Faloutsos CMU SCS 15-415/615

‘% CMUSCS.

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

Lecture #25: Crash Recovery - part 2
(R&G, ch. 18)

% CMUSCS

Motivation

* Atomicity:
— Transactions may abort (“Rollback™).

¢ Durability:
— What if DBMS stops running? (Causes?)

« Desired state after system

restarts: 1 Commit crash!
- T1 & T3 should be durable. T Abort
- T2, T4 & T5 should be T3 Commit
aborted (effects not seen). T4" I
T5 ' I

Faloutsos CMU SCS 15-415/615 2

% CMU SCS|

General Overview

¢ Preliminaries

Write-Ahead Log - main ideas

(Shadow paging)
* Write-Ahead Log: ARIES

Faloutsos CMU SCS 15-415/615 3

Faloutsos CMU SCS 15-415/615

‘% CMUSCS.

Main ideas so far:

» Write-Ahead Log, for loss of volatile
storage,

 with incremental updates (STEAL, NO
FORCE)

« and checkpoints

* On recovery: undo uncommitted; redo
committed transactions.

Faloutsos CMU SCS 15-415/615 4

g CMUSCS

Today: ARIES

With full details on
— fuzzy checkpoints

— recovery algorithm

C. Mohan (IBM)

Faloutsos CMU SCS 15-415/615 5

‘% CMU SCS|

1) Write ahead

2) Fast, during normal operation

A. Least interference with OS (‘STEAL’, ‘NO
FORCE”)

B. Fast (fuzzy) checkpoints

3) On multi-step ops: <begin op> ... <end op>
4) Redo everything; undo ‘loser’ xacts

Faloutsos CMU SCS 15-415/615 6

Faloutsos CMU SCS 15-415/615

‘g CMUSCS.

Overview

¢ Preliminaries

* Write-Ahead Log - main ideas
* (Shadow paging)
* Write-Ahead Log: ARIES
= _LSN’s
— examples of normal operation & of abort

— fuzzy checkpoints

— recovery algo
Itsos.

Falouf CMU SCS 15-415/615 7

% CMU SCS

where dfn

LSN Log seq. #
flushedLSN RAM Last LSN on log
pageLSN (@page; Latest update to page;
recLSN @page; Earliest update “ “
lastLSN T; Latest action of T,
Master record LSN of latest checkpoint

Faloutsos CMU SCS 15-415/615 8

% CMU SCS|

LSN

* Log Sequence Number

« every log record has an LSN
* Q: Why do we need it?

Faloutsos CMU SCS 15-415/615 9

Faloutsos CMU SCS 15-415/615

‘g CMUSCS

LSN

<T1 start>
Al:e.g,undo T4 - it is <T2 start>
faster, if we have a <T4 start>

linked list of the T4 log <T4, A, 10, 20> 2
records <T1 commit> >

<T4, B, 30, 40>

A2: and many other

<T3 start>
uses - see later

<T2 commit>
<T3 commit>

~~~ CRASH ~~~~

Faloutsos CMU SCS 15-415/615 10

% CMUSCS

Types of log records

<T1 start>
Q1: Which types? <T2 start>
<T4 start>
Al: >
<T4, A, 10, 20>
Q2: What format? <T1 commit> >
A2: <T4, B, 30, 40>
<T3 start>
<T2 commit>
<T3 commit>
~~~~ CRASH ~~~~
Faloutsos CMU SCS 15-415/615 11

% CMUSCS.

Types of log records

<T1 start>

Q1: Which types? T2 start>

Al: Update, commit, ckpoint, ... T start> >
<T4, A, 10, 20>

Q2: What format? <T1 commit> >
<T4, B, 30, 40>

A2: x-id, type, (old value, ...)

