
Faloutsos SCS CMU 15-415/615

1

CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

Lecture #26: Spatial Databases
(R&G ch. 28)

CMU SCS

Faloutsos SCS CMU - 15-415/615 2

SAMs - Detailed outline
•  spatial access methods

–  problem dfn
–  z-ordering
– R-trees

CMU SCS

Faloutsos SCS CMU - 15-415/615 3

Spatial Access Methods - problem
•  Given a collection of geometric objects

(points, lines, polygons, ...)
•  organize them on disk, to answer spatial

queries (like??)

Faloutsos SCS CMU 15-415/615

2

CMU SCS

Faloutsos SCS CMU - 15-415/615 4

Spatial Access Methods - problem
•  Given a collection of geometric objects

(points, lines, polygons, ...)
•  organize them on disk, to answer

–  point queries
–  range queries
–  k-nn queries
–  spatial joins (‘all pairs’ queries)

CMU SCS

Faloutsos SCS CMU - 15-415/615 5

Spatial Access Methods - problem
•  Given a collection of geometric objects

(points, lines, polygons, ...)
•  organize them on disk, to answer

–  point queries
–  range queries
–  k-nn queries
–  spatial joins (‘all pairs’ queries)

CMU SCS

Faloutsos SCS CMU - 15-415/615 6

Spatial Access Methods - problem
•  Given a collection of geometric objects

(points, lines, polygons, ...)
•  organize them on disk, to answer

–  point queries
–  range queries
–  k-nn queries
–  spatial joins (‘all pairs’ queries)

Faloutsos SCS CMU 15-415/615

3

CMU SCS

Faloutsos SCS CMU - 15-415/615 7

Spatial Access Methods - problem
•  Given a collection of geometric objects

(points, lines, polygons, ...)
•  organize them on disk, to answer

–  point queries
–  range queries
–  k-nn queries
–  spatial joins (‘all pairs’ queries)

CMU SCS

Faloutsos SCS CMU - 15-415/615 8

Spatial Access Methods - problem
•  Given a collection of geometric objects

(points, lines, polygons, ...)
•  organize them on disk, to answer

–  point queries
–  range queries
–  k-nn queries
–  spatial joins (‘all pairs’ within ε)

CMU SCS

Faloutsos SCS CMU - 15-415/615 9

SAMs - motivation

•  Q: applications?

Faloutsos SCS CMU 15-415/615

4

CMU SCS

Faloutsos SCS CMU - 15-415/615 10

SAMs - motivation

salary

age

traditional DB GIS

CMU SCS

Faloutsos SCS CMU - 15-415/615 11

SAMs - motivation

salary

age

traditional DB GIS

CMU SCS

Faloutsos SCS CMU - 15-415/615 12

SAMs - motivation

CAD/CAM
find elements
too close
to each other

Faloutsos SCS CMU 15-415/615

5

CMU SCS

Faloutsos SCS CMU - 15-415/615 13

SAMs - motivation

CAD/CAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 14
day

1 365

day
1 365

S1

Sn

F(S1)

F(Sn)

SAMs - motivation

eg, avg

eg,. std

CMU SCS

Faloutsos SCS CMU - 15-415/615 15

SAMs - Detailed outline
•  spatial access methods

–  problem dfn
–  z-ordering
– R-trees

Faloutsos SCS CMU 15-415/615

6

CMU SCS

Faloutsos SCS CMU - 15-415/615 16

SAMs: solutions

•  z-ordering
•  R-trees
Q: how would you organize, e.g., n-dim

points, on disk? (C points per disk page)

CMU SCS

Faloutsos SCS CMU - 15-415/615 17

z-ordering

Q: how would you organize, e.g., n-dim
points, on disk? (C points per disk page)

Hint: reduce the problem to 1-d points (!!)
Q1: why?
A:
Q2: how?

CMU SCS

Faloutsos SCS CMU - 15-415/615 18

z-ordering

Q: how would you organize, e.g., n-dim
points, on disk? (C points per disk page)

Hint: reduce the problem to 1-d points (!!)
Q1: why?
A: B-trees!
Q2: how?

