
Optimizing Multiple Continuous Queries

Chun Jin
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave. Pittsburgh, PA 15213
cjin@cs.cmu.edu

Dissertation Committee:
Jaime Carbonell, Carnegie Mellon University (Chair)

Christopher Olston, Carnegie Mellon University, on leave at Yahoo! Research
Jamie Callan, Carnegie Mellon University

Phil Hayes, Vivisimo, Inc.

Summary

October 20, 2006

i

ii

Abstract

Emerging data stream processing applications present new challenges that are not addressed by

traditional DBMS technologies. To provide practical solutions for matching highly dynamic data

streams with multiple long-lived and dynamically-updated continuous queries, a stream processing

system should support incremental evaluation over new data, query optimization for continuous queries

including computation sharing among multiple queries.

This thesis addresses these problems, presents the solutions in a prototype called ARGUS, and

conducts experimental evaluations on the implemented techniques. Incremental query evaluation is

realized by a set of algorithms based on materializing intermediate results to incrementally evaluate

selections/joins (Rete), aggregates (incremental aggregation), and set operators (incremental set op-

erations). The query optimization techniques include transitivity inference to derive highly selective

predicates, conditional materialization to selectively materialize intermediate results, join order op-

timization to reduce join computations, and minimum column projection to project only necessary

columns. Computation sharing is realized by an incremental multiple query optimization (IMQO) ap-

proach for tractable plan construction and dynamic query registration. It applies four steps to register

a new query Q, recording existing query computations of the multi-query plan R, searching common

computations between Q and R, selecting optimal sharing paths, and adding new computations to

obtain final results for Q and R. The thesis presents a comprehensive computation indexing and

searching scheme, and presents several sharing strategies. Finally, the evaluations on two data sets

show that each technique leads to significant improvement in system performance up to hundreds-fold

speed-up.

ARGUS is implemented atop a widely used commercial DBMS Oracle to allow fast deployment

of the prototype as a value-added package to existing database applications where requirements of

stream processing are growing rapidly in both scale and diversity.

Future work includes supporting adaptive query processing, supporting distributive and parallel

computing, and execution optimization.

Keywords: Stream Data, Continuous Query, Rete, Incremental Query Evaluation, Transitivity

Inference, Database, Conditional Materialization, Predicate Set, Extended Predicate Set Operation,

Canonical Predicate Form, Predicate Indexing, Computation Sharing.

ii

CONTENTS iii

Contents

1 Introduction 1

1.1 Thesis Statement and Contributions . 4

2 System Overview 6

2.1 Execution Engine . 6

2.2 Query Network Structure . 7

3 Incremental Evaluation 10

4 Query Optimization 11

5 Incremental multiple query optimization (IMQO) 12

5.1 Indexing and Searching . 13

5.1.1 Rich Syntax and Canonicalization 15

5.1.2 Self-Join . 16

5.1.3 Subsumption at Middle Layers . 16

5.1.4 Topology Connections . 17

5.1.5 Relational Model for Indexing . 17

5.2 Sharing Strategies . 18

5.3 Incremental Multiple Query Optimization on Aggregates 18

5.4 Incremental Multiple Query Optimization on Set Operators 20

6 Code Assembly 21

7 Evaluation 22

7.1 Experiment Setting . 22

7.2 Incremental Multiple Query Optimization on SJP Queries 23

8 Conclusion and Future Work 24

8.1 Summary of Contributions . 25

iii

1. Introduction 1

1 Introduction

In recent years, we have witnessed the emergence of stream processing applications. The

applications include terrorism detection and monitoring from structured message streams,

network intrusion detection from NetFlow streams, monitoring wireless sensor network

readings in a variety of military and scientific applications, publish/subscribe systems

such as stock ticker notification services, and more. In wake of the continuous growth of

hardware (network bandwidth, computing power, and data storage) and pervasive comput-

erization into mission-critical tasks, scientific exploration, business, and everyday personal

life, stream processing applications has become and will continue to be more attainable,

demanding, and prevalent.

These stream processing applications present new challenges that are not addressed by

traditional data management techniques, particularly the traditional Database Manage-

ment System (DBMS) techniques. Two prominent challenges among many are continuous

query matching and optimization on large-scale queries. The thesis addresses these two

problems with incremental evaluation methods, incremental multiple query optimization,

and other related optimization techniques, and implements them into a prototype system

ARGUS atop the DBMS Oracle.

Traditional DBMSs do not provide an efficient mechanism to support continuous query

matching. While triggers can be defined to simulate the continuous query matching upon

data changes, the method is not scalable, the triggers can not be shared, and the function-

alities are limited due to the ACID and other design constraints. Moreover, DBMSs do

not systematically support efficient continuous matching algorithms that are vital for per-

formance on stream processing. Many query operators can be implemented to efficiently

produce new results on new tuples without or with bounded accesses to the historical

data, which we call incremental evaluation. For example, a selection predicate can be

evaluated just on the new tuples without accessing any historical data.

1

1. Introduction 2

The related work on incremental evaluation is abundant. Various stream join operators

were proposed. These include stream joins, such as XJoin [29], MJoin [30], and the win-

dow join in [16], and stream aggregates, such as Ripple join [18], window aggregates [21],

quantile estimates [13], and top-K queries [4]. These operators are not immediately appli-

cable to ARGUS since it is implemented atop a DBMS. However, when ARGUS migrates

to a DSMS, these stream operators are very pertinent, and ARGUS existing incremental

evaluation methods should be implemented in the stream operators as well.

Another missing component is the computation sharing module. While multiple query

optimization (MQO) [28, 26] has been studied since late 1980’s, the techniques are not

implemented in commercial DBMS since queries on historical data are typically discarded

after a single search. However, since multiple concurrent continuous queries tend to be

persistent, computation sharing is appropriate for stream applications and even a must for

applications dealing with large-scale queries (pub/sub systems) or with intensive query dy-

namics (complex and evolving intelligence analysis tasks). Computation sharing can lead

to hundreds-fold performance improvement. And the larger the number of concurrently

active queries is, the more significant benefit is obtained.

Two problems add complexities to the implementation of a practical sharing component.

