present or not.
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7 Related Work

Besides Rete [27], and TREAT [56], the Match Box algorithm|[62], and the LEAPS algorithm[57] are the two other
algorithms used for pattern matching in production systems.

Gator networks [37] are applied in the Ariel database system to speed up condition testing for multi-table triggers.
Gator is a generalization of the Rete and TREAT algorithms. It is a non-binary bushy tree, while Rete is a binary
bushy tree (All Rete networks shown in [37] are left-deep trees, which is not necessarily the case in ARGUS). [37]
shows that optimized Gator networks normally have a shape which is neither pure Rete nor pure TREAT, but
an intermediate form where some but not all possible inner joins (5 nodes) are materialized. In the subsequent
work [38], Gator is applied into a scalable trigger processing system, in which predicate indexing is explored to
provide computation sharing among common predicates and efficient detection for necessary computations upon
data changes. The work on Gator networks is more general than our work with respect to employing non-binary
discrimination networks with cost model optimizations. However, [37] explores only single-tuple update a time,
doesn’t consider aggregation operators, and is used for trigger condition detection instead of stream processing.

Traditional query optimization techniques [30], particularly the techniques that search the optimal execution
plans [68][41] based on cost models [63][40], provide valuable insights to continuous query processing.

The Stanford STREAM project focuses on developing a general-purpose Data Stream Management System
(DSMS) [7]]58][8][6] that supports a declarative query language and can cope with high data rates and thousands of
continuous queries. To exploit well-understood DBMS techniques, as well as new stream processing techniques for a
general-purpose DSMS, to the extent possible, the STREAM group investigates various aspects of stream process-
ing, particularly, 1) the stream query language, CQL, which is an extension of SQL to support stream semantics,
2)structures of query plans, accounting for plan sharing and approximation techniques, 3) resource management,
and operator scheduling, 4) approximation techniques aiming at graceful performance degradation under limited
resources, and 5) constraint exploiting to reduce memory overhead. ARGUS doesn’t have explicit resource manage-
ment and operator scheduling modules, whose functionalities are realized by the underlying DBMS system. However,
ARGUS exploits techniques on query optimization, plan sharing, and data stream constraints to reduce resource
requirement, particularly memory requirement. ARGUS’s query language is SQL, which is sufficient for a SAMS.
CQL defined 3 types of sliding windows on streams, time-based windows, tuple-based windows, and partition-based
window. A SAMS uses only time-based windows, which can be easily formulated as SQL predicates. In a ARGUS
query plan, represented as a stored procedure, contains only operators and materialized intermediate results, but
no queues. ARGUS intermediate results are stored in DBMS tables, and correspond to STREAM’s synopses. To
allow incremental evaluation, each ARGUS intermediate result storage comprises two parts, the main part that
stores intermediate results for the historical data, and the delta part that stores the intermediate results for the new
data. In STREAM, the synopses are always up to the current state, and the data changes are encoded as insertions
and deletions to the queues. Bearing the similarities in the query languages, query plan structures, and constraint
exploiting methods, the main differences between ARGUS and STREAM include: 1) ARGUS exploits full-fledged
DBMS facilities, 2) ARGUS has no queues in query plans, 3) ARGUS uses SQL as the query language, 4) ARGUS
can process historical data when continuous queries are registered after input streams have generated data tuples.
STREAM doesn’t not process historical data. 5) ARGUS is a prototype SAMS, and STREAM is a general-purpose
DSMS.

