
Faloutsos CMU SCS 15-415/615

1

CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

Lecture #24: Crash Recovery - part 1
(R&G, ch. 18)

CMU SCS

Faloutsos CMU SCS 15-415/615 2

General Overview

•  Preliminaries
•  Write-Ahead Log - main ideas
•  (Shadow paging)
•  Write-Ahead Log: ARIES

CMU SCS

Faloutsos CMU SCS 15-415/615 3

NOTICE:

•  NONE of the methods in this lecture is used
‘as is’

•  we mention them for clarity, to illustrate the
concepts and rationale behind ‘ARIES’,
which is the industry standard.

Faloutsos CMU SCS 15-415/615

2

CMU SCS

Faloutsos CMU SCS 15-415/615 4

Transactions - dfn

= unit of work, eg.
move $10 from savings to checking

Atomicity (all or none)
Consistency
Isolation (as if alone)
Durability

recovery

concurrency
control

CMU SCS

Faloutsos CMU SCS 15-415/615 5

Overview - recovery

•  problem definition
–  types of failures
–  types of storage

•  solution#1: Write-ahead log - main ideas
–  deferred updates
–  incremental updates
–  checkpoints

•  (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415/615 6

Recovery

•  Durability - types of failures?

Faloutsos CMU SCS 15-415/615

3

CMU SCS

Faloutsos CMU SCS 15-415/615 7

Recovery

•  Durability - types of failures?
•  disk crash (ouch!)
•  power failure
•  software errors (deadlock, division by zero)

CMU SCS

Faloutsos CMU SCS 15-415/615 8

Reminder: types of storage

•  volatile (eg., main memory)
•  non-volatile (eg., disk, tape)
•  “stable” (“never” fails - how to implement

it?)

CMU SCS

Faloutsos CMU SCS 15-415/615 9

Classification of failures:

•  logical errors (eg., div. by 0)
•  system errors (eg. deadlock - pgm can run

later)
•  system crash (eg., power failure - volatile

storage is lost)
•  disk failure

frequent; ‘cheap’

rare; expensive

Faloutsos CMU SCS 15-415/615

4

CMU SCS

Faloutsos CMU SCS 15-415/615 10

Problem definition

•  Records are on disk
•  for updates, they are copied in memory
•  and flushed back on disk, at the discretion

of the O.S.! (unless forced-output: ‘output
(B)’ = fflush())

CMU SCS

Faloutsos CMU SCS 15-415/615 11

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk
main

memory

5
}page

buffer{
5

reminder

CMU SCS

Faloutsos CMU SCS 15-415/615 12

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk
main

memory

6
5

reminder

Faloutsos CMU SCS 15-415/615

5

CMU SCS

Faloutsos CMU SCS 15-415/615 13

Problem definition - eg.:

read(X)
X=X+1
write(X)

disk

6
5

buffer joins an ouput queue,

but it is NOT flushed immediately!

Q1: why not?

Q2: so what?

reminder

CMU SCS

Faloutsos CMU SCS 15-415/615 14

Problem definition - eg.:

read(X)
read(Y)
X=X+1
Y=Y-1
write(X)
write(Y)

disk

6

Q2: so what?

X
3

5

Y
3

reminder

CMU SCS

Faloutsos CMU SCS 15-415/615 15

Problem definition - eg.:

read(X)
read(Y)
X=X+1
Y=Y-1
write(X)
write(Y)

disk

6

3

Q2: so what?

Q3: how to guard against it?

X
3

5

Y

reminder

Faloutsos CMU SCS 15-415/615

6

CMU SCS

Faloutsos CMU SCS 15-415/615 16

Overview - recovery

•  problem definition
–  types of failures
–  types of storage

•  solution#1: Write-ahead log - main ideas
–  deferred updates
–  incremental updates
–  checkpoints

•  (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415/615 17

Solution #1: W.A.L.

