
Faloutsos SCS 15-415/615

1

CMU SCS

Faloutsos SCS 15-415/615 #1

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

Lecture #22: Concurrency Control
Part 2 (R&G ch. 17)

CMU SCS

Faloutsos SCS 15-415/615 #2

Outline

•  conflict/view serializability
•  Two-phase locking (2PL); strict 2PL (==

2PL-C, for ‘Commit’)
•  deadlocks prevention & detection

•  Locking granularity
•  Tree locking protocols
•  Phantoms & predicate locking

✓
✓

✓

CMU SCS

Faloutsos SCS 15-415/615 #3

Review questions

•  conflict serializability?
•  2PL theorem?
•  what is strict 2PL? why do we need it?

–  ‘dirty read’?
–  cascading aborts?

•  who generates the lock requests?

Faloutsos SCS 15-415/615

2

CMU SCS

Faloutsos SCS 15-415/615 #4

Not in book: ‘Lost update’ problem

time

CMU SCS

Faloutsos SCS 15-415/615 #5

Major conclusions so far:

•  (strict) 2PL: extremely popular
•  Deadlock may still happen

–  detection: wait-for graph
–  prevention: abort some xacts, defensively

•  philosophically: concurrency control uses:
–  locks
–  and aborts

CMU SCS

Faloutsos SCS 15-415/615 #6

Outline

•  conflict/view serializability
•  Two-phase locking (2PL); strict 2PL (==

2PL-C, for ‘Commit’)
•  deadlocks prevention & detection

•  Locking granularity
•  Tree locking protocols
•  Phantoms & predicate locking

✓
✓

✓

Faloutsos SCS 15-415/615

3

CMU SCS

Faloutsos SCS 15-415/615 #7

Lock granularity?

-  lock granularity
-  field? record? page? table?

-  Pros and cons?
-  (Ideally, each transaction should obtain a few

locks)

CMU SCS

Faloutsos SCS 15-415/615 #8

Multiple granularity

•  Eg:

attr1 attr1 attr2

record-n record2 record1

Table2 Table1

DB

CMU SCS

Faloutsos SCS 15-415/615 #9

What would you do?

•  T1: read Smith’s salary,
•  while T2: give 10% raise to everybody
•  what locks should they obtain?

record-n record2 record1

Table2 Table1

DB

Faloutsos SCS 15-415/615

4

CMU SCS

Faloutsos SCS 15-415/615 #10

What types of locks?

•  X/S locks for leaf level +
•  ‘intent’ locks, for higher levels

CMU SCS

Faloutsos SCS 15-415/615 #11

What types of locks?

•  X/S locks for leaf level +
•  ‘intent’ locks, for higher levels
•  IS: intent to obtain S-lock underneath
•  IX: intent X-lock ...
•  S: shared lock for this level
•  X: ex- lock for this level
•  SIX: shared lock here; + IX

CMU SCS

Faloutsos SCS 15-415/615 #12

Protocol

-  each xact obtains appropriate lock at highest
level

-  proceeds to desirable lower levels

Faloutsos SCS 15-415/615

5

CMU SCS

Faloutsos SCS 15-415/615 #13

Compatibility matrix
 T2 wants
T1 has

IS IX S SIX X

IS

IX

S

SIX

X

CMU SCS

Faloutsos SCS 15-415/615 #14

Compatibility matrix
 T2 wants
T1 has

IS IX S SIX X

IS

IX

S

SIX

X

Y Y Y Y N

CMU SCS

Faloutsos SCS 15-415/615 #15

Compatibility matrix
 T2 wants
T1 has

IS IX S SIX X

IS

IX

S

SIX

X

Y Y Y Y

Y N N N

N

Faloutsos SCS 15-415/615

6

CMU SCS

Faloutsos SCS 15-415/615 #16

Compatibility matrix
 T2 wants
T1 has

IS IX S SIX X

IS

IX

S

SIX

X

Y Y Y Y

Y

Y

N N

N N

N

N

CMU SCS

Faloutsos SCS 15-415/615 #17

Compatibility matrix
 T2 wants
T1 has

IS IX S SIX X

IS

IX

S

SIX

X

Y Y Y Y

Y

Y

N N

N

N N

N

N

N

N

CMU SCS

Faloutsos SCS 15-415/615 #18

Multiple Granularity Lock
Protocol

•  Each Xact: lock root.
•  To get S or IS lock on a node, must hold at least

IS on parent node.
–  What if Xact holds SIX on parent? S on parent?