First, queries arrive intermittently, not in batch, which leads to constant changes of the

shared query plan. Second, since global optimization on multiple queries is known to be

NP-complete [28, 20], it is impractical to perform one-shot full optimization on large-scale

queries, not to say doing it repetitively. A practical solution is to develop a system that

adds new queries individually into an existing shared query evaluation plan to obtain

reasonably good performance via local optimization. We call this approach incremental

multiple query optimization (IMQO). With this approach, the system needs to store

existing query computations, identify the common computations between the new query

and the existing query plan, choose optimally among multiple sharing paths, and add

2

1. Introduction 3

unsharable new computations to the plan.

The most distinguishable feature of ARGUS, comparing to other research prototypes

[22, 8, 1, 12, 10] on data stream management systems (DSMS), is its comprehensive IMQO

framework. While computation sharing has been widely accepted as an important com-

ponent of a DSMS, it is often missing or underdeveloped in existing research prototypes.

For example, STREAM [22, 3, 5, 2] is a general-purpose DSMS prototype developed from

scratch by Stanford University with focus on adaptive processing, extended stream query

languages, and execution engine architecture. The STREAM architecture is designed to

support large-scale concurrent continuous queries and executes a shared query plan that

outputs multiple result streams. Algorithms realizing a range of resource sharing strate-

gies are implemented. However, the prototype does not develop or implement the sharing

module. It does not recognize the sharable computations across multiple queries, and does

not support incremental addition of new queries.

In another example, NiagaraCQ [11, 12] is a publish/subscribe prototype that matches

large-scale subscriber queries with Internet content changes. It implements an incremental

sharing framework similar to ARGUS. A new query Q can be incrementally added into a

shared plan R by identifying sharable computations between Q and R and expanding R

with new unsharable computations. However, NiagaraCQ applies a simplified approach

to identify sharable computations, i.e. exact string match and shallow syntactic analysis

to identify equivalent and subsumption predicates. This largely limits the potential im-

provement offered by computation sharing. In NiagaraCQ, simple selection predicates are

grouped by their expression signatures and evaluated in chains, and equi-join predicates

can also be shared. But the identification is limited to the predicate level. Such limited

findings restrict the construction of efficient shared plans. For example, it can not identify

sharable nodes which present the results of a group of predicates (PredSet). Without

topological association, such findings also limit the sharing strategies to be applied.

3

1.1 Thesis Statement and Contributions 4

This thesis addresses incremental evaluation, IMQO, and several query optimization

techniques pertinent to continuous queries. The resulting techniques are implemented in

the ARGUS prototype. ARGUS supports continuous large-scale complex query matching.

The shared query plan has the persistent storage and can be incrementally expanded with

new queries.

ARGUS is built atop a commercial DBMS Oracle. Such choice allows us to focus on the

stream-related problems without worrying about implementing the underlying execution

engine. A more interesting and instant benefit of using DBMS is that ARGUS can be

offered as a value-added package to existing database applications where the requirement

of stream processing is emerging. We are looking for opportunities to apply the work in

national geo-spatial databases, for instance. While the DBMS is the current choice, our

ultimate goal is to make the techniques in practical DSMS systems as well as they also

reach a state of maturity.

1.1 Thesis Statement and Contributions

The thesis statement is:

The thesis demonstrates constructively that incremental multiple query optimiza-

tion, incremental query evaluation, and other query optimization techniques provide

very significant performance improvements for large-scale continuous queries, and are

practical for real-world applications by permitting on-demand new-query addition.

The methods can function atop existing DBMS systems for maximal modularity and

direct practical utility. And the methods work well across diverse applications.

The thesis contributions are as following.

• Incremental multiple query optimization: We design, implement, and evaluate

an IMQO framework. It is comprised of the following components.

4

1.1 Thesis Statement and Contributions 5

– A comprehensive computation indexing scheme to support general plan structures

for selection-join-projection queries, aggregate queries, and set operation queries.

– A set of efficient algorithms to search common computations.

– Several effective sharing strategies to construct shared query network.

– A set of tools to incrementally construct the query network and to update the

computation index.

• Incremental evaluation: We design, implement, and evaluate the incremental eval-

uation mechanism for selection, join, algebraic aggregates, and set operations.

• Query optimization: We explore and evaluate several effective query optimization

techniques, including join order optimization, conditional materialization, transitivity

inference, and minimum column projection.

• System implementation: We build the system atop a DSMS Oracle for direct prac-

tical utility for existing database applications where the needs of stream processing

become increasingly demanding.

• Evaluation: We study and analyze the effectiveness of the implemented techniques.

It shows that each technique provides significant performance improvements for gen-

eral or specific queries, and that the implemented system supports large-scale contin-

uous queries efficiently across different applications.

In this summary, Section 2 overviews the ARGUS system architecture, Section 3 de-

scribes the incremental evaluation, Section 4 describes the query optimization techniques,

Section 5 describes the incremental multiple query optimization, Section 6 describes the

code assembly, Section 7 presents partial evaluation results, and Section 8 summarizes the

contributions and points to future work.

5

2. System Overview 6

2 System Overview

The thesis implements the ARGUS stream processing system. This prototype is a part

of the large project ARGUS sponsored by DTO NIMD program and jointly managed by

Carnegie Mellon University and Dynamix Technologies Inc.

As part of the ARGUS project, the ARGUS stream processing system is implemented

atop Oracle DBMS for immediate practical utility. The system takes continuous queries

specified in SQL, generates shared query evaluation plans, and evaluates plans against

stream data.

ARGUS contains two components, Query Network Generator (NetGen) and Execution

Engine (Engine), shown in Figure 1. The system works as following. An analyst sends a

request to ARGUS to register a new query Q; NetGen analyzes the query, constructs a

new shared optimal query evaluation plan (also called query network) from the existing

one, instantiates the plan and generates the updated initialization and execution code,

records the plan information in the system catalog, and outputs the updated code; Engine

runs the query network to match with data streams and returns the results to the analyst.