•  redundancy, namely
•  write-ahead log, on ‘stable’ storage
•  Q: what to replicate? (not the full page!!)
•  A:
•  Q: how exactly?

CMU SCS

Faloutsos CMU SCS 15-415/615 18

W.A.L. - intro

•  replicate intentions: eg:
<T1 start>
<T1, X, 5, 6>
<T1, Y, 4, 3>
<T1 commit> (or <T1 abort>)

Faloutsos CMU SCS 15-415/615

7

CMU SCS

Faloutsos CMU SCS 15-415/615 19

W.A.L. - intro

•  in general: transaction-id, data-item-id, old-
value, new-value

•  (assumption: each log record is
immediately flushed on stable store)

•  each transaction writes a log record first,
before doing the change

•  when done, write a <commit> record & exit

CMU SCS

Faloutsos CMU SCS 15-415/615 20

W.A.L. - deferred updates

•  idea: prevent OS from flushing buffers,
until (partial) ‘commit’.

•  After a failure, “replay” the log

CMU SCS

Faloutsos CMU SCS 15-415/615 21

W.A.L. - deferred updates

•  Q: how, exactly?
–  value of W on disk?
–  value of W after recov.?
–  value of Z on disk?
–  value of Z after recov.?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

<T1 commit>

before

crash

Faloutsos CMU SCS 15-415/615

8

CMU SCS

Faloutsos CMU SCS 15-415/615 22

W.A.L. - deferred updates

•  Q: how, exactly?
–  value of W on disk?
–  value of W after recov.?
–  value of Z on disk?
–  value of Z after recov.?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415/615 23

W.A.L. - deferred updates

•  Thus, the recovery algo:
–  redo committed transactions
–  ignore uncommited ones

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415/615 24

W.A.L. - deferred updates

Observations:
- no need to keep ‘old’ values
- Disadvantages?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

Faloutsos CMU SCS 15-415/615

9

CMU SCS

Faloutsos CMU SCS 15-415/615 25

W.A.L. - deferred updates

- Disadvantages?
(e.g., “increase all balances by 5%”)
May run out of buffer space!
Hence:

CMU SCS

Faloutsos CMU SCS 15-415/615 26

Overview - recovery

•  problem definition
–  types of failures
–  types of storage

•  solution#1: Write-ahead log
–  deferred updates
–  incremental updates
–  checkpoints

•  (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415/615 27

W.A.L. - incremental updates

- log records have ‘old’ and ‘new’ values.
- modified buffers can be flushed at any time
Each transaction:
- writes a log record first, before doing the

change
- writes a ‘commit’ record (if all is well)
- exits

Faloutsos CMU SCS 15-415/615

10

CMU SCS

Faloutsos CMU SCS 15-415/615 28

W.A.L. - incremental updates

•  Q: how, exactly?
–  value of W on disk?
–  value of W after recov.?
–  value of Z on disk?
–  value of Z after recov.?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

<T1 commit>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415/615 29

W.A.L. - incremental updates

•  Q: how, exactly?
–  value of W on disk?
–  value of W after recov.?
–  value of Z on disk?
–  value of Z after recov.?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415/615 30

W.A.L. - incremental updates

•  Q: recovery algo?
•  A:

–  redo committed xacts
–  undo uncommitted ones

•  (more details: soon)

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

Faloutsos CMU SCS 15-415/615

11

CMU SCS

Faloutsos CMU SCS 15-415/615 31

High level conclusion:

•  Buffer management plays a key role
•  FORCE policy: DBMS immediately forces

dirty pages on the disk (easier recovery;
poor performance)

•  STEAL policy == ‘incremental updates’:
the O.S. is allowed to flush dirty pages on
the disk

CMU SCS

Faloutsos CMU SCS 15-415/615 32

Buffer Management summary

Force

No Force

No Steal Steal

 UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance
Implications

Logging/Recovery
Implications

No UNDO

No REDO

CMU SCS

Faloutsos CMU SCS 15-415/615 33

W.A.L. - incremental updates

Observations
•  “increase all balances by

5%” - problems?
•  what if the log is huge?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

before

crash

Faloutsos CMU SCS 15-415/615

12

CMU SCS

Faloutsos CMU SCS 15-415/615 34

Overview - recovery

•  problem definition
–  types of failures
–  types of storage

•  solution#1: Write-ahead log
–  deferred updates
–  incremental updates
–  checkpoints

•  (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415/615 35

W.A.L. - check-points

Idea: periodically, flush
buffers

Q: should we write
anything on the log?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

...