•  To get X or IX or SIX on a node, must hold at
least IX on parent node.

•  Must release locks in bottom-up order.

Faloutsos SCS 15-415/615

7

CMU SCS

Faloutsos SCS 15-415/615 #19

Multiple granularity protocol

X

SIX

IX S

IS

stronger

(more privileges)

weaker

CMU SCS

Faloutsos SCS 15-415/615 #20

Examples – 2 level hierarchy

•  T1 scans R, and updates a few tuples: Tuples

Tables

CMU SCS

Faloutsos SCS 15-415/615 #21

Examples – 2 level hierarchy

•  T1 scans R, and updates a few tuples:
•  T1 gets an SIX lock on R, then get X lock

on tuples that are updated.

Faloutsos SCS 15-415/615

8

CMU SCS

Faloutsos SCS 15-415/615 #22

Examples – 2 level hierarchy

•  T2: find avg salary of ‘Sales’ employees

CMU SCS

Faloutsos SCS 15-415/615 #23

Examples – 2 level hierarchy

•  T2: find avg salary of ‘Sales’ employees
•  T2 gets an IS lock on R, and repeatedly gets

an S lock on tuples of R.

CMU SCS

Faloutsos SCS 15-415/615 #24

Examples – 2 level hierarchy

•  T3: sum of salaries of everybody in ‘R’:

Faloutsos SCS 15-415/615

9

CMU SCS

Faloutsos SCS 15-415/615 #25

Examples – 2 level hierarchy

•  T3: sum of salaries of everybody in ‘R’:
•  T3 gets an S lock on R.
•  OR, T3 could behave like T2; can

use lock escalation to decide which.
– Lock escalation dynamically asks for

 coarser-grained locks when too many
 low level locks acquired

CMU SCS

Faloutsos SCS 15-415/615 #26

Multiple granularity

•  Very useful in practice
•  each xact needs only a few locks

CMU SCS

Faloutsos SCS 15-415/615 #27

Outline

•  ...
•  Locking granularity
•  Tree locking protocols
•  Phantoms & predicate locking

Faloutsos SCS 15-415/615

10

CMU SCS

Faloutsos SCS 15-415/615 #28

Locking in B+ Trees

•  What about locking indexes?

CMU SCS

Faloutsos SCS 15-415/615 #29

Example B+tree

•  T1 wants to insert in H
•  T2 wants to insert in I
•  why not plain 2PL?

G I H

F E D

C B

A

....

....

root

CMU SCS

Faloutsos SCS 15-415/615 #30

Example B+tree

•  T1 wants to insert in H
•  T2 wants to insert in I
•  why not plain 2PL?
•  Because: X/S locks for

too long!
G I H

F E D

C B

A

....

....

root

Faloutsos SCS 15-415/615

11

CMU SCS

Faloutsos SCS 15-415/615 #31

Two main ideas:

•  ‘crabbing’: get lock for parent; get lock for
child; release lock for parent (if ‘safe’)

•  ‘safe’ nodes == nodes that won’t split or
merge, ie:
–  not full (on insertion)
– more than half-full (on deletion)

CMU SCS

Faloutsos SCS 15-415/615 #32

Example B+tree

•  T1 wants to insert in H
•  crabbing:

G I H

F E D

C B

A

....

....

root

CMU SCS

Faloutsos SCS 15-415/615 #33

Example B+tree

•  T1 wants to insert in H

G I H

F E D

C B

A

....

....

root

Faloutsos SCS 15-415/615

12

CMU SCS

Faloutsos SCS 15-415/615 #34

Example B+tree

•  T1 wants to insert in H
•  (if ‘B’ is ‘safe’)

G I H

F E D

C B

A

....