2.1 Execution Engine

The engine is the underlying DBMS query execution engine. We use its primitive relation-

operator support, but not its complex query optimization functionality, to evaluate the

query network generated by ARGUS to produce stream results. As we know, to run a

query in SQL, a DBMS generates an optimal logical evaluation plan, then instantiates

it to a physical plan, and executes the physical plan to produce the query results. The

logical plan can be viewed as a formula comprised of relation operators on the querying

relations. And the physical plan specifies the actual methods and the procedure to access

the data. When the query is simple, e.g. a selection or an aggregate from one relation, or

a 2-way join or a UNION of two relations, the logical plan is simple and requires almost no

6

2.2 Query Network Structure 7

Data Tables

Analyst

Input S
tream

s

Query Network
System
Catalog

Sharing
Module

Query
Optimizer

Code
Assembler

Plan
Constructor

Register queries

Result streams

Register & initialize query network

Query Network Generator Execution Engine

Figure 1: Using ARGUS. An analyst registers a query with ARGUS. ARGUS Query Network Generator
processes and records the query in the System Catalog, and generates the initialization and execution
code. ARGUS Execution Engine executes the query network to monitor the input streams, and returns
matched results. The analyst may register more queries.

effort from the query optimizer. An ARGUS query network breaks the multiple complex

continuous queries into simple queries, and the DBMS runs these simple queries to produce

the desired query results. Therefore, in ARGUS, the underlying DBMS is not responsible

for optimizing the complex logical plans, but is responsible for optimizing and executing

physical plans for the simple queries.

2.2 Query Network Structure

A query network is a directed acyclic graph (DAG). Figure 2 shows an example, which

evaluates four queries. The upper part evaluates two sharable selection-join queries, and

the lower part evaluates two sharable aggregate-then-join queries. The source nodes (nodes

without incoming edges) present original data streams and non-source nodes present in-

7

2.2 Query Network Structure 8

termediate or final results.

F S1 S2 J1 J2 S3

G1

G2

J3 S4

F

hist
temp

Select From F_temp
Results go to S1_temp

Join S1_temp and S2_hist
Join S1_hist and S2_temp

Join S1_temp and S2_temp
Results go to J1_temp

Re-compute J3_hist from
G1_hist and G2_hist;

Compute J3_tempAggregate F_temp,
Results go to G2_temp;

Update G2_temp from G2_hist

Incremental Evaluation Non-Incremental Evaluation

Figure 2: Execution of a shared query network. Each node has a historical (hist) table and a temporary
(temp) table, here only those of node F are shown. The callouts show the computations performed to
obtain the new results that will be stored in the nodes’ temporary tables. S nodes are selection nodes, J
nodes are join nodes, and G nodes are aggregate nodes. The network contains two 3-way self-join queries
and two aggregate-then-join queries, and nodes J2, S3, J3, and S4 present their results respectively.

Each network node is associated with two tables of the same schema. One, called

historical table, stores the historical data (original stream data for source nodes, and

intermediate/final results for non-source nodes); and the other, called temporary table,

temporarily stores the new data or results which will be flushed and appended to the

historical table later. These tables are DBMS tables, their storage and access are controlled

by the DBMS.

In principle, we are only interested in the temporary data because it presents the new

query results. However, since some operators, such as joins and aggregates, have to visit

the history to produce new results, the historical data has to be retained too. It is possible

to retain only certain nodes’ historical data that will be accessed later. However, this has

more intricacy when sharing is involved, and is not supported in current implementation.

An arrow between nodes presents the evaluation of a set of operators on the parent

8

2.2 Query Network Structure 9

node(s) to obtain the results stored in the child node. The operator sets are stream

operator sets. They operate on streams and output other streams. Many operator sets

can be evaluated incrementally on the parents’ temporary tables to produce new results

that populate the result node’s temporary table, while some others can not. Regardless a

node can be incrementally evaluated or not, the way to populate its temporary table can

be expressed by a set of simple SQL queries operating on its parent nodes and/or its own

historical table. In another word, the incremental or non-incremental evaluation methods

to populate a node’s temporary table can be instantiated by simple SQL queries.

Each node is associated with two pieces of code and a runtime Boolean flag. The first

code, initialization code, is a set of DDL statements to create and initialize the historical

and temporary tables. It is executed only once prior to the continuous execution of the

query network. The second, execution code, is a PL/SQL code block that contains the

simple queries to populate the temporary table. The Boolean flag is set to true if new

results are produced. To avoid fruitless executions, the queries are executed conditioning

on the new data arrivals in the parent nodes. Particularly, only when at least one parent

flag is true, are the queries executed. There is a finer tuning on execution conditions for

incremental joins depending on which parent’s temporary table is used.

The nodes of the entire query network are sorted into a list by the code assembler.

Correspondingly, we get a list of execution code blocks. This list of code blocks are

wrapped in a set of Oracle stored procedures. These stored procedures are the execution

code of the entire query network. To register the query network, the system runs the

initialization codes, then stores and compiles the execution code. Then the execution code

is scheduled periodical executions to produce new results.

9

3. Incremental Evaluation 10

3 Incremental Evaluation

In a stream processing system, new data tuples continuously arrive, and long-lived queries

continuously match them to produce new results. Efficient algorithms (Incremental

Evaluation) to produce new results on new tuples with minimal access to the historical

data is vital for performance.

We implemented efficient incremental evaluation algorithms for selection, join, algebraic

aggregates, and set operators (union, union all, and set difference).

Selection is easy. New results can be produced without access to historical data.

Join is more complex. A new result may be produced from the join of a new tuple with

old tuples in the history or the join of new tuples, but will never be produced from the

join of only old tuples. We implemented the incremental evaluation algorithm for 2-way

joins by performing the two types of small joins: the join between the new data parts and

the join between the new data part versus old data part.

The incremental selection and join methods were inspired from the Rete algorithm [15]

which stores intermediate results to save repetitive computations in recursive matching of

newly produced working elements.

Many aggregate functions, algebraic functions, including MIN, MAX, COUNT, SUM,

AVERAGE, STDDEV, and TrackClusterCenters, can be incrementally updated upon data

changes without revisiting the entire history of grouping elements (incremental aggrega-

tion); while other aggregates, holistic functions, e.g. quantiles, MODE, and RANK, can

not be done this way. Particularly, algebraic functions can be updated upon data changes

from bounded statistics, while holistic functions can not. For example, AVERAGE can

be updated from up-to-date SUM and COUNT statistics which are simple accumulations

upon data changes. We implemented incremental aggregation for general algebraic aggre-

gates including arbitrary user-defined ones.