Berkeley TelegraphCQ [14][46] [39] is a general-purpose DSMS that stresses adaptive query processing. The design
is based on their prototyping Telegraph project, which builds an Adaptive Dataflow Architecture for supporting a
wide variety of data-intensive, networked applications. The core concept of Telegraph’s adaptive processing is the
Eddy [5]. An Eddy performs scheduling of tuples by routing them through the operators that make up the query
plan. The query plan is dynamically re-ordered to match current system conditions. This is accomplished by Eddies’
tuple routing policies, with some overhead, that attempt to discover which operators are fast and selective, and those
operators are scheduled first. Telegraph’s components and development were described in various papers. These
include Fjords [52], the inter-module communication API; Flux [72], the pluginable module to support distributed
processing; SteM [65], the temporary repository of tuples to store state information during the plan execution;
CACQ [53], the modification of Eddies to execute multiple queries simultaneously by having the Eddy execute a single
super query corresponding to the disjunction of all the individual queries; and PSoup [15], the extension of CACQ by
treating data and queries symmetrically to allow new queries to access historical data. The approach of TelegraphCQ
is adapting the architecture of PostgreSQL, a DBMS code base, to enable shared processing of continuous queries
over streaming sources, and then adding the continuous query processing functionalities which have been studied in
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the Telegraph project (TelegraphCQ Executor and Wrapper, etc.) to the system. TelegraphCQ’s query language is
an extension of SQL with a for-loop construct to support window specifications. Because TelegraphCQ explores a
very different approach to the query processing, the two systems, ARGUS and TelegraphCQ), are different in terms
of many aspects including incremental query evaluation and computation sharing. TelegraphCQ’s query plan is a
set of operators and SteMs surrounding an Eddy which performs tuple routing. ARGUS query plan is a procedural
push-based network. TelegraphCQ’s computation sharing is achieved by allowing one Eddy to run a group of similar
queries to share SteMs and filters. ARGUS plan sharing will be achieved by rewriting query plans to share the
materialized intermediate results.

Aurora [1][12] is a general-purpose DSMS that stresses reasonable system response time. Users may define various
Quality of Service (QoS) specifications for queries that describe the expectations of service quality degradation when
the system is overloaded. QoS specifications guide Aurora to do appropriate operator scheduling, storage manage-
ment, load shedding, and approximation, etc. Different to other systems, Aurora uses a procedural query language
with a GUI interface to allow users to specify continuous queries as networks of connected operator boxes. Aurora
dynamically optimizes the networks by identifying and optimizing their subnetworks. The main differences between
ARGUS and Aurora include: 1) ARGUS exploits full-fledged DBMS facilities, 2) ARGUS uses the declarative query
language, SQL, 3) ARGUS is a prototype SAMS.

OpenCQ [50], and WebCQ [51] at Georgia Tech, and NiagaraCQ [19] [73] at Wisconsin are continuous query sys-
tems for Internet databases. All these systems carry out incremental query evaluations over data changes. OpenCQ
stresses the support for distributed computing with flexible coupling modes, and the support for INSERT, DELETE;,
and UPDATE operations to data sources instead of the append-only operations. WebCQ addresses the scalability
issue over a large number of queries with Trigger Grouping [77], which is similar to predicate indexing [38]. Nia-
garaCQ features multiple query optimization by incrementally grouping and regrouping queries of similar structures.
Grouped queries share the materialized intermediate results. ARGUS’s computation sharing scheme is going to be
implemented in the similar way. Different to above systems, 1) ARGUS is assumed to process homogeneous data
tuples instead of XML files, 2) ARGUS supports more complex query semantics, particularly grouping, aggregation,
and post-aggregation, 3) ARGUS is designed to process high-volume append-only data streams with rare matching.
A lot of efforts have been put on to reducing resource requirement, and let the underlying DBMS to realize the
opertors, scheduling, etc.

Alert and Tapestry are mentioned and compared with ARGUS in Section 3. Active database systems [34][85][13][54][67]
allow users to specify, in the form of rules, actions to be performed upon changes of database states.

Gigascope [22] is a stream database system designed for network applications, such as traffic analysis and router
configuration analysis. Special optimization techniques are applied, such as even pushing query operations into net-
work interface cards. To turn block operators into non-blocking stream operators, Gigascope made some restrictions
on joins and aggregations. Tribeca [75] is an earlier stream database system for network traffic analysis. Tribeca’s
executor is tuned for sequential I/O and the optimizer is focused toward memory and processor limitations rather
than join ordering and access path selection.