Faloutsos SCS CMU 15-415/615

7

CMU SCS

Faloutsos SCS CMU - 15-415/615 19

z-ordering

Q2: how?
A: assume finite granularity; z-ordering = bit-

shuffling = N-trees = Morton keys = geo-
coding = ...

CMU SCS

Faloutsos SCS CMU - 15-415/615 20

z-ordering

Q2: how?
A: assume finite granularity (e.g., 232x232 ;

4x4 here)
Q2.1: how to map n-d cells to 1-d cells?

CMU SCS

Faloutsos SCS CMU - 15-415/615 21

z-ordering

Q2.1: how to map n-d cells to 1-d cells?

Faloutsos SCS CMU 15-415/615

8

CMU SCS

Faloutsos SCS CMU - 15-415/615 22

z-ordering

Q2.1: how to map n-d cells to 1-d cells?
A: row-wise
Q: is it good?

CMU SCS

Faloutsos SCS CMU - 15-415/615 23

z-ordering

Q: is it good?
A: great for ‘x’ axis; bad for ‘y’ axis

CMU SCS

Faloutsos SCS CMU - 15-415/615 24

z-ordering

Q: How about the ‘snake’ curve?

Faloutsos SCS CMU 15-415/615

9

CMU SCS

Faloutsos SCS CMU - 15-415/615 25

z-ordering

Q: How about the ‘snake’ curve?
A: still problems:

2^32

2^32

CMU SCS

Faloutsos SCS CMU - 15-415/615 26

z-ordering

Q: Why are those curves ‘bad’?
A: no distance preservation (~ clustering)
Q: solution?

2^32

2^32

CMU SCS

Faloutsos SCS CMU - 15-415/615 27

z-ordering

Q: solution? (w/ good clustering, and easy to
compute, for 2-d and n-d?)

Faloutsos SCS CMU 15-415/615

10

CMU SCS

Faloutsos SCS CMU - 15-415/615 28

z-ordering

Q: solution? (w/ good clustering, and easy to
compute, for 2-d and n-d?)

A: z-ordering/bit-shuffling/linear-quadtrees
‘looks’ better:
•  few long jumps;
•  scoops out the whole quadrant
before leaving it
•  a.k.a. space filling curves

CMU SCS

Faloutsos SCS CMU - 15-415/615 29

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f(x,y))?
A: 3 (equivalent) answers!

CMU SCS

Faloutsos SCS CMU - 15-415/615 30

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f(x,y))?
A1: ‘z’ (or ‘N’) shapes, RECURSIVELY

order-1 order-2
... order (n+1)

Faloutsos SCS CMU 15-415/615

11

CMU SCS

Faloutsos SCS CMU - 15-415/615 31

z-ordering

Notice:
•  self similar (we’ll see about fractals, soon)
•  method is hard to use: z =? f(x,y)

order-1 order-2
... order (n+1)

CMU SCS

Faloutsos SCS CMU - 15-415/615 32

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f(x,y))?
A: 3 (equivalent) answers!

Method #2?

CMU SCS

Faloutsos SCS CMU - 15-415/615 33

z-ordering

bit-shuffling

00 01 10 11

11
10
01
00

x

y

x
0 0

y
1 1

z =(0 1 0 1)2 = 5

Faloutsos SCS CMU 15-415/615

12

CMU SCS

Faloutsos SCS CMU - 15-415/615 34

z-ordering

bit-shuffling

00 01 10 11

11
10
01
00

x

y

x
0 0

y
1 1

z =(0 1 0 1)2 = 5

How about the reverse:

 (x,y) = g(z) ?

CMU SCS

Faloutsos SCS CMU - 15-415/615 35

z-ordering

bit-shuffling

00 01 10 11

11
10
01
00

x

y

x
0 0

y
1 1

z =(0 1 0 1)2 = 5

How about n-d spaces?

CMU SCS

Faloutsos SCS CMU - 15-415/615 36

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f(x,y))?
A: 3 (equivalent) answers!

Method #3?

Faloutsos SCS CMU 15-415/615

13

CMU SCS

Faloutsos SCS CMU - 15-415/615 37

z-ordering

linear-quadtrees : assign N->1, S->0 e.t.c.