We implemented incremental evaluation for union, union all, and minus (set difference)

10

4. Query Optimization 11

operators.

4 Query Optimization

We studied and implemented several query optimization techniques in ARGUS. These in-

clude transitivity inference, join ordering, conditional selection materialization, and mini-

mum column projection.

Transitivity inference derives implicit highly-selective predicates from existing query

predicates to filter out many non-result records in earlier stages and reduce the amount

of data to be processed later. For example, assume a query has following conditions

(the first is very selective): r1.amount > 1000000, r2.amount > r1.amount ∗ 0.5, and

r3.amount = r2.amount. The first two predicates imply a new selective predicate on

r2: r2.amount > 500000. Further, the third predicate and the newly derived predi-

cate imply another new selective predicate on r3: r3.amount > 500000. These inferred

predicates have significant impact on performance. The intermediate result tables of the

highly-selective selection predicates are very small and save significant computation on

subsequent joins. The experiments show up to twenty fold improvement for applicable

queries. There are relevant works on inferring hidden predicates [23, 24]. However, they

deal with only the simplest case of equijoin predicates without any arithmetic operators.

With our canonicalization procedure, ARGUS is able to derive implicit selection predicates

from general 2-way join predicates and other selection predicates.

Searching for the optimal join order is one important goal for traditional query opti-

mizers. The optimal join order can lead to hundreds-fold faster plans than non-optimal

ones. This problem is still pertinent to continuous queries. We implemented the optimizer

to search for the optimal join sequence by using historical data for estimating costs.

In the incremental evaluation of selections/joins, materialized intermediate results im-

prove performance by avoiding repetitive computations over the historical data. However,

11

5. Incremental multiple query optimization (IMQO) 12

a potential problem is that when any materialized intermediate table is very large, thus

requiring many I/O operations, the performance degrades severely. When intermediate

results are not reduced substantially from the original data, the time saved from the

repetitive computations may be offset or exceeded by the materialization overhead (I/O

time). Conditional materialization examines the selectivity of selection PredSets and de-

cides whether or not materializing the PredSets based on a threshold cutoff (default is

0.3). Conditional materialization is implemented in the query optimizer. Conditional

materialization shows up to 1.8-fold performance improvement in our experiments

Minimum column projection refers to projecting the minimal set of columns for inter-

mediate tables. When a new node is created, to save materialization space and execution

time, we only project the necessary columns from its parents. These columns include those

in the final results and those needed for further evaluation. The process becomes intri-

cate when sharing is considered. When a node is shared among computations of different

queries, it may not contain all the columns needed for the new query. Then extra columns

will be added to the node and possibly to its ancestors. This process is called projection

enrichment. Aurora [6] has the same functionality to project minimum columns. However,

with its procedural query language, the sharing-related intricacy is not considered by the

system but is handled manually.

5 Incremental multiple query optimization (IMQO)

A generally useful IMQO framework must support extensive query types and general plan

structures efficiently. Particularly, the framework should meet following requirements.

• Support general query types, e.g. selection-join-projection queries, aggregate queries,

set operation queries, and their combinations.

• Support general plan structures, e.g. materializing the results of grouped predicates.

12

5.1 Indexing and Searching 13

• Support compact indexing storage, fast computation search, and easy index update

and plan expansion for large-scale query applications.

Each requirement presents specific challenges, and the combination leads to a hyper-

linear complexity growth. Procedurally, IMQO involves four complex steps:

• computation indexing,

• common computation identification,

• sharing path selection,

• and indexing update and plan expansion.

Each step interacts with others and presents specific problems. So the framework should

be designed systematically to meet the overall requirements, as well as address the specific

problems in each step.

5.1 Indexing and Searching

The first two steps of IMQO, indexing and identifying common computations, are essential

to construct efficient shared plans, since the identification capability directly determines

to what extent the sharing can be achieved, determines what heuristic sharing strategies

can be applied, and largely influences applicable shared plan structures.

Common subexpression identification is also known to be NP-hard [19, 25], and thus has

to be addressed heuristically. Secondly, identifying sharable computations from the shared

plan structures and topologies, not just from the query semantics, adds one more layer

of complexity. Thirdly, to scale to a large number of queries, the scheme and algorithms

should support compact index storage, fast index search and easy index update. And

finally, since the shared plan dynamically evolves as new queries are registered, and is

subject to local re-optimization to adapt to data distribution changes, the indexing scheme

13

5.1 Indexing and Searching 14

should provide enough information for fast constructing, updating, and rearranging the

executable query evaluation plan.

Previous work on DSMSs, such as NiagaraCQ, STREAM, and other work described,

either do not develop or underdevelop the support of the common computation indexing

and identification. Previous work on MQO [27, 14, 7, 9] and view-based query optimization

[17, 31] address the common computation identification problem specifically, but do not

concern with plan topologies, compact storage, and easy update, and use quite different

approaches from this thesis.

This thesis introduces a comprehensive computation indexing scheme and related search-

ing algorithms to index and search common computations. Particularly, it emphasizes the

identification capability, and the solution to large-scale queries. It provides a general sys-

tematic framework to index, search, and present common computations, done to a degree

well beyond the previous approaches.

In terms of identification capability, the scheme indexes and identifies sharable selection

nodes, join nodes, aggregate nodes, and set operator nodes. To identify sharable selec-

tions and joins, the scheme recognizes syntactically-different yet semantically-equivalent

predicates and expressions by canonicalization, and subsumptions between predicates and

predicate sets, and supports self-join which is neglected in previous work. It supports rich

predicate syntax by indexing predicates in CNF forms, and it supports fast search and

update by indexing multiple plan topology connections. To identify sharable aggregate

nodes and sharable set operator nodes, the scheme recognizes the subsets and supersets of

GROUPBY expressions, and the subsets and supersets of set operator tables.

To deal with the large-scale problem, the scheme applies a relational model, instead of

a linked data structure as by previous approaches. All the plan information is stored in

the system catalog, a set of system relations. The advantage is that the relational model

is well supported by DBMSs. Particularly, fast search and easy update are achieved by

14

5.1 Indexing and Searching 15

DBMS indexing techniques, and compact storage is achieved by following the database

design methodologies.