Tukwila [43] is an adaptive query processing system for Internet applications. It incorporates event-condition-
action rules to detect unexpected conditions, such as failed sources, and can return to the query optimizer to
re-optimize the remainder of a query plan. Other work includes Hancock and Tangram. Hancock [21] computes
salient features (signatures) from stream data efficiently. Tangram [45] was implemented in Prolog.

There is a large body of work related to continuous query processing over data streams. Query scrambling [80]
reschedules the operations of a query during its execution on-the-fly. XJoin [79], Ripple Join [35] are non-blocking
join operators developed for stream processing. Rate-Based query optimization [83] aims at maximizing the output
rate of query plans based on the rate estimates of the streams in the query evaluation tree rather than the sizes of
intermediate results. [49] provides a formalism on incremental query evaluation over data changes.

There are several database research directions related to streaming data processing. Materialized view mainte-
nance [10][44][31][64][28] concerns the techniques of refreshing the views when base relations are changed. Sequence
databases [70][69][71] model the logical ordering of sequence data, and applying the information to the optimization
of sequence data queries. Time-series databases [25] are interested in the behaviors of subsequences in a stream
of time-ordered data items. Temporal databases [74][24][86][87][11][29] stress on maintaining temporal versions of
databases and their evolution. Index selection [2][16][81][36][33][17][84] targets automatic database tuning. Process-
ing of queries on streaming XML data [32][59][3][61][23] mostly explores variant finite state automata (FSA) to find
matches in XML files efficiently.
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8 Conclusion and Future Work

For a Stream Anomaly Monitoring System that monitors thousands of queries when data continue to arrive rapidly,
scalable system design and quickest responses are the key features to success. In this paper, we described our efforts
on the ARGUS Profile System. The main approach is the combination of the Rete’s incremental query evaluation
techniques and the traditional DBMS. We implemented two improvements, namely, Transitivity Inference, and User-
Defined Join Priorities. The preliminary results show that this approach is effective and efficient comparing to pure
traditional DBMS approaches. Here, we outline several future work directions that we will explore.

8.1 Rete Network Optimization

Query optimization based on cost models has been well studied since the seminal paper [68]. [37] studied applying
the cost model to Gator. Similar techniques can be applied to Rete network optimization. Partial Rete Generation
in Section 6, and User-Defined Join Priorities in Section 5, are special cases of optimization. There are two main
differences between the Rete optimization and the traditional query optimization. Rete optimization preserves the
goal of optimizing the join ordering as in the traditional optimization, but sheds off the concern for choice of access
methods (A Rete Optimizer doesn’t need to consider the choice between merge join or nested-loop join, etc.). Instead,
it faces the choice of materializing intermediate results or not. We will study appropriate cost models and implement
the optimization module with the cost models.

8.2 Computation Sharing

It is observed that when thousands of queries are present in a system, many share common predicates. Sharing
computation of the common predicates among these queries will significantly reduce the system response time [38],
[19], [51]. As observed in [19], computation sharing is easier in a materialization-based processing model, such as
Rete networks, than in a pipeline-based model. Predicate indexing [38] and sentinel grouping [51] are efficient ways
for computation sharing. We will study similar techniques to allow computation sharing among Rete networks.

8.3 Incremental Aggregation

Aggregation operators can be classified as sort-based or non-sort-based. A sort-based aggregation operator, such as
MEDIUM, PERCENTILE, and RANK, requires the whole group of data items to be sorted. A non-sort-based aggre-
gation operator, such as SUM, COUNT, MIN, MAX, AVERAGE, and VARIANCE, can be incrementally evaluated
by preserving sufficient statistics. For example, by preserving the SUM and COUNT, up-to-date AVERAGE can
be calculated without accessing the historical data. We will implement incremental aggregate evaluation techniques
into Rete networks for the non-sort-based operators.