<T3 start>

<T2 commit>
<T3 commit>

~~~~ CRASH ~~~~

Faloutsos CMU SCS 15-415/615 12




Faloutsos CMU SCS 15-415/615

‘g CMUSCS.

Log Records
. Possible log record types:

LogRecord fields: * Update, Commit, Abort

prevLSN . Ch?ckpoint (for log

XID maintenance)

type * Compensation Log

pagelD Records (CLRs)
update lef?gtth — for UNDO actions
records § OITS€ . :
only L before-image End (end of commit or

after-image abort)

Faloutsos CMU SCS 15-415/615 13

% CMUSCS

Overview

¢ Preliminaries

» Write-Ahead Log - main ideas
* (Shadow paging)
* Write-Ahead Log: ARIES
—LSN’s
m) — examples of normal operation & of abort

— fuzzy checkpoints

— recovery algo
Faloutsos CMU SCS 15-415/615 14

% CMU SCS|

Writing log records

¢« We don’t want to write one record at a time
— (why not?)
¢ How should we buffer them?

Faloutsos CMU SCS 15-415/615 15




Faloutsos CMU SCS 15-415/615

‘% CMUSCS.

Writing log records

* We don’t want to write one record at a time
— (why not?)

* How should we buffer them?
— Batch log updates;

— Un-pin a data page ONLY if all the
corresponding log records have been flushed to
the log.

Faloutsos CMU SCS 15-415/615 16

& WAL & the Log

« Each data page contains a pageLSN.

— The LSN of the most recent update to Log records
that page. flushed to disk

« System keeps track of flushed LSN.
— The max LSN flushed so far.
« WAL: For a page i to be written

must flush log at least to the flushedLSN”
point where: pageL SN up og tail”
pageLSNi < flushedLSN in RAM

CMU SCS 15-415/615 17

Faloutsos

e WAL & the Log

« Can we un-pin the gray page?
Log records
flushed to disk

flushed LS
—_—

PageLSN 7w og tail”
in RAM

CMU SCS 15-415/615 18

Faloutsos




Faloutsos CMU SCS 15-415/615

& WAL & the Log

¢ Can we un-pin the gray page?
. . Log records
Al yes flushed to disk

flushed LS
—_—

pageLSN | v og tail”
in RAM

CMU SCS 15-415/615 19

Faloutsos

& WAL & the Log

¢ Can we un-pin the red page?
Log records
flushed to disk

flushedLSN
—_—

pageLSN - "Log tail”
in RAM

CMU SCS 15-415/615 : 20

Faloutsos

& WAL & the Log

« Can we un-pin the red page?
. . Log records
A:ino flushed to disk

flushedLSN
—

T
PageLSN 7 og tail”
in RAM

CMU SCS 15-415/615 : 21

Faloutsos




Faloutsos CMU SCS 15-415/615

‘g CMUSCS.

WAL & the Log

Log records
flushed to disk

[ S—
@ o] o]

LSNs pagelSNs  flushedLSN

flushed LS
—_—
in RAM

Q: why not on disk or log?

CMU SCS 15-415/615 22

Faloutsos

% CMUSCS

Overview

¢ Preliminaries

» Write-Ahead Log - main ideas
* (Shadow paging)
* Write-Ahead Log: ARIES
—LSN’s
m) — cxamples of normal operation & of abort
— fuzzy checkpoints

— recovery algo
Faloutsos CMU SCS 15-415/615 23

% CMU SCS|

Normal Execution of an Xact

* Series of reads & writes, followed by commit
or abort.

— We will assume that disk write is atomic.
« In practice, additional details to deal with non-atomic
writes.

e Strict 2PL.

« STEAL, NO-FORCE buffer management, with
Write-Ahead Logging.

Faloutsos CMU SCS 15-415/615 24




Faloutsos CMU SCS 15-415/615

‘% CMUSCS.

Normal execution of an Xact

» Page ‘i’ can be written out only after the
corresponding log record has been flushed

Faloutsos CMU SCS 15-415/615 25

g CMUSCS

Transaction Commit

* Write commit record to log.

« All log records up to Xact’s commit record
are flushed to disk.
Q: why not flush the dirty pages, too?

@ (][]
I I ‘) oo---0

CMU SCS 15-415/615 26

‘% CMU SCS|

Transaction Commit

* Write commit record to log.

+ All log records up to Xact’s commit record