The computations of a query network is organized as a 4-layer hierarchy. From top

to bottom, the layers are topology layer, PredSet layer, OR predicate (ORPred) layer,

and literal predicate (literal) layer. The last three layers, also referred as the three-pred

layers, present the computations in CNF. And the top layer presents network topological

connections.

Such a hierarchy supports general predicate semantics and general topology structures.

An indexing scheme should efficiently index all relevant information of the hierarchy to

support efficient operations on it including search and update.

The reason that we do not use a linked data structure to record query network is due to

its search and update inefficiency on large-scale query networks. In a linked data structure,

the update needs to perform the search first unless the nodes are indexed, and the search

needs to go through every node of the same querying table(s) to check the relationship

between the node’s associated operator set and the query’s operator sets to decide the

sharability.

There are several issues we need to consider before we transform the computation

hierarchy to the relational model. Particularly, we want to deal with rich predicate syntax

for matching semantically-equivalent literal predicates, match self-join computations at

the three-pred layers, identify subsumptions at the three-pred layers, and identify complex

topological connections.

5.1.1 Rich Syntax and Canonicalization

A literal predicate can be expressed in different ways. To match them quickly and accu-

rately, we introduce a canonicalization procedure. It transforms syntactically-different yet

semantically-equivalent literal predicates into the same pre-defined canonical form. Then

15

5.1 Indexing and Searching 16

the equivalence can be detected by exact string match.

There is intricacy with regard to the canonicalization. We need to identify subsump-

tion relationship between literal predicates. For example, t1.a > 10 subsumes t1.a ≥ 5.

The exact match on the canonicalized predicates can not identify subsumptions. Instead,

the subsumption can be identified by a combination of the exact match on the column

references, the operator comparison, and the constant comparison.

5.1.2 Self-Join

True table names should be used in canonical forms to conduct the fast exact-string match-

ing. However, this is not practical for a self-join predicate. The specification of joining two

records is clarified by different table aliases. To retain the semantics of the self-join, we

can not replace the table aliases with their true table names. To avoid the ambiguity or

information loss, we introduce Standard Table Aliases (STA) to reference the tables. We

assign T1 to one table alias and T2 to the other. To support multi-way join predicates, we

can use T3, T4, and so on 1. Then STA assignments are enumerated for a new predicate

p to search its matches in the system catalog.

Self-joins also present problems in the middle layers (PredSet and ORPred layers). For

example, an ORPred p1 may contain two literal predicates, one is a selection predicate ρ1:

F.c = 1000, and the other a self-join predicate ρ2: T1.a = T2.b. Therefore, ρ1’s STA, T1

or T2, must be indexed in p1. Similar situation exists in PredSets where some ORPred is

a selection from a single table and some other is a self-join.

5.1.3 Subsumption at Middle Layers

Given an ORPred p of a PredSet P in the new query Q, we want to find all ORPreds

p′ ∈ RORPred, such that p is subsumed by, subsumes, or is equivalent to p′, based on the

subsumptions identified at the literal layer. From the results, we find all PredSets P ′ ∈ R,

1Multi-join is not supported by ARGUS currently

16

5.1 Indexing and Searching 17

such that P is subsumed by, subsumes, or is equivalent to P ′. These search algorithms are

implemented in the system

5.1.4 Topology Connections

PredSets are associated with nodes. A PredSet P presents the topological connection

between the associated node N and N ’s ancestors {A}. A node N is associated with

multiple PredSets depending on the different types of ancestors. An important one is the

DPredSet which connects N to its direct parents. DPredSet is used in constructing the

execution code, and needs to be indexed.

Solely relying on DPredSets causes chained search on branches for both selection and

join PredSets. To address the problem, we record two more PredSets for each node N .

These PredSets are associated with nodes called N ’s SVOA and N ’s JVOAs.

A selection node N ’s SVOA is N ’s closest ancestor node that is either a join node or a

base stream node. A join node or a base stream node N ’s SVOA is itself. SVOA stands

for selection very original ancestor. A join node N ’s JVOAs are the closest ancestor nodes

that are either join nodes (but not N) or base stream nodes. A selection node N ’s JVOAs

are the JVOAs of N ’s SVOA. And a base stream node’s JVOA is NULL. JVOA stands

for join very original ancestor.

SVOAs present local selection chains, and JVOAs present one join depth beyond the

local selection chains. With SVOAs and JVOAs, the chained searches are no longer nec-

essary.

5.1.5 Relational Model for Indexing

Considering all the issues and the 4-layer hierarchy, we designed the relational model for

indexing. Two adjustments are made. First, the relations that index literal predicates and

ORPreds are merged into one, PredIndex, based on the assumption that ORPred are not

17

5.2 Sharing Strategies 18

frequent in queries. This allows a literal predicate to appear multiple times in PredIndex

if it belongs to different ORPreds. But this redundancy is negligible given the assumption.

The second adjustment is splitting the node topology indexing relation (Node Entity in the

ER model) to two, namely, SelectionTopology, and JoinTopology, based on the observation

that the topology connections on selection nodes and on join nodes are quite different.

5.2 Sharing Strategies

Given the sharable nodes identified, various sharing optimization strategies may be applied.

We present two simple strategies, match-plan and sharing-selection. Match-plan matches

the plan optimized for the single new query with the existing query network from bottom-

up. This strategy may fail to identify certain sharable computations by fixing the sharing

path to the pre-optimized plan. Sharing-selection identifies sharable nodes and chooses

the optimal sharing path.

In both strategies, we need to choose the optimal sharable node at each JoinLevel. We

apply a simple cost model for doing so. The cost of sharing a node S is simply the cost

of evaluating the remaining part of the chosen PredSet P . The cost is defined as the size

of S, the number of records to be processed to obtain the final results of P . When a join

node J is chosen for sharing, even if it does not provide the final results for the chosen

join PredSet P , we choose not to extend J for P until it is the last join in the query.

Instead the remaining computations are rewritten as a selection PredSet from J , and thus

are carried on to the next JoinLevel. With this sharing choice, we are able to create less

join nodes. This choice is applied by both sharing-selection and match-plan.