0 1

0

1

00...

01...

10...

11...

W E

N

S

CMU SCS

Faloutsos SCS CMU - 15-415/615 38

z-ordering

... and repeat recursively. Eg.: zblue-cell =
 WN;WN = (0101)2 = 5

0 1

0

1

00...

01...

10...

11...

W E

N

S

00 11

CMU SCS

Faloutsos SCS CMU - 15-415/615 39

z-ordering

Drill: z-value of magenta cell, with the three
methods?

0 1

0

1

W E

N

S

Faloutsos SCS CMU 15-415/615

14

CMU SCS

Faloutsos SCS CMU - 15-415/615 40

z-ordering

Drill: z-value of magenta cell, with the three
methods?

0 1

0

1

W E

N

S

method#1: 14
method#2: shuffle(11;10)=
 (1110)2 = 14

CMU SCS

Faloutsos SCS CMU - 15-415/615 41

z-ordering

Drill: z-value of magenta cell, with the three
methods?

0 1

0

1

W E

N

S

method#1: 14
method#2: shuffle(11;10)=
 (1110)2 = 14
method#3: EN;ES = ... = 14

CMU SCS

Faloutsos SCS CMU - 15-415/615 42

z-ordering - Detailed outline
•  spatial access methods

–  z-ordering
•  main idea - 3 methods
•  use w/ B-trees; algorithms (range, knn queries ...)
•  analysis; variations

– R-trees

Faloutsos SCS CMU 15-415/615

15

CMU SCS

Faloutsos SCS CMU - 15-415/615 43

z-ordering - usage & algo’s

Q1: How to store on disk?
A:
Q2: How to answer range queries etc

CMU SCS

Faloutsos SCS CMU - 15-415/615 44

z-ordering - usage & algo’s

Q1: How to store on disk?
A: treat z-value as primary key; feed to B-tree

SF

PGH

CMU SCS

Faloutsos SCS CMU - 15-415/615 45

z-ordering - usage & algo’s
MAJOR ADVANTAGES w/ B-tree:
•  already inside commercial systems (no

coding/debugging!)
•  concurrency & recovery is ready

SF

PGH

Faloutsos SCS CMU 15-415/615

16

CMU SCS

Faloutsos SCS CMU - 15-415/615 46

z-ordering - usage & algo’s

Q2: queries? (eg.: find city at (0,3))?

SF

PGH

CMU SCS

Faloutsos SCS CMU - 15-415/615 47

z-ordering - usage & algo’s

Q2: queries? (eg.: find city at (0,3))?
A: find z-value; search B-tree

SF

PGH

CMU SCS

Faloutsos SCS CMU - 15-415/615 48

z-ordering - usage & algo’s

Q2: range queries?

SF

PGH

Faloutsos SCS CMU 15-415/615

17

CMU SCS

Faloutsos SCS CMU - 15-415/615 49

z-ordering - usage & algo’s

Q2: range queries?
A: compute ranges of z-values; use B-tree

SF

PGH
9,11-15

CMU SCS

Faloutsos SCS CMU - 15-415/615 50

z-ordering - usage & algo’s

Q2’: range queries - how to reduce # of
qualifying of ranges?

SF

PGH
9,11-15

CMU SCS

Faloutsos SCS CMU - 15-415/615 51

z-ordering - usage & algo’s
Q2’: range queries - how to reduce # of

qualifying of ranges?
A: Augment the query!

SF

PGH
9,11-15 -> 8-15

Faloutsos SCS CMU 15-415/615

18

CMU SCS

Faloutsos SCS CMU - 15-415/615 52

z-ordering - Detailed outline
•  spatial access methods

–  z-ordering
•  main idea - 3 methods
•  use w/ B-trees; algorithms (range, knn queries ...)
•  variations

– R-trees

CMU SCS

Faloutsos SCS CMU - 15-415/615 53

z-ordering - variations

Q: is z-ordering the best we can do?