8.4 Using Time Windows

To handle data streams of potentially unbounded sizes, we have to apply time windows to the data streams. In our
system, the old data beyond a large threshold time window is discarded. However, a time window is not reluctantly
accepted to overcome system limitations, but also provides desired query semantics [7]. Like in many stream
processing applications, in a SAMS, recent data is more important and relevant, for example, a query monitoring
endemic disease outbreaks. For all the join queries we have studied so far, there are explicit window specifications.
We will study the techniques to identify the largest time window in a set of queries, so the old data beyond the time
window can be discarded even it is within the system threshold.

8.5 Enhancing Transitivity Inference

We have shown that Transitivity Inference is an efficient improvement when it is applicable to highly selective
predicates, which we assume is not rare in a SAMS. There are various directions to enhance the inference capabilities.
Certain kinds of inference on function-present predicates require knowledge of function monotone properties. We
will add such inference power by exploring monotone properties of commonly-used functions. We will also consider
the kinds of inference involving multiple attributes across multiple tables.
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8.6 Index Selection

As shown in Section 6, choice of indexing is a tradeoff balancing the benefits of query evaluation and the cost
of maintenance. Guided by appropriate cost models, it is possible to automate the decision on whether indexes
should be used or not and automate the optimal index selections. Inspired by research on automatic index selection
[2][16][81][36][33][17][84], we will study and hope to develop a cost model that maximize the utility of indexes in the
premise of a SAMS. This model is a function of three sets of parameters: indexes, a set of resident queries, and the
data streams. As a prerequisite, we need to formalize the characteristics of the queries and the behaviors of data
streams, such as the arrival rates of data, data statistics, and the effect of data truncation based on time windows.

Our work on ARGUS Profile System continues. By exploring more techniques including above mentioned ones, we
hope that we will make ARGUS a more scalable and faster SAMS, and provide some insights and experience for
stream data processing.

A A Sample Rete Network Procedure for Example 4

Following is a sample Rete procedure for Example 4

CREATE OR REPLACE PROCEDURE QUERY_1() AS
bP1 BOOLEAN;
bP2 BOOLEAN;
bP3 BOOLEAN;
bP4 BOOLEAN;
bP5 BOOLEAN;
bP4.1 BOOLEAN;
bP4.2 BOOLEAN;
bP4_3 BOOLEAN;
bP5.1 BOOLEAN;
bP5_.2 BOOLEAN;
bP5_3 BOOLEAN;

BEGIN

bP1 := FALSE;
bP2 := FALSE;
bP3 := FALSE;
bP4 := FALSE;
bP5 := FALSE;

bP4_1 := FALSE;
bP4_2 := FALSE;
bP4_3 := FALSE;
bP5_1 := FALSE;
bP5_2 := FALSE;
bP5_3 := FALSE;
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INSERT INTO Q1_V1

SELECT tranid, rbank_aba, benef_account, amount, tran_date
FROM TEMP_TRANSACTION t1;

WHERE ¢1.type_code = 1000 AND

tl.amount > 1000000;

bP1 := SQL%FOUND;

INSERT INTO Q1-V2

SELECT tranid, sbank_aba, orig_account,
amount, tran_date, rbank_aba, benef_account
FROM TEMP_TRANSACTION t2;
WHERE ¢2.type_code = 1000;

bP2 := SQL%FOUND;

INSERT INTO Q1-V3

SELECT tranid, sbank_aba, orig_account, amount, tran_date
FROM TEMP_TRANSACTION t3;

WHERE t3.type_code = 1000;

bP3 := SQL%FOUND;

IF (bP2) THEN

INSERT INTO Q1_V4

SELECT vl.tranid tranid_1, v2.tranid tranid_2,
v2.rbank_aba, v2.benef_account, v2.amount, v2.tran_date
FROM Q1_V1 vl, temp_Q1_V2 v2

WHERE vl.rbank_aba = v2.sbank_aba AND
vl.benef _account = v2.orig_account AND
vl.amount x 0.5 < v2.amount AND
vl.tran_date <= v2.tran_date AND
vl.tran_date + 10 >= v2.tran_date;

bP4_1 := SQL%FOUND;