5.3 Incremental Multiple Query Optimization on Aggregates

Algebraic functions can also be shared through dimension reductions, or vertical expansion.

But holistic functions can not. In the vertical expansion, a new aggregate node N is created

18

5.3 Incremental Multiple Query Optimization on Aggregates 19

from an existing node G and further groups the results of G.

Similar to the IMQO on selection and join queries, the IMQO on aggregate queries

works as following for a new query B:

• Identify sharable nodes {A} with following steps:

– identify all dimension sets {DA′} that are supersets of DB by looking at Group-

ExprSet and GroupExprIndex,

– identify the nodes {A′} associated with {DA} by looking at GroupToplogy,

– and identify the nodes in {A′} that contain all columns needed for query B.

These are sharable nodes {A}.

• Select the optimal node A from which B will be evaluated.

• Create a new node B by creating the table pairs and updating the system catalog.

• Perform rerouting on B.

Given the new query B, there may be multiple nodes from which a vertical expansion

can be performed. According to the time complexity analysis, the optimal choice is the

node A such that |AH | is the smallest. If A does not contain all aggregate functions or

bookkeeping statistics needed by query B, a horizontal expansion is performed.

After the new node B is created, the system invokes the rerouting procedure. It checks

if any existing node C can be sped up by being evaluated from B. We apply a simple cost

model to decide such rerouting nodes. If 1. B contains all the aggregate functions needed

by C, and 2. |BH | < |PC
H | where PC is C’s current parent node, then C will be rerouted

to B. The system applies a simple pruning heuristic. If a node C satisfies both conditions,

and a set of nodes {Ci} satisfying the first condition are descendants of C, then any node

in {Ci} should not be rerouted, and so are dropped from consideration.

19

5.4 Incremental Multiple Query Optimization on Set Operators 20

The evaluation shows up to hundred-fold performance improvement over non-sharing

approaches.

5.4 Incremental Multiple Query Optimization on Set Operators

The IMQO on set operators is similar to those on selection/join queries and aggregate

queries. A set operator node is the result of a set operation on two or more nodes. A

set operator node can be shared if it provides the data from which final results can be

computed.

Given a new set operator query Q that operates on a set of tables {Mv}, we want to

find a set of set operator nodes {N} from the existing query network R where N can be

used to evaluate Q. The sharability depends on the set operators, the operation tables,

and the columns. For example, when Q is UNION, a sharable N should be either UNION

or UNION ALL; and Q’s operation table set is a superset of N ’s operation table set. For a

sharable N , Q’s column set must be a subset of N ’s column set, and their column position

mapping across the operation tables must be consistent.

Once the sharable nodes {Nv} are identified, we want to choose the optimal sharable

node N . N is chosen as following.

• When Q is UNION ALL, choose N whose table size is maximum.

• When Q is UNION, choose N whose number of distinct values on Q’s requested

columns is the maximum.

• When Q is MINUS, if there are Ns that are MINUS, choose the N whose table size is

minimum; otherwise, if there are sharable Ns that are UNION/UNION ALL, choose

the N whose number of distinct values on Qs requested columns is the maximum.

20

6. Code Assembly 21

6 Code Assembly

The query network is evaluated in a linear fashion, and the nodes need to be sorted. The

only sorting constraint is that the descendant nodes must follow their ancestor nodes.

One way to get a valid order is to traverse the entire network starting from the original

stream nodes. However, this entails many system catalog accesses and is not efficient. On

the other hand, a predefined one-dimensional sorting order is too rigid to query network

updates.

We introduce a two-dimensional sort ID assignment scheme. A sort ID is a pair of

integers, JoinLevel and SequenceID. The JoinLevel globally defines the depth of a node,

and the SequenceID defines the order within the local area of the same join depth nodes.

In a query network of only selection and join nodes, a node’s JoinLevel is its join depth.

An original stream node’s JoinLevel is 0. For a node with two or more parents, a.k.a.

a join node or a set operator node, its JoinLevel is 1 plus the maximal JoinLevel of its

parents. For a node with a single parent, a.k.a. a selection node or an aggregate node, its

JoinLevel is the same to its parent JoinLevel.

When a new node N is created as a leaf node of the query network, its SequenceID

is assigned as k plus its parent’s SequenceID. In the system, the default is k = 1000.

When a node is inserted into between a parent node and a child node in a local tree, the

new node’s SequenceID is the round-up mean of its parent and child’s SequenceIDs. So

a large k helps future insertions without affecting children’s SequenceIDs. If the parent

and child’s SequenceIDs are consecutive, and thus no unique SequenceID in-between is

available for the new one, then the system increments the SequenceIDs of the child and

all its descendants in the local tree by k.

With JoinLevel and SequenceID defined, a valid order can be obtained by sorting on

the JoinLevels and then on the SequenceIDs.

21

7. Evaluation 22

7 Evaluation

We conduct experiments to understand the effectiveness of various techniques implemented

in ARGUS. Particularly, we evaluate the effectiveness of incremental evaluation methods

and optimization techniques on selection-join-projection queries, the effectiveness of in-

cremental aggregation and IMQO on aggregate queries, and the effectiveness of IMQO

techniques on SJP queries. The evaluated IMQO techniques include canonicalization, join

sharing, and the two sharing strategies, match-plan and sharing-selection. The results

show that every individual technique lead to significant performance improvement either

in general or at least for some specific types of queries. As a whole, the system provides

acceptable performance for continuously matching large-scale queries. The analysis of the

results also raises new questions and points to new research directions.

In this summary, we only show the results on IMQO techniques on SJP queries.

7.1 Experiment Setting

We use two databases, the synthesized FedWire money transfer transaction database

(Fed), and the anonymized Massachusetts hospital patient admission and discharge record

database (Med). Both databases have a single stream with timestamp attributes.

This summary only shows the results on Fed. Fed is a synthesized database containing

500006 FedWire money transfer transactions. The schema contains all the real transaction

data attributes. The data are generated according to the real transaction statistics.