are flushed to disk.
Q: why not flush the dirty pages, too?

A: speed — ‘NO FORCE’

@& [»] [o]
I I ? oo---0

CMU SCS 15-415/615 27




Faloutsos CMU SCS 15-415/615

‘,%\() CMUSCS.

Transaction Commit

* Write commit record to log.

+ All log records up to Xact’s commit record
are flushed to disk.

— Note that log flushes are sequential,
synchronous writes to disk.

— Many log records per log page.
* Commit() returns.

* Write end record to log.

Faloutsos CMU SCS 15-415/615 28

% CMUSCS

Example

LSN|prevLSN tid type item old new

10 |[NULL TI update X 30 40

50 |10 T1update Y 22 25

63 (50 T1 commit dbms flushes
log records
+ some

63 63 T1 end record-keeping

Faloutsos CMU SCS 15-415/615 29

% CMU SCS|

Example

Start commiting

Done commiting

@ dbms flushes

log records

+ some

record-keeping

Faloutsos CMU SCS 15-415/615 I 30

10



Faloutsos

‘g CMUSCS.

Overview

* Preliminaries

Write-Ahead Log - main ideas
(Shadow paging)
Write-Ahead Log: ARIES

—LSN’s

m) — examples of normal operation & of abort

— fuzzy checkpoints

— recovery algo

Faloutsos

CMU SCS 15-415/615

31

CMU SCS 15-415/615

% CMUSCS

Faloutsos

Abort

Actually, a special case of the up-coming
‘undo’ operation,

applied to only one transaction - e.g.:

CMU SCS 15-415/615

% CMU SCS|

LSN

Abort - Example

prevLSN tid type item old new

10

63

Faloutsos

10

NULL T2 update Y 30 40

T2 abort

CMU SCS 15-415/615

33

11



Faloutsos

CMU SCS.

Abort - Example

LSN|prevLSN tid type item old new

10 |[NULL T2 update Y 30 40

63 (10 T2 abort

compensating
72 |63 T2 CLR (LSN 10) log

record

78 |72 T2 end

Faloutsos CMU SCS 15-415/615 34

CMU SCS 15-415/615

CMU SCS.

Abort - Example

LSN| prevLSN tid type item old new undoNextLSN

10 QNULD) T2 update Y 30 40

63 (10 T2 abort

72 |63 T2CLR Y 40 30 QuULD)
78 |72 T2 end

Faloutsos CMU SCS 15-415/615 35

CMU SCS.

CLR record - details

¢ a CLR record has all the fields of an
‘update’ record

* plus the ‘undoNextLSN’ pointer, to the
next-to-be-undone LSN

Faloutsos CMU SCS 15-415/615 36

12



Faloutsos CMU SCS 15-415/615

‘g CMUSCS.

Abort - algorithm:

* First, write an ‘abort’ record on log and

* Play back updates, in reverse order: for each
update
— write a CLR log record

— restore old value

* at end, write an ‘end’ log record

Notice: CLR records never need to be undone

Faloutsos CMU SCS 15-415/615 37

% CMUSCS

Overview

¢ Preliminaries

» Write-Ahead Log - main ideas
* (Shadow paging)
* Write-Ahead Log: ARIES
—LSN’s
— examples of normal operation & of abort
- fuzzy checkpoints

— recovery algo
Faloutsos CMU SCS 15-415/615 38

% CMU SCS|

(non-fuzzy) checkpoints

« they have performance problems - recall
from previous lecture:

Faloutsos CMU SCS 15-415/615 39

13



Faloutsos

‘% CMUSCS.

We assumed that the DBMS:

* stops all transactions, and

+ flushes on disk the ‘dirty
pages’

Both decisions are expensive

Q: Solution?

Faloutsos CMU SCS 15-415/615

reminder

(non-fuzzy) checkpoints

<T1 start>

<T1 commit>

<T499, C, 1000, 1200>
<checkpoint>
<T499 commit>

before
<T500 start>
<T500, A, 200, 400>
<checkpoint>

<T500, B, 10, 12>
crash

Y S

CMU SCS 15-415/615

% CMUSCS

Q: Solution?

Hintl: record state as of the
beginning of the ckpt

Hint2: we need some

guarantee about which
pages made it to the disk

reminder

(non-fuzzy) checkpoints

<T1 start>

<T1 commit>

<T499, C, 1000, 1200>
<checkpoint>

<T499 commit>
<T500 start>

<T500, A, 200, 400>

<checkpoint>

Faloutsos

CMU SCS 15-415/615

<T500, B, 10, 12>

~N

crash