END IF;

IF (bP1) THEN

INSERT INTO Q1_V4

SELECT vl1.tranid tranid_1, v2.tranid tranid_2,
v2.rbank_aba, v2.benef_account, v2.amount, v2.tran_date
FROM temp-Q1_V1 vl, Q1_V2 v2

WHERE vl.rbank_aba = v2.sbank_aba AND

vl.benef _account = v2.orig_account AND

vl.amount x 0.5 < v2.amount AND

vl.tran_date <= v2.tran_date AND

vl.tran_date + 10 >= v2.tran_date;
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bP4.2 := SQL%FOUND;
END IF:

IF (bP1 AND bP2) THEN

INSERT INTO Q1_V4

SELECT vl1.tranid tranid_1, v2.tranid tranid_2,
v2.rbank_aba, v2.benef_account, v2.amount, v2.tran_date
FROM temp-Q1_V1 v1, temp_-Q1-V2 v2
WHERE vl.rbank_aba = v2.sbank_aba AND
vl.benef _account = v2.orig_account AND
vl.amount x 0.5 < v2.amount AND
vl.tran_date <= v2.tran_date AND
vl.tran_date + 10 >= v2.tran_date;

bP4.3 := SQL%FOUND;

END IF;

bP4 := bP4_1 OR bP4.2 OR bP4._3;

IF (bP4) THEN

INSERT INTO Q1_V5

SELECT v4.tranid_1, v4.tranid_2, v3.tranid tranid_3
FROM Q1.V3 v3, temp_Q1_V4 v4

WHERE v3.sbank_aba = vd.rbank_aba AND
v3.orig_account = vd.benef_account AND
v3.amount = vd.amount AND

v3.tran_date >= vd.tran_date AND
vd.tran_date <= vd.tran_date + 10;

bP5_1 := SQL%FOUND;

END IF;

IF (bP3) THEN

INSERT INTO Q1_V5

SELECT v4.tranid_1, v4.tranid_2, v3.tranid tranid_3
FROM temp-Q1-V3 v3, Q1_V4 v4

WHERE v3.sbank_aba = vd.rbank_aba AND
v3.orig_account = vd.benef _account AND
v3.amount = vd.amount AND

v3.tran_date >= vd.tran_date AND
vd.tran_date <= vd.tran_date + 10;

bP5_2 := SQL%FOUND;

END IF;

IF (bP3 AND bP4) THEN
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INSERT INTO Q1.V5

SELECT v4.tranid_1, v4.tranid_2, v3.tranid tranid_3
FROM temp-Q1-V3 v3, temp_-Q1-V4 v4

WHERE v3.sbank_aba = vd.rbank_aba AND
v3.orig_account = vd.benef_account AND
v3.amount = vd.amount AND

v3.tran_date >= vd.tran_date AND

vd.tran_date <= vd.tran_date + 10;

bP5.3 := SQL%FOUND;

END IF;

bP5 := bP5_1 OR bP5_2 OR bP5_3;
IF (bP5) THEN
DBMS_OUTPUT.PUT_LINE(‘Alert!!!");

END IF;

END;

)
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B Sample Rete Network DDLs for Example 4

Following DDLs are for the Rete network of Example 4 shown in Appendix A.

CREATE TABLE Q1_V1 AS

SELECT tranid, rbank_aba, benef_account, amount, tran_date
FROM tranl.transaction

WHERE type_code = 1000 AND

amount > 1000000;

CREATE TABLE Q1.V2 AS

SELECT tranid, sbank_aba, orig_account, amount,
tran_date, rbank_aba, benef_account

FROM tranl.transaction

WHERE type_code = 1000;

CREATE TABLE Q1.V3 AS

SELECT tranid, sbank_aba, orig_account, amount, tran_date
FROM tranl.transaction

WHERE type_code = 1000;

CREATE TABLE Q1.V4 AS

SELECT v1.tranid tranid_1, v2.tranid tranid_2,
v2.rbank_aba, v2.benef_account, v2.amount, v2.tran_date
FROM Q1_V1 v1, Q1_-V2 v2