We created a query repository for Fed and Med databases. These queries are generated

systematically. First, interesting queries arising from applications are formulated manually

as query seeds or query categories. The seeds cover a wide range of query types, including

selections, joins, aggregates, set operators, and their combinations. The seed queries vary

in several ways and present some overlap computations. For example, there are 2-way, 3-

way, 4-way, and 5-way self-join queries, and later may share from the results of the former

22

7.2 Incremental Multiple Query Optimization on SJP Queries 23

ones. The queries generated from the same query seed present overlap computations that

can be identified as subsumptions and be shared.

The experiments were conducted on an HP PC computer with single core Pentium(R)

4 CPU 3.00GHz and 1G RAM, running Windows XP. To simulate the streams, in the

order of time, we take the first part (300000 records from Fed and 600000 from Med) of

the data as historical data, and simulate the arrivals of new data incrementally.

7.2 Incremental Multiple Query Optimization on SJP Queries

We compare performance of four query network generation configurations, AllSharing,

NonJoinS, NonCanon, and MatchPlan, as shown in Table 1. Particularly, we conduct

three comparisons: 1. join sharing vs. non-join sharing, i.e. AllSharing vs. NonJoinS; 2.

canonicalization vs. non-canonicalization, i.e. AllSharing vs. NonCanon; and 3. sharing-

selection vs. match-plan, i.e. AllSharing vs. MatchPlan. Figures 3 show the times to

evaluate multiple queries scaling from 100 queries to 768 queries for Fed. When comparing

sharing-selection and match-plan, we also present a baseline curve for the configuration of

match-plan without canonicalization (MatchPlan NCanon), which simulates NiagaraCQ’s

approach.

Config Join Canoni- Strategy
ID Sharing calize
AllSharing Y Y Sharing-Selection
NonJoinS N Y Sharing-Selection
NonCanon Y N Sharing-Selection
MatchPlan Y Y Match-Plan

Table 1: Network Generation Configurations. Functionality enabled: Y; disabled: N.

As shown in Figure 3, the performance difference between join sharing and non-join

sharing is significant. This is because sheer repetitive join work is computed multiple

times for non-join sharing.

As shown in Figure 3, the effect of canonicalization is also significant, particularly

23

8. Conclusion and Future Work 24

on Fed, due to different query characteristics. In Fed queries, there is a significant por-

tion of queries that specify different time windows for join, such as r2.tran date <=

r1.tran date+20 and r2.tran date <= r1.tran date+10. The canonicalization procedure

makes it possible to identify the subsumption relations between such join predicates. Thus

the sharing leads to more significant reduction in the number of join nodes.

In Figures 4, we compare sharing-selection, match-plan, and match-plan without canon-

icalization. It is not surprising that match-plan without canonicalization is worse than the

other two because of the effect of canonicalization. When both perform canonicalization,

sharing-selection is still better than match-plan by identifying more sharing opportunities

and constructs smaller query networks.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

of queries

E
xe

cu
ti

o
n

 t
im

e(
s) AllSharing

NonCanon
NonJoinS

Figure 3: Fed Canonicalization. This shows the
effectiveness of canonicalization. The canoni-
calized query networks are up to double perfor-
mance improvement.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

AllSharing
MatchPlan
MPlan_NCanon

Figure 4: Fed match-plan vs. sharing-
selection. This compares the total execution
times of query networks generated with sharing-
selection (AllSharing), match-plan (Match-
Plan), and match-plan without canonicalization
(MPlan NCanon).

8 Conclusion and Future Work

This section first overview the future work, and then summarize the thesis contributions.

For the future work, we consider extending the current work, and adding new capabil-

ities, particularly adding adaptive processing functionalities.

24

8.1 Summary of Contributions 25

To extend the current work, we consider supporting multi-way joins and more sophis-

ticated local re-optimization techniques including restructure sharing and rerouting.

Adaptive query processing (AQP) has received much attention recently in the stream

processing research. Equipped with a comprehensive computation indexing scheme that

provides a clear view of the current plan and fast search and update tools, the system can

easily apply re-optimization strategies, such as adaptive plan restructuring and rerouting.

To support dynamic plan re-optimization, the system needs to look at the local plan region,

and reconstruct the new local plan based on the new cost estimates.

Dynamic operator scheduling is another important adaptive processing technique. Query

network nodes are evaluated sequentially. The evaluation order only needs to satisfy one

constraint: a node must be evaluated before any of its descendants. Among multiple valid

orders, the optimal one that minimizes disk page swapping may change over time. Dy-

namic rescheduling aims to identify the needs of the rescheduling and efficiently reorganize

the execution order.

8.1 Summary of Contributions

The thesis addresses the challenges of continuously matching a large number of concurrent

queries over high data-rate streams and it is specifically targeted at detecting rare high-

value “hits” such as alert conditions.

In order to provide practical solutions for matching highly-dynamic data streams with

multiple long-lived continuous queries, the stream processing system supports incremental

evaluation, query optimization for continuous queries, and incremental multiple query

optimization.

The thesis demonstrated constructively that incremental multiple query optimization,

incremental query evaluation, and other query optimization techniques provide very sig-

nificant performance improvements for large-scale continuous queries, and are practical for

25

8.1 Summary of Contributions 26

real-world applications by permitting on-demand new-query addition. The methods can

function atop existing DBMS systems for maximal modularity and direct practical utility.

And the methods work well across diverse applications.

We implement a complete IMQO framework that supports large-scale general queries

including selection-join-projection queries, aggregate queries, set operator queries, and

their combinations. It provides a practical solution to large-scale queries and allows on-

demand query addition, a requirement in many real applications.

In the center of the IMQO framework are the comprehensive computation indexing

scheme and the related common computation search algorithms realized by the relational

model for compact storage, fast search, and easy update. This approach is much more

advanced and general than previous work done for DSMSs, in terms of supporting more

types of queries, supporting more flexible plan structures, and identifying more general

types of common computations. The approach is also very different from previous work

done for MQO and VQO which usually employ query graphs and do not index plan topolo-

gies. And the approach is efficient in time since it searches only the relevant computations

and formulates the conceptual common computations in a bottom-up fashion.

There are several computation description issues relevant to common computation iden-

tification, including semantically-equivalent yet syntactically-different predicates and ex-

pressions, self-join presentations, subsumption identification, predicates with disjunctions,

and plan topology presentations. The intertwined nature of the problems add much more

complexity to the scheme design and algorithm development. We apply various techniques

and solve the problems in the integrated scheme design. These include the 4-layer hier-

archical indexing model, predicate and expression canonicalization, triple-string canonical

form, standard table alias presentation and search at multiple layers, subsumption identi-

fication at multiple layers, and multiple topology presentations.