41

% CMU SCS|

Q: Solution?

A: write on the log:

* the id-s of active
transactions and

* the id-s (ONLY!) of dirty
pages (rest: obviously
made it to the disk!)

Faloutsos CMU SCS 15-415/615

checkpoints

<T1 start>

<T1 commit>

<T499, C, 1000, 1200>
<checkpoint, {T499}, {P10,P12}>
<T499 commit>

<T500 start>

<T500, A, 200, 400>
<checkpoint {T500}, {P10,P33}>

<T500, B, 10, 12>
crash

A~ ®

14



Faloutsos CMU SCS 15-415/615

CMU SCS
<T1 start>

<T1 commit>

<T499, C, 1000, 1200>
Q: Solution? <begin ckpt>

A: write on the log:
i . <end ckpt, {T499}, {P10,P12}>
* the id-s of active <1499 commit>

transactions and <T500 start>
* the id-s (ONLY!) of dirty <T500,4, 200, 400>

. <begin ckpt>
pages (rest: obviously
made it to the disk!)

<checkpoint {T500}, {P10,P33}>
<T500, B, 10, 12> crash

Faloutsos CMU SCS 15-415/615 /\/\_/\ 43

% CMUSCS

(Fuzzy) checkpoints

Specifically, write to log:
— begin_checkpoint record: indicates start of ckpt

— end_checkpoint record: Contains current Xact table
and dirty page table. This is a ‘fuzzy checkpoint’:
* Other Xacts continue to run; so these tables accurate only
as of the time of the begin_checkpoint record.
* No attempt to force dirty pages to disk; effectiveness of
checkpoint limited by oldest unwritten change to a dirty
page.

Faloutsos CMU SCS 15-415/615 44

% CMU SCS|

(Fuzzy) checkpoints

Specifically, write to log:
— begin_checkpoint record: indicates start of ckpt

— end_checkpoint record: Contains current Xact table
and dirty page table. This is a “fuzzy checkpoint’:
* Other Xacts continue to run; so these tables accurate only
as of the time of the begin_checkpoint record.
» No attempt to force dirty pages to disk; effectiveness of
checkpoint limited by oldest unwritten change to a dirty
page.

solved both problems of non-fuzzy ckpts!!

Faloutsos CMU SCS 15-415/615 45

15



Faloutsos CMU SCS 15-415/615

‘% CMUSCS
(Fuzzy) checkpoints - cont’d

And:
— Store LSN of most recent chkpt record on disk
(master record)
* Q: why do we need that?

Faloutsos CMU SCS 15-415/615 46

% CMUSCS
(Fuzzy) checkpoints - cont’d

And:

— Store LSN of most recent chkpt record on disk
(master record)
* Q: why do we need that?
e A: so that we know where to start from, on crash &

recovery
Faloutsos CMU SCS 15-415/615 47
E | <end ckpt, {T499}, {P10,P12}> |
(Fuzzy) Checkpoints

More details: Two in-memory tables:
#1) Transaction Table
Q: what would you store there?

Faloutsos CMU SCS 15-415/615 48

16



Faloutsos CMU SCS 15-415/615

‘% CMU SCS.
[ <end ckpt, {T499}, {P10,P12}> |

(Fuzzy) Checkpoints
More details: Two in-memory tables:
#1) Transaction Table
* One entry per currently active Xact.

— entry removed when Xact commits or aborts

* Contains
— XID,
— status (running/committing/aborting), and
— lastLSN (most recent LSN written by Xact).

B [ <end ckpt, {T499}, {P10,P12}> |
(Fuzzy) Checkpoints
#2) Dirty Page Table:

— One entry per dirty page currently in buffer pool.

— Contains recLSN -- the LSN of the log record
which first caused the page to be dirty.

Faloutsos CMU SCS 15-415/615 50

% CMU SCS|

Overview

¢ Preliminaries

» Write-Ahead Log - main ideas
* (Shadow paging)
* Write-Ahead Log: ARIES
—LSN’s
— examples of normal operation & of abort

— fuzzy checkpoints
ﬁ — recovery algo

aloutsos CMU SCS 15-415/615 51

17



Faloutsos CMU SCS 15-415/615

CMU SCS.

The Big Picture: What’s Stored
Where

ElpEa
LogRecords ~——— Yact Table
LSN
Xio Data pages lastLSN
t each with a status
gap:elD pageLSN