WHERE vl.rbank_aba = v2.sbank_aba AND

vl.benef _account = v2.orig_account AND

vl.amount x 0.5 < v2.amount AND

vl.tran_date <= v2.tran_date AND

vltran_date + 10 >= v2.tran_date;

CREATE TABLE Q1_V5 AS

SELECT v4.tranid_1, v4.tranid_2, v3.tranid tranid_3
FROM Q1.V3 v3, Q1_.V4 v4

WHERE v3.sbank_aba = v4d.rbank_aba AND
v3.orig_account = vd.bene f _account AND
v3.amount = vd.amount AND

vd.tran_date >= vd.tran_date AND

vd.tran_date <= vd.tran_date + 10;
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C A Sample Rete Network Procedure for Example 5

Following is the sample Rete network procedure for Example 5

CREATE OR REPLACE PROCEDURE QUERY_3 AS
bP2 BOOLEAN;

BEGIN
bP2 := FALSE;

INSERT INTO Q3-V2

SELECT r.rbank_aba rbank_aba, s.sbank_aba sbank_aba,
r.tran_date tran_date, r.rsum rsum, s.ssum ssum

FROM rbank_money_q3 r, sbank_money_q3 s

WHERE ((r.rbank_aba = s.sbank_aba) AND

(r.tran_date = s.tran_date));

INSERT INTO temp-Q3-V1
SELECT *

FROM Q3_V2

MINUS

SELECT *

FROM Q3_V1;

bP2 := SQL%FOUND;
IF (bP2) THEN
DELETE Q3_V1;
INSERT INTO Q3_V1
SELECT *

FROM Q3_V2;
DELETE Q3_.V2;
END IF;

IF (bP2) THEN
DBMS_OUTPUT.PUT_LINE(‘Alert!!l");
END IF;

END;

b

D A Sample Rete Network Procedure for Example 3

Following is the sample Rete network procedure for Example 3

CREATE OR REPLACE PROCEDURE QUERY _4 AS
bP1 BOOLEAN;

bP2 BOOLEAN;

bP2_1 BOOLEAN;

bP2_2 BOOLEAN;

bP2_3 BOOLEAN;

bP3 BOOLEAN;

bP4 BOOLEAN;

varl INTEGER;

BEGIN
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bP1 := FALSE;
bP2 := FALSE;
bP2_1 := FALSE;
bP2_2 := FALSE;
bP2_3 := FALSE;
bP3 := FALSE;
bP4 := FALSE;

SELECT COUNT(*) INTO varl
FROM TEMP_TRANSACTION;
IF (varl > 0)

THEN

bP1 := TRUE;

END IF:

IF (bP1) THEN

INSERT INTO temp_Q4_V2

SELECT rl.amount u_r__amount_4, rl.rbank_aba u_r_rbank_aba__2,
rl.tran_date + 10 u_r__tran_date__10__12, rl.tranid u_r__tranid__1,
rl.benef_account u_r__benef_account__3, rl.tran_date u_r__tran_date__10
FROM TEMP_TRANSACTION r1

WHERE r1l.amount > 1000000;

bP3 := SQL%FOUND;

END IF;

IF (bP1) THEN

INSERT INTO temp_Q4_V1

SELECT rl.sbank_aba u_s__sbank_aba__8, rl.amount u_s__amount__6,
rl.orig_account u-s__orig_account__9, rl.tran_date u_s__tran_date__11,
r2.u_r__amount_4 u.r__amount_4, r2.u_r_rbank_aba_2 u_r_rbank_aba__2,
r2.u_r_tran_date__10 + 10 u_r__tran_date__10__12,

r2.u_r_tranid__1 u_r_tranid__1, r2.u_r__benef_account__3 u_r__benef_account__3,
r2.u.r_tran_date__10 u_r__tran_date__10