....

root

CMU SCS

Faloutsos SCS 15-415/615 #35

Example B+tree

•  T1 wants to insert in H
•  continue ‘crabbing’

G I H

F E D

C B

A

....

....

root

CMU SCS

Faloutsos SCS 15-415/615 #36

A Simple Tree Locking
Algorithm: “crabbing”

•  Search: Start at root and go down; repeatedly,
– S lock child
–  then unlock parent

•  Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is safe:
–  If child is safe, release all locks on ancestors.

Faloutsos SCS 15-415/615

13

CMU SCS

Faloutsos SCS 15-415/615 #37

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

CMU SCS

Answers:

1.  Search 38*
– ‘crabbing’: S A, S B, U A, S C, U B, S D, U C

2.  Delete 38*
– X A, X B, X C; U A, U B, X D, U C

3.  Insert 45*
– X A, X B; U A, X C, X E, U C

4.  Insert 25*
– X A, X B, U A, X F, U B, X H

Faloutsos SCS 15-415/615 #38

CMU SCS

Answer: search 38*

Faloutsos SCS 15-415/615 #39

A

B

C

D

Faloutsos SCS 15-415/615

14

CMU SCS

Answer: search 38*
S A
S B

 U A
S C

 U B
S D

 U C
<read 38*>

 U D
Faloutsos SCS 15-415/615 #40

A

B

C

D

CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #41

A

B

C

D

CMU SCS

Answer: delete 38*
X A
X B
X C

 U A
 U B

X D
 U C

<delete 38*>
 U D

Faloutsos SCS 15-415/615 #42

A

B

C

D

max concurrency

Faloutsos SCS 15-415/615

15

CMU SCS

Answer: insert 45*

Faloutsos SCS 15-415/615 #43

A

B

C

E

CMU SCS

Answer: insert 45*
X A
X B

 U A
X C
X E

 U B
 U C

<insert 45* >
 U E

Faloutsos SCS 15-415/615 #44

A

B

C

E

CMU SCS

Answer: insert 25*

Faloutsos SCS 15-415/615 #45

A

B

F

H

Faloutsos SCS 15-415/615

16

CMU SCS

Answer: insert 25*
X A
X B

 U A
X F

 U B
X H
<insert 25*>
<split H>
<update F>

 U F
 U H

Faloutsos SCS 15-415/615 #46

A

B

F

H

CMU SCS

Answer: insert 25*
X A
X B

 U A
X F

 U B
X H
<insert 25*>
<split H>
<update F>

 U H
 U F

Faloutsos SCS 15-415/615 #47

A

B

F

H

Q: Why not swap?

CMU SCS

Answer: insert 25*
X A
X B

 U A
X F

 U B
X H
<insert 25*>
<split H>
<update F>

 U H
 U F

Faloutsos SCS 15-415/615 #48

A

B

F

H

Q: Why not swap?

A: swapping does not help concurrency!

Faloutsos SCS 15-415/615

17

CMU SCS

Answers:

1.  Search 38*
– ‘crabbing’: S A, S B, U A, S C, U B, S D, U C

2.  Delete 38*
– X A, X B, X C; U A, U B, X D, U C

3.  Insert 45*
– X A, X B; U A, X C, X E, U C

4.  Insert 25*
– X A, X B, U A, X F, U B, X H

Faloutsos SCS 15-415/615 #49

CMU SCS

Answers:

1.  Search 38*
– ‘crabbing’: S A, S B, U A, S C, U B, S D, U C

2.  Delete 38*
– X A, X B, X C; U A, U B, X D, U C

3.  Insert 45*
– X A, X B; U A, X C, X E, U C

4.  Insert 25*
– X A, X B, U A, X F, U B, X H

Faloutsos SCS 15-415/615 #50 CAN WE DO BETTER?

CMU SCS

Can we do better?