<T500, B, 10, 12>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415/615 36

W.A.L. - check-points

Q: should we write
anything on the log?

A: yes!
Q: how does it help us?

<T1 start>

<T1, W, 1000, 2000>

<T1, Z, 5, 10>

<checkpoint>

...

<checkpoint>

<T500, B, 10, 12>

before

crash

Faloutsos CMU SCS 15-415/615

13

CMU SCS

Faloutsos CMU SCS 15-415/615 37

W.A.L. - check-points

Q: how does it help us?
A=? on disk?
A=? after recovery?
B=? on disk?
B=? after recovery?
C=? on disk?
C=? after recovery?

<T1 start>

...

<T1 commit>

...

<T499, C, 1000, 1200>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<checkpoint>

<T500, B, 10, 12>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415/615 38

W.A.L. - check-points

Q: how does it help us?
I.e., how is the recovery
algorithm?

<T1 start>

...

<T1 commit>

...

<T499, C, 1000, 1200>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<checkpoint>

<T500, B, 10, 12>

before

crash

CMU SCS

Faloutsos CMU SCS 15-415/615 39

W.A.L. - check-points

Q: how is the recovery
algorithm?
A:

 - undo uncommitted
xacts (eg., T500)

 - redo the ones
committed after the last
checkpoint (eg., none)

<T1 start>

...

<T1 commit>

...

<T499, C, 1000, 1200>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<checkpoint>

<T500, B, 10, 12>

before

crash

Faloutsos CMU SCS 15-415/615

14

CMU SCS

Faloutsos CMU SCS 15-415/615 40

W.A.L. - w/ concurrent xacts

Assume: strict 2PL

CMU SCS

Faloutsos CMU SCS 15-415/615 41

W.A.L. - w/ concurrent xacts

Log helps to rollback
transactions (eg., after a
deadlock + victim
selection)

Eg., rollback(T500): go
backwards on log;
restore old values

<T1 start>

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<T300 commit>

<checkpoint>

<T500, B, 10, 12>

<T500 abort>

before

CMU SCS

Faloutsos CMU SCS 15-415/615 42

W.A.L. - w/ concurrent xacts

-recovery algo?
- undo uncommitted ones
- redo ones committed

after the last checkpoint

<T1 start>

...

<T300 start>

...

<checkpoint>

<T499 commit>

<T500 start>

<T500, A, 200, 400>

<T300 commit>

<checkpoint>

<T500, B, 10, 12>

before

Faloutsos CMU SCS 15-415/615

15

CMU SCS

Faloutsos CMU SCS 15-415/615 43

W.A.L. - w/ concurrent xacts

-recovery algo?
- undo uncommitted

ones
- redo ones

committed after
the last checkpoint

- Eg.?
time

T1
T2
T3

T4

ck ck crash

CMU SCS

Faloutsos CMU SCS 15-415/615 44

W.A.L. - w/ concurrent xacts

-recovery algo?
specifically:

- find latest
checkpoint

- create the ‘undo’
and ‘redo’ lists

time

T1
T2
T3

T4

ck ck crash

CMU SCS

Faloutsos CMU SCS 15-415/615 45

W.A.L. - w/ concurrent xacts

time

T1
T2
T3

T4

ck ck crash <T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint >

<T3 start>

<T2 commit>

<checkpoint >

<T3 commit>

Faloutsos CMU SCS 15-415/615

16

CMU SCS

Faloutsos CMU SCS 15-415/615 46

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint >

<T3 start>

<T2 commit>

<checkpoint >

<T3 commit>

<checkpoint> should
also contain a list of
‘active’ transactions
(= not commited yet)