CMU SCS

Faloutsos SCS CMU - 15-415/615 54

z-ordering - variations

Q: is z-ordering the best we can do?
A: probably not - occasional long ‘jumps’
Q: then?

Faloutsos SCS CMU 15-415/615

19

CMU SCS

Faloutsos SCS CMU - 15-415/615 55

z-ordering - variations

Q: is z-ordering the best we can do?
A: probably not - occasional long ‘jumps’
Q: then? A1: Gray codes

CMU SCS

Faloutsos SCS CMU - 15-415/615 56

z-ordering - variations

A2: Hilbert curve! (a.k.a. Hilbert-Peano
curve)

CMU SCS

Faloutsos SCS CMU - 15-415/615 57

z-ordering - variations

‘Looks’ better (never long jumps). How to
derive it?

Faloutsos SCS CMU 15-415/615

20

CMU SCS

Faloutsos SCS CMU - 15-415/615 58

z-ordering - variations

‘Looks’ better (never long jumps). How to
derive it?

order-1 order-2 ... order (n+1)

CMU SCS

Faloutsos SCS CMU - 15-415/615 59

z-ordering - variations

Q: function for the Hilbert curve (h = f(x,y))?
A: bit-shuffling, followed by post-processing,
 to account for rotations. Linear on # bits.
 See, eg., [Jagadish, 90]

CMU SCS

Faloutsos SCS CMU - 15-415/615 60

z-ordering - variations

In general, Hilbert curve is great for
preserving distances, clustering, vector
quantization etc

Faloutsos SCS CMU 15-415/615

21

CMU SCS

Faloutsos SCS CMU - 15-415/615 61

Conclusions

•  z-ordering is a great idea (n-d points -> 1-d
points; feed to B-trees)

•  used by TIGER system and (most probably)
by other GIS products

•  works great with low-dim points

CMU SCS

Faloutsos SCS CMU - 15-415/615 62

SAMs - Detailed outline
•  spatial access methods

–  problem dfn
–  z-ordering
– R-trees

CMU SCS

Faloutsos SCS CMU - 15-415/615 63

SAMs - more detailed outline
•  R-trees

– main idea; file structure
–  (algorithms: insertion/split)
–  (deletion)
–  search: range, (nn, spatial joins)
– Variations: R*-trees, packed R-trees

Faloutsos SCS CMU 15-415/615

22

CMU SCS

Faloutsos SCS CMU - 15-415/615 64

Reminder: problem
•  Given a collection of geometric objects

(points, lines, polygons, ...)
•  organize them on disk, to answer spatial

queries (range, nn, etc)

CMU SCS

Faloutsos SCS CMU - 15-415/615 65

R-trees

•  z-ordering: cuts regions to pieces -> dup.
elim.

•  how could we avoid that?
•  Idea: Minimum Bounding Rectangles

CMU SCS

Faloutsos SCS CMU - 15-415/615 66

R-trees

•  [Guttman 84] Main idea: allow parents to
overlap!
– => guaranteed 50% utilization
– => easier insertion/split algorithms.
–  (only deal with Minimum Bounding Rectangles

- MBRs)

Faloutsos SCS CMU 15-415/615

23

CMU SCS

Faloutsos SCS CMU - 15-415/615 67

R-trees

•  eg., w/ fanout 4: group nearby rectangles to
parent MBRs; each group -> disk page

A
B

C

D
E

F
G

H

I

J

CMU SCS

Faloutsos SCS CMU - 15-415/615 68

R-trees

•  eg., w/ fanout 4:

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4
F G D E

H I J A B C

CMU SCS

Faloutsos SCS CMU - 15-415/615 69

R-trees

•  eg., w/ fanout 4:

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C

Faloutsos SCS CMU 15-415/615

24

CMU SCS

Faloutsos SCS CMU - 15-415/615 70

R-trees - format of nodes

•  {(MBR; obj-ptr)} for leaf nodes

P1 P2 P3 P4

A B C
x-low; x-high
y-low; y-high

...

obj
ptr ...

CMU SCS

Faloutsos SCS CMU - 15-415/615 71

R-trees - format of nodes

•  {(MBR; node-ptr)} for non-leaf nodes

P1 P2 P3 P4

A B C

x-low; x-high
y-low; y-high

...

node
ptr ...