The IMQO framework applies several sharing strategies to construct shared query net-

26

REFERENCES 27

works that result in up to hundreds of time fold improvement comparing to unshared

ones. These include the match-plan and sharing-selection for selection-join-projection

queries, aggregate-sharing-selection and aggregate-rerouting for aggregate queries, and

set-operator-sharing for set operator queries. Sharing-selection usually results in more

compact query networks.

The thesis implements the incremental evaluation methods for selection, join, algebraic

aggregates, and set operators.

The thesis implements several effective query optimization techniques, including tran-

sitivity inference for inferring highly-selective predicates, conditional materialization for

selectively materializing intermediate results, join order optimization for reducing join

computation, and minimum column projection for projecting only necessary columns.

The system is built atop a DSMS Oracle for direct practical utility for existing database

applications where the needs of stream processing become increasingly demanding.

Finally, the evaluations show that every individual technique leads to significant im-

provement in system performance up to hundreds fold speed-up.

References

[1] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Au-

rora: a new model and architecture for data stream management. VLDB J., 12(2):120–

139, 2003.

[2] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Motwani. Chain: Operator

Scheduling for Memory Minimization in Data Stream Systems. In Proceedings of the

2003 ACM SIGMOD International Conference on Management of data, pages 253–

264, San Diego, California, June, 2003.

[3] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.

Models and issues in data stream systems. In PODS, pages 1–16, 2002.

27

REFERENCES 28

[4] Brian Babcock and Chris Olston. Distributed top-k monitoring. In SIGMOD Con-

ference, pages 28–39, 2003.

[5] Shivnath Babu and Jennifer Widom. Continuous Queries over Data Streams. ACM

SIGMOD Record, 30(3):109–120, September, 2001.

[6] Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,

Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Monitor-

ing streams - a new class of data management applications. In VLDB, pages 215–226,

2002.

[7] Upen S. Chakravarthy and Jack Minker. Multiple query processing in deductive

databases using query graphs. In VLDB, pages 384–391, 1986.

[8] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Vi-

jayshankar Raman, Fred Reiss, and Mehul A. Shah. TelegraphCQ: Continuous

Dataflow Processing for an Uncertain World. In CIDR, January, 2003.

[9] Fa-Chung Fred Chen and Margaret H. Dunham. Common subexpression processing

in multiple-query processing. IEEE Trans. Knowl. Data Eng., 10(3):493–499, 1998.

[10] Jianjun Chen and David J. Dewitt. Dynamic Re-grouping of Continuous Queries.

Technical Report 507, CS, University of Wisconsin-Madison, 2002.

[11] Jianjun Chen, David J. DeWitt, and Jeffrey F. Naughton. Design and evaluation of

alternative selection placement strategies in optimizing continuous queries. In ICDE,

pages 345–356, 2002.

[12] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: A scalable

continuous query system for internet databases. In SIGMOD Conference, pages 379–

390, 2000.

[13] Graham Cormode, Minos N. Garofalakis, S. Muthukrishnan, and Rajeev Rastogi.

Holistic aggregates in a networked world: Distributed tracking of approximate quan-

tiles. In SIGMOD Conference, pages 25–36, 2005.

[14] Sheldon J. Finkelstein. Common subexpression analysis in database applications. In

SIGMOD Conference, pages 235–245, 1982.

28

REFERENCES 29

[15] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem. Artificial Intelligence, 19(1):17–37, Septempber, 1982.

[16] Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-joins in continu-

ous queries over data streams. In VLDB, pages 500–511, 2003.

[17] Jonathan Goldstein and Per-Åke Larson. Optimizing queries using materialized views:

A practical, scalable solution. In SIGMOD Conference, 2001.

[18] Peter J. Haas and Joseph M. Hellerstein. Ripple Joins for Online Aggregation. In

Proceedings of the 1999 ACM SIGMOD International Conference on Management of

data, pages 287–298, Philadelphia, Pennsylvania, June, 1999.

[19] Matthias Jarke. Common subexpression isolation in multiple query optimization. In

Query Processing in Database Systems, pages 191–205. Springer, 1985.

[20] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. An-

swering queries using views. In PODS, pages 95–104, 1995.

[21] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Seman-

tics and evaluation techniques for window aggregates in data streams. In SIGMOD

Conf, pages 311–322, 2005.

[22] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,

Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.

Query Processing, Resource Management, and Approximation in a Data Stream Man-

agement System. In Proceedings of the 2003 Conference on Innovative Data Systems

Research (CIDR), pages 245–256, January, 2003.

[23] Kiyoshi Ono and Guy Lohman. Measuring the Complexity of Join Enumeration in

Query Optimization. In Proceedings of 16th International Conference on Very Large

Data Bases, pages 314–325, Brisbane, Australia, 1990.

[24] Hamid Pirahesh, T. Y. Cliff Leung, and Waqar Hasan. A Rule Engine for Query

Transformation in Starburst and IBM DB2 C/S DBMS. In Proceedings of the 13th

International Conference on Data Engineering, pages 391–400, Birmingham, U.K.,

April, 1997.

[25] Daniel J. Rosenkrantz and Harry B. Hunt III. Processing conjunctive predicates and

queries. In VLDB, pages 64–72, 1980.

29

REFERENCES 30

[26] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible

algorithms for multi query optimization. In SIGMOD Conference, pages 249–260,

2000.

[27] Timos K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–

52, 1988.

[28] Timos K. Sellis and Subrata Ghosh. On the multiple-query optimization problem.

IEEE Trans. Knowl. Data Eng., 2(2):262–266, 1990.

[29] Tolga Urhan and Michael J. Franklin. XJoin: A Reactively-Scheduled Pipelined Join

Operator. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, 23(2):27–33, June, 2000.

[30] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output rate of

multi-way join queries over streaming information sources. In VLDB, pages 285–296,

2003.

[31] Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and Mon-

ica Urata. Answering complex sql queries using automatic summary tables. In SIG-

MOD Conference, pages 105–116, 2000.

30