CMU SCS

Faloutsos CMU SCS 15-415/615 47

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint {T4, T2}>

<T3 start>

<T2 commit>

<checkpoint {T4,T3} >

<T3 commit>

<checkpoint> should
also contain a list of
‘active’ transactions

CMU SCS

Faloutsos CMU SCS 15-415/615 48

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint {T4, T2}>

<T3 start>

<T2 commit>

<checkpoint {T4,T3} >

<T3 commit>

Recovery algo:

- build ‘undo’ and ‘redo’ lists

- scan backwards, undoing ops

 by the ‘undo’-list transactions

- go to most recent checkpoint

- scan forward, re-doing ops by
the ‘redo’-list xacts

Faloutsos CMU SCS 15-415/615

17

CMU SCS

Faloutsos CMU SCS 15-415/615 49

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint {T4, T2}>

<T3 start>

<T2 commit>

<checkpoint {T4,T3} >

<T3 commit>

Recovery algo:

- build ‘undo’ and ‘redo’ lists

- scan backwards, undoing ops

 by the ‘undo’-list transactions

- go to most recent checkpoint

- scan forward, re-doing ops by
the ‘redo’-list xacts

Actual ARIES algorithm: more
clever (and more complicated)
than that

swap?

CMU SCS

Faloutsos CMU SCS 15-415/615 50

W.A.L. - w/ concurrent xacts
<T1 start>

<T2 start>

<T4 start>

<T1 commit>

<checkpoint {T4, T2}>

<T3 start>

<T2 commit>

<checkpoint {T4,T3} >

<T3 commit>

Observations/Questions

1) what is the right order to
undo/redo?

2) during checkpoints: assume
that no changes are allowed by
xacts (otherwise, ‘fuzzy
checkpoints’)

3) recovery algo: must be
idempotent (ie., can work, even
if there is a failure during
recovery!

4) how to handle buffers of
stable storage?

CMU SCS

Faloutsos CMU SCS 15-415/615 51

Observations
ARIES (coming up soon) handles all issues:
1) redo everything; undo after that
2) ‘fuzzy checkpoints’
3) idempotent recovery
4) buffer log records;

–  flush all necessary log records before a page is
written

–  flush all necessary log records before a x-act
commits

Faloutsos CMU SCS 15-415/615

18

CMU SCS

Faloutsos CMU SCS 15-415/615 52

Overview - recovery

•  problem definition
–  types of failures
–  types of storage

•  solution#1: Write-ahead log
–  deferred updates
–  incremental updates
–  checkpoints

•  (solution #2: shadow paging)

CMU SCS

Faloutsos CMU SCS 15-415/615 53

Shadow paging

•  keep old pages on disk
•  write updated records on new pages on disk
•  if successful, release old pages; else release

‘new’ pages
•  tried in early IBM prototype systems, but
•  not used in practice - why not?

NOT USED

CMU SCS

Faloutsos CMU SCS 15-415/615 54

Shadow paging

•  not used in practice - why not?
•  may need too much disk space (“increase all

by 5%”)
•  may destroy clustering/contiguity of pages.

Faloutsos CMU SCS 15-415/615

19

CMU SCS

Faloutsos CMU SCS 15-415/615 55

Other topics

•  against loss of non-volatile storage: dumps
of the whole database on stable storage.

CMU SCS

Faloutsos CMU SCS 15-415/615 56

Conclusions

•  Write-Ahead Log, for loss of volatile
storage,

•  with incremental updates (STEAL, NO
FORCE)

•  and checkpoints
•  On recovery: undo uncommitted; redo

committed transactions.

CMU SCS

Faloutsos CMU SCS 15-415/615 57

Next time:

ARIES, with full details on
–  fuzzy checkpoints
–  recovery algorithm