update | length Dirty Page Table
offset master record recLSN
CLR before-image LSN of most
after-image recent checkpoint | flushedL.SN
CLR [ undoNexthpﬂ
Faloutsos CMU SCS 15-415/615 52

g CMUSCS.
Crash Recovery: Big Picture

Oldest log + :
. of Xact |} .
e em b } e Start from a checkpoint (found
crash via master record).
Smallest | * Three phases.
recLSNin & - Analysis - Figure out which
dirty page | : Xact itted si
table after” acts committed since
Analysis H checkpoint, which failed.
: - REDO all actions (repeat
Last chkpt = history)
: 1 - UNDO effects of failed Xacts.
CRASH  —
Faloutsos A R U cMUSCs 15415615 53

‘% CMU SCS|
Crash Recovery: Big Picture

Oldest log } :

rec. of Xact
active at
crash

* Notice: relative ordering of A,
B, C may vary!

Smallest H
recLSNin - 2 B
dirty page

table after
Analysis

Last chkpt —A

CRASH = 1

Faloutsos A R U oMuUscs 15415615 54

18



Faloutsos

CMU SCS.

Recovery: The Analysis Phase

» Re-establish knowledge of state at checkpoint.

checkpoint

CMU SCS 15-415/615

— via transaction table and dirty page table stored in the

<end ckpt, {T499}, {P10,P12}> |

Faloutsos

CMU SCS 15-415/615 55

CMU SCS.

Recovery: The Analysis Phase

* Scan log forward from checkpoint.

— End record: Remove Xact from Xact table.
— All Other records:

» Add Xact to Xact table, with status ‘U’ (=candidate for undo)
e set lastLSN=LSN,

* on commit, change Xact status to ‘C’.

— also, for Update records: If page P not in Dirty Page
Table,

¢ add P to DPT, set its recLSN=LSN.

Faloutsos

CMU SCS 15-415/615 56

CMU SCS.

Recovery: The Analysis Phase

» At end of Analysis:

— transaction table says which xacts were active at time
of crash.

— DPT says which dirty pages might not have made it to
disk

Faloutsos CMU SCS 15-415/615 57

19



Faloutsos CMU SCS 15-415/615

CMU SCS.

Recovery: The Analysis Phase

Example xact-table Dirty Page
table

LSN 10 <begin ckpt >

LSN 20 <T96 P33, A, 10, 15> (s, ) 25

LSN 30 <end ckpt {T96, T33}, {P20, p33}> (0V: (1330 (P33).(P20)

(T96,C), (T33,U)  (P33), (P20)
LSN 40 <T96 commit>

(T33,U0)  (P33), (P20)

LSN 50 <T96 end>
crash
Faloutsos CMU SCS 15-415/615 58

& Phase 2: REDO

Goal: repeat History to reconstruct state at crash:

— Reapply a// updates (even of aborted Xacts!), redo
CLRs.

— (and try to avoid unnecessary reads and writes!)
Specifically:
* Scan forward from log rec containing smallest
recLSN in DPT. Q: why start here?

Faloutsos CMU SCS 15-415/615 59

€ Phase 2: REDO

Goal: repeat History to reconstruct state at crash:

— Reapply «// updates (even of aborted Xacts!), redo
CLRs.

— (and try to avoid unnecessary reads and writes!)
Specifically:

* Scan forward from log rec containing smallest
recLSN in DPT. Q: why start here?

A: all else have been flushed

Faloutsos CMU SCS 15-415/615 60

20



Faloutsos CMU SCS 15-415/615

‘% CMU SCS
Crash Recovery: Big Picture

Oldest log + :
:i:“?ef ;(tad} e Start from a checkpoint (found
crash H via master record).
Smallest | * Three phases.
;e.CLSN in > - Analysis - Figure out which
t ;{fl’; E?tg; : Xacts committe.d sinc'e
Analysis : checkpoint, which failed.

- REDO all actions (repeat
Last chkpt =+ history)

H 1 - UNDO effects of failed Xacts.
CRASH =

Faloutsos A R U oMUsCcs 15415615 61

& Phase 2: REDO (cont’d)

* For each update log record or CLR with a
given LSN, REDO the action unless:
— Affected page is not in the Dirty Page Table, or
— Affected page is in D.P.T., but has recLSN >

H LSN, or
— pageLSN (in DB) = LSN. (this last case requires
+ 1/0)
H