CMU SCS

Faloutsos SCS CMU - 15-415/615 72

R-trees - range search?

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C

Faloutsos SCS CMU 15-415/615

25

CMU SCS

Faloutsos SCS CMU - 15-415/615 73

R-trees - range search?

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C

CMU SCS

Faloutsos SCS CMU - 15-415/615 74

R-trees - range search

Observations:
•  every parent node completely covers its

‘children’
•  a child MBR may be covered by more than

one parent - it is stored under ONLY ONE
of them. (ie., no need for dup. elim.)

CMU SCS

Faloutsos SCS CMU - 15-415/615 75

R-trees - range search

Observations - cont’d
•  a point query may follow multiple branches.
•  everything works for any dimensionality

Faloutsos SCS CMU 15-415/615

26

CMU SCS

Faloutsos SCS CMU - 15-415/615 76

SAMs - more detailed outline
•  R-trees

– main idea; file structure
–  (algorithms: insertion/split)
–  (deletion)
–  search: range, (nn, spatial joins)
– Variations: R*-trees, packed R-trees

CMU SCS

Faloutsos SCS CMU - 15-415/615 77

R-trees - insertion

•  eg., rectangle ‘X’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C X

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 78

R-trees - insertion

•  eg., rectangle ‘X’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C X

X

NOT IN EXAM

Faloutsos SCS CMU 15-415/615

27

CMU SCS

Faloutsos SCS CMU - 15-415/615 79

SAMs - more detailed outline
•  R-trees

– main idea; file structure
–  (algorithms: insertion/split)
–  (deletion)
–  search: range, (nn, spatial joins)
– Variations: R*-trees, packed R-trees

CMU SCS

Faloutsos SCS CMU - 15-415/615 80

R-trees - range search

pseudocode:
 check the root
 for each branch,
 if its MBR intersects the query rectangle
 apply range-search (or print out, if this
 is a leaf)

CMU SCS

Faloutsos SCS CMU - 15-415/615 81

SAMs - more detailed outline
•  R-trees

– main idea; file structure
–  (algorithms: insertion/split)
–  (deletion)
–  search: range, (nn, spatial joins)
– Variations: R*-trees, packed R-trees

Faloutsos SCS CMU 15-415/615

28

CMU SCS

Faloutsos SCS CMU - 15-415/615 82

R-trees - variations
Guttman’s R-trees sparked much follow-up

work
•  can we do better splits?
•  what about static datasets (no ins/del/upd)?
•  what about other bounding shapes?

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 83

R-trees - variations
Guttman’s R-trees sparked much follow-up work
•  can we do better splits?

–  i.e, defer splits?

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 84

R-trees - variations

A: R*-trees [Kriegel+, SIGMOD90]
•  defer splits, by forced-reinsert, i.e.: instead

of splitting, temporarily delete some entries,
shrink overflowing MBR, and re-insert
those entries

•  Which ones to re-insert?
•  How many?

NOT IN EXAM

Faloutsos SCS CMU 15-415/615

29

CMU SCS

Faloutsos SCS CMU - 15-415/615 85

R-trees - variations

A: R*-trees [Kriegel+, SIGMOD90]
•  defer splits, by forced-reinsert, i.e.: instead

of splitting, temporarily delete some entries,
shrink overflowing MBR, and re-insert
those entries

•  Which ones to re-insert?
•  How many? A: 30%

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 86

R-trees - variations

R*-trees: Also try to minimize area AND
perimeter, in their split.

Performance: higher space utilization; faster
than plain R-trees. One of the most
successful R-tree variants.

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 87

R-trees - variations
Guttman’s R-trees sparked much follow-up

work
•  can we do better splits?
•  what about static datasets (no ins/del/upd)?

– Hilbert R-trees
•  what about other bounding shapes?

NOT IN EXAM

Faloutsos SCS CMU 15-415/615

30

CMU SCS

Faloutsos SCS CMU - 15-415/615 88

R-trees - variations
•  what about static datasets (no ins/del/upd)?
•  Q: Best way to pack points?