FROM TEMP_TRANSACTION rl1, Q4_V2 r2

WHERE (r2.u_r__rbank_aba_2 = rl.sbank_aba AND

r2.u_r_benef _account__3 = rl.orig_account AND

r2.u_r_tran_date__10 <= rl.tran_date AND

rl.tran_date <= r2.u_r_tran_date__10 + 10);

bP2_1 := SQL%FOUND;

END IF;

IF (bP3) THEN
INSERT INTO temp_Q4_V1
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SELECT rl.sbank_aba u_s_sbank_aba__8, rl.amount u_s__amount__6,
rl.orig_account u_s__orig_account__9, rl.tran_date u_s__tran_date__11,
r2.u_r__amount_4 ur__amount_4, r2.u_r_rbank_aba_2 u_r_rbank_aba__2,
r2.u_r__tran_date__10 + 10 u_r__tran_-date__10__12,

r2.u_r_tranid__1 u_r_tranid__1, r2.u_r_benef_ account__3 u_r__benef_account__3,
r2.u_r_tran_date__10 u_r__tran_date__10

FROM temp_Q4_V2 r2, transaction_copy rl

WHERE (r2.u_r__rbank_aba-_2 = rl.sbank_aba AND

r2.u_r_benef _account_3 = rl.orig_account AND

r2.u_r_tran_date__10 <= rl.tran_date AND

rl.tran_date <= r2.u_r_tran_date__10 4 10);

bP2_2 := SQL%FOUND;

END IF;

IF (bP1 AND bP3) THEN

INSERT INTO temp_Q4_V1

SELECT rl.sbank_aba u_s__sbank_aba__8, rl.amount u_s__amount__6,
rl.orig_account u.s__orig_account__9, rl.tran_date u_s__tran_date__11,
r2.u_r__amount_4 u._r__amount_4, r2.u_r_rbank_aba_2 u_r_rbank_aba__2,
r2.u_r_tran_date__10 + 10 u_r__tran_date__10__12,

r2.u_r_tranid__1 u_r_tranid__1, r2.u_r__benef_account__3 u_r__benef_account__3,
r2.u.r_tran_date__10 u_r__tran_date__10

FROM TEMP_TRANSACTION rl, temp-Q4_V2 r2

WHERE (r2.u_r__rbank_aba_2 = rl.sbank_aba AND
r2.u_r_benef_account__3 = rl.orig_account AND

r2.u_r_tran_date__10 <= rl.tran_date AND

rl.tran_date <= r2.u_r_tran_date__10 + 10);

bP2.3 := SQL%FOUND;

END IF;

bP2 := bP2_1 OR bP2_2 OR bP2_3;

IF (bP3) THEN
INSERT INTO Q4.-V2
SELECT *

FROM temp_Q4_V2;
END IF;

IF (bP2) THEN
INSERT INTO Q4_V1
SELECT *

FROM temp_Q4_V1;
END IF;
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IF (bP2) THEN
INSERT INTO Q4_V4

SELECT u_r__tranid__1 tranid, u_r_rbank_aba__2 rbank_aba,

u_r__benef_account__3 benef_account, SUM(u_r__amount__4) ramount,

SUM (u_s__amount__6) samount

FROM Q4.V1r

GROUP BY u.r__tranid-_1, u_r__benef_account__3, u_r_rbank_aba__2
HAVING SUM (u_s__amount_6) > SUM (u_r__amount_4)  0.5;

INSERT INTO temp_Q4_V3

SELECT *

FROM Q4_V4

MINUS

SELECT *

FROM Q4.V3;

bP4 := SQL%FOUND;

IF (bP4) THEN
DELETE Q4.V3;
INSERT INTO Q4.V3
SELECT *

FROM Q4_V4;
DELETE Q4.V4;
END IF;

END IF;

IF (bP4) THEN

DBMS_OUTPUT.PUT_LINE(‘Alert!!!");

END IF;

DELETE temp_Q4_V1;
DELETE temp_Q4_V2;
DELETE temp_Q4_V3;

END;
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