A R
Faloutsos CMU SCS 15-415/615 62

e Phase 2: REDO (cont’d)

* To REDO an action:
— Reapply logged action.

— Set pageL.SN to LSN. No additional logging, no
forcing!

Faloutsos CMU SCS 15-415/615 63

21



Faloutsos CMU SCS 15-415/615

B Phase 2: REDO (cont’d)

« at the end of REDO phase, write ‘end’ log
records for all xacts with status ‘C’,
 and remove them from transaction table

Faloutsos CMU SCS 15-415/615 64

g CMUSCS

Phase 3: UNDO

Goal: Undo all transactions that were active at the
time of crash (‘loser xacts’)

* That is, all xacts with ‘U’ status on the xact
table of the Analysis phase

* Process them in reverse LSN order
+ using the lastLSN’s to speed up traversal
+ and issuing CLRs

Faloutsos CMU SCS 15-415/615 65

‘% CMU SCS|

Phase 3: UNDO

Goal: Undo all transactions that were active at the

time of crash (‘loser xacts’)
xact-table Dirty Page
table

(T96, U) (P33)
H (T96,U), (T33,U)  (P33), (P20)
i (T96,C), (T33,U)  (P33), (P20)
AR U
(T33,U)  (P33), (P20)
Faloutsos CMU SCS 15-415/615

22



Faloutsos

‘% CMU SCS
Phase 3: UNDO
ToUndo={lastLSNs of ‘loser’ Xacts}
Repeat:
— Choose (and remove) largest LSN among ToUndo.
— If this LSN is a CLR and undonextLSN==NULL
* Write an End record for this Xact.
— If this LSN is a CLR, and undonextLSN != NULL
¢ Add undonextLSN to ToUndo

— Else this LSN is an update. Undo the update, write
a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Faloutsos CMU SCS 15-415/615 67

CMU SCS 15-415/615

g CMUSCS
Phase 3: UNDO - illustration

LSN LOG
suppose that after end of :
00 +
analysis phase we have: 05 =

xact table 10 -'-

xid status lastLSN 20 _
_— 30 +
H prevLSNs
T32 U 10 +
T41 U
60 _
x
Faloutsos CMU SCS 15-415/615 68

‘% CMU SCS.
Phase 3: UNDO - illustration

LSN LOG
suppose that after end of :
00 +
analysis phase we have: 05 4 _

xact table 10 "'

xid status lastLSN 20 — — |undo
- 30 =+
T32 U 40 ___ _ in reverse
T4l U 45+ _ | LSN order
60 + -
x
Faloutsos CMU SCS 15-415/615 69

23



Faloutsos CMU SCS 15-415/615

‘% CMUSCS.
Example of Recovery
LSN LOG
’ ‘ 00 -'- begin_checkpoint
05 == end_checkpoint
Xact Table 10 =~ update: T1 writes P5
lastLSN 20 & update T2 writes P3
status 30 - T1 abort
Dirty Page Table T abor
recLSN 40 + CLR: Undo)T1.LSK 10
flushedLSN 45 = T1End —
50 =~ update: T3 writes P1
ToUndo 60 = update: T2 writes P5
X CRASH
Faloutsos CMU SCS 15-415/615 70
% CMUSCS
Questions

* QI: After the Analysis phase, which are the
‘loser’ transactions?

* Q2: UNDO phase - what will it do?

Faloutsos CMU SCS 15-415/615 71

% CMU SCS|

Questions

* Q1: After the Analysis phase, which are the
‘loser’ transactions?

e Al: T2 and T3
* Q2: UNDO phase - what will it do?
* A2:undo ops of LSN 60, 50, 20

Faloutsos CMU SCS 15-415/615 72

24



Faloutsos

B

CMU SCS.

Example; Crash During Restart!

_rav

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

Faloutsos

LSN LOG
00,05 = begin_checkpoint, end_checkpoint
10 = update: T1 writes P5
20 — update@writes P3
30 =~ T1 abort
40,45 = CLR: Undo T1 LSN 10, T1 End
50 =+ update@writes P1
60 =+ update@writes P5
) CRASH, RESTART
CMU SCS 15-415/615 7

CMU SCS 15-415/615

B

CMU SCS.

Example: Crash During Restart!

|

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

Faloutsos

LSN LOG
00,05 =+ begin_checkpoint, end_checkpoint
10 = update: T1 writes P5
20 = updat@ writes P3“ undonextLSN
30 = T1 abort
40,45 = CLR: Undo T1 LSN 10, T1 End\‘
50 =+ update@writes P1 |
60 = update@writes pP5 /
¢ CRASH, RESTART /
70 7 CLR: Undo T2 LSN 60
CMU SCS 15-415/615 74