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 89

R-trees - variations
•  what about static datasets (no ins/del/upd)?
•  Q: Best way to pack points?
•  A1: plane-sweep
 great for queries on ‘x’;
 terrible for ‘y’

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 90

R-trees - variations
•  what about static datasets (no ins/del/upd)?
•  Q: Best way to pack points?
•  A1: plane-sweep
 great for queries on ‘x’;
 bad for ‘y’

NOT IN EXAM

Faloutsos SCS CMU 15-415/615

31

CMU SCS

Faloutsos SCS CMU - 15-415/615 91

R-trees - variations
•  what about static datasets (no ins/del/upd)?
•  Q: Best way to pack points?
•  A1: plane-sweep
 great for queries on ‘x’;
 terrible for ‘y’
•  Q: how to improve?

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 92

R-trees - variations
•  A: plane-sweep on HILBERT curve!

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 93

R-trees - variations
•  A: plane-sweep on HILBERT curve!
•  In fact, it can be made dynamic (how?), as well

as to handle regions (how?)
•  A: [Kamel+, VLDB94]

NOT IN EXAM

Faloutsos SCS CMU 15-415/615

32

CMU SCS

Faloutsos SCS CMU - 15-415/615 94

R-trees - variations
Guttman’s R-trees sparked much follow-up

work
•  can we do better splits?
•  what about static datasets (no ins/del/upd)?
•  what about other bounding shapes?

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 95

R-trees - variations
•  what about other bounding shapes? (and why?)
•  A1: arbitrary-orientation lines (cell-tree,

[Guenther]
•  A2: P-trees (polygon trees) (MB polygon: 0,

90, 45, 135 degree lines)

NOT IN EXAM

CMU SCS

Faloutsos SCS CMU - 15-415/615 96

R-trees - variations
•  A3: L-shapes; holes (hB-tree)
•  A4: TV-trees [Lin+, VLDB-Journal 1994]
•  A5: SR-trees [Katayama+, SIGMOD97] (used

in Informedia)

NOT IN EXAM

Faloutsos SCS CMU 15-415/615

33

CMU SCS

Faloutsos SCS CMU - 15-415/615 97

R-trees - conclusions
•  Popular method; like multi-d B-trees
•  guaranteed utilization
•  good search times (for low-dim. at least)
•  R*-, Hilbert- and SR-trees: still used
•  Informix/DB2 ships DataBlade with R-trees

– Also in postgres (GiST)
–  and sqlite3 (separate module: R*-tree)

CMU SCS

Faloutsos SCS CMU - 15-415/615 98

Overall conclusions
•  For spatial data:

–  z-ordering (maps to 1-d points)
– R-trees (overlapping MBRs)

•  both have been implemented in some
commercial systems

•  both work well for low-dimensionalities
(<10 or so) - in high-d, it depends on
‘intrinsic’ dimensionality.

CMU SCS

Faloutsos SCS CMU - 15-415/615 99

References

•  Guttman, A. (June 1984). R-Trees: A Dynamic Index
Structure for Spatial Searching. Proc. ACM SIGMOD,
Boston, Mass.

•  Jagadish, H. V. (May 23-25, 1990). Linear Clustering of
Objects with Multiple Attributes. ACM SIGMOD Conf.,
Atlantic City, NJ.

•  Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider,
Bernhard Seeger: The R*-Tree: An Efficient and Robust
Access Method for Points and Rectangles. SIGMOD
Conference 1990: 322-331.

Faloutsos SCS CMU 15-415/615

34

CMU SCS

Faloutsos SCS CMU - 15-415/615 100

References, cont’d

•  Pagel, B., H. Six, et al. (May 1993). Towards an Analysis
of Range Query Performance. Proc. of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Washington, D.C.

•  Robinson, J. T. (1981). The k-D-B-Tree: A Search
Structure for Large Multidimensional Dynamic Indexes.
Proc. ACM SIGMOD.

•  Roussopoulos, N., S. Kelley, et al. (May 1995). Nearest
Neighbor Queries. Proc. of ACM-SIGMOD, San Jose, CA.