B

CMU SCS.

Example; Crash During Restart!

LSN LOG
’ ‘ 00,05 =+ begin_checkpoint, end_checkpoint
10 = update: T1 writes P5
20 = update@ writes P37 undonextLSN
Xact Table 30 = T1 abort
lastLSN \
status 40,45 =~ CLR: Undo T1 LSN 10, T1 Endy‘ .
Dirty Page Table 50 —+ update{T3writes P1 }‘
recLSN 60 — update{TD writes P5 /
flushedLSN X CRASH, RESTART
. 70 7 CLR: Undo T2 LSN 60
ToUndo 80,85 - CLR: Undo T3 LSN 50, T3 end
Faloutsos CMU SCS 15-415/615 75

25



Faloutsos

B

CMU SCS.

Example; Crash During Restart!
NI LSN LOG
00,05 = begin_checkpoint, end_checkpoint

’ ‘ 10 = update: T1 writes P5

20 =~ update T2 writes P3“

30 -~ T1 abort
40,45 — CLR: Undo T1 LSN 10, T1 End\‘
|

50 — update: T3 writes P1 |

60 = update: T2 writes P5 /
) CRASH, RESTART /
70 7 CLR: Undo T2 LSN 60~

80,85 = CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART

Faloutsos CMU SCS 15-415/615 76

CMU SCS 15-415/615

undonextLSN

CMU SCS.

Questions

* Q3: After the Analysis phase, which are the
‘loser’ transactions?

e Q4: UNDO phase - what will it do?

Faloutsos CMU SCS 15-415/615 77

CMU SCS.

Questions

* Q3: After the Analysis phase, which are the
‘loser’ transactions?

* A3: T2 only
* Q4: UNDO phase - what will it do?

» A4: follow the string of prevLSN of T2,
exploiting undoNextLSN

Faloutsos CMU SCS 15-415/615 78

26



Faloutsos

B

CMU SCS.

Example; Crash During Restart!

CMU SCS 15-415/615

LSN LOG
’ ‘ 00,05 = begin_checkpoint, end_checkpoint
10 = update: T1 writes P5
20 =
Xact Table 30 -
lastLSN
status  ~ 204
Dirty Page Table \§
recLSN 60
flushedLSN
70 ~
ToUndo 80,85 =~ CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART
Faloutsos CMU SCS 15-415/615 79
% CMUSCS.
Questions

* QS5: show the log, after the recovery is

finished:

Faloutsos

CMU SCS 15-415/615 80

B

CMU SCS.

Example; Crash During Restart!

Faloutsos

LSN LOG
’ ‘ 00,05 =+ begin_checkpoint, end_checkpoint
10 = update: T1 writes P5
20 -~ update T2 writes P3° undonextLSN
Xact Table 30 = T1 abort
lastLSN \
status 40,45 =~ CLR: Undo T1 LSN 10, T1 Endy‘ .
Dirty Page Table 50 — update: T3 writes P1 ‘\‘
recLSN 60 =~ update: T2 writes P5 /
flushedl.SN X CRASH, RESTART /
. 70 7 CLR: Undo T2 LSN 60
ToUndo 80,85 —— CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART
90, 95 = CLR: Undo T2 LSN 20, T2 end

CMU SCS 15-415/615 81

27



Faloutsos

‘,%\() CMUSCS.

Additional Crash Issues

* What happens if system crashes during
Analysis? During REDO?

* How do you limit the amount of work in
REDO?
— Flush asynchronously in the background.

* How do you limit the amount of work in
UNDO?
— Avoid long-running Xacts.

Faloutsos CMU SCS 15-415/615 82

CMU SCS 15-415/615

% CMUSCS.
Summary of Logging/Recovery

* Recovery Manager guarantees Atomicity &
Durability.

Atomicity
Consistency
Isolation
Durability

Faloutsos CMU SCS 15-415/615 83

% CMUSCS.
Summary of Logging/Recovery

ARIES - main ideas:
— WAL (write ahead log), STEAL/NO-

FORCE let OS
— fuzzy checkpoints (snapshot of dirty do its best
page ids)
— redo everything since the earliest dirty
page; undo ‘loser’ transactions idempotency

— write CLRs when undoing, to survive

failures during restarts
Faloutsos CMU SCS 15-415/615 84

28



Faloutsos CMU SCS 15-415/615

‘g CMUSCS
Summary of Logging/Recovery

Additional concepts:

» LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

» pageLSN allows comparison of data page
and log records.

* (and several other subtle concepts: undoNextLSN,
recLSN etc)

Faloutsos CMU SCS 15-415/615 85

29