•  Yes [Bayer and Schkolnik]:
•  Idea: hope that the leaf is ‘safe’, and use S-

locks & crabbing to reach it, and verify
•  (if false, do previous algo)

Faloutsos SCS 15-415/615 #51

Faloutsos SCS 15-415/615

18

CMU SCS

Can we do better?

•  Yes [Bayer and Schkolnik]:

Faloutsos SCS 15-415/615 #52

Rudolf Bayer, Mario Schkolnick: Concurrency

of Operations on B-Trees. Acta Inf. 9: 1-21 (1977)

CMU SCS

Can we do better?

•  Yes [Bayer and Schkolnik]:
•  Main idea:

– Gamble, that leaf is not over- (or under-)
flowing

– Thus, act as-if search, and only X-lock leaf, if
bet is right

– Otherwise, re-start, from top, with previous
algo

Faloutsos SCS 15-415/615 #53

CMU SCS

Faloutsos SCS 15-415/615 #54

A Better Tree Locking Algorithm
(From Bayer-Schkolnick paper)

•  Search: As before.
•  Insert/Delete:

– Set locks as if for search, get to leaf, and set X
lock on leaf.

–  If leaf is not safe, release all locks, and restart
Xact using previous Insert/Delete protocol.

•  Gambles that only leaf node will be modified; if
not, S locks set on the first pass to leaf are wasteful.
In practice, better than previous alg.

Faloutsos SCS 15-415/615

19

CMU SCS

Faloutsos SCS 15-415/615 #55

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

Do:
1) Delete 38*
2) Insert 25*

CMU SCS

delete 38*

Faloutsos SCS 15-415/615 #56

A

B

C

D

CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #57

A

B

C

D

S

Faloutsos SCS 15-415/615

20

CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #58

A

B

C

D

S

S

CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #59

A

B

C

D

S

CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #60

A

B

C

D

S

S

Faloutsos SCS 15-415/615

21

CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #61

A

B

C

D

S

CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #62

A

B

C

D

S

X

CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #63

A

B

C

D X

Faloutsos SCS 15-415/615

22

CMU SCS

Answers:

1.  Delete 38*
–  S A, S B, U A, S C, U B, X D, U C

2.  Insert 25*
–  S A, S B, U A, S F, U B, X H; U H;
– X A, X B, U A, X F, U B, X H

Faloutsos SCS 15-415/615 #64

A
B

C
D✔

A
B
F
H✗

CMU SCS

Notice:

•  Textbook has a third variation, that uses
lock-upgrades (and may lead to deadlocks)

Faloutsos SCS 15-415/615 #65

CMU SCS

Faloutsos SCS 15-415/615 #66

Outline

•  Locking granularity
•  Tree locking protocols
•  Phantoms & predicate locking

Almost done

with tree protocol

Faloutsos SCS 15-415/615

23

CMU SCS

Faloutsos SCS 15-415/615 #67

A subtle point:

•  Q1: Which order to release locks in
multiple-granularity locking?
– A1: bottom up

•  Q2: Which order to release locks in tree-
locking?
– A2: as early as possible (to max concurrency)

CMU SCS

Faloutsos SCS 15-415/615 #68

Outline

•  Locking granularity
•  Tree locking protocols
•  Phantoms & predicate locking

CMU SCS

Faloutsos SCS 15-415/615 #69

Dynamic Databases – The
“Phantom” Problem

•  so far: only reads and updates – no insertions/
deletions

•  with insertions/deletions, new problems:

Faloutsos SCS 15-415/615

24

CMU SCS

Faloutsos SCS 15-415/615 #70

The phantom problem

T1

select max(age) ...

where rating=1

T2

insert ... age=96 rating=1

select max(age) ...

where rating=1

time 71

96

…

1

1

1
1

CMU SCS

Faloutsos SCS 15-415/615 #71

Why?

•  because T1 locked only *existing* records –
not ones under way!

•  Solution?

CMU SCS

Faloutsos SCS 15-415/615 #72

Solution

theoretical solution:
•  ‘predicate locking’: e.g., lock all records

(current or incoming) with rating=1
– VERY EXPENSIVE

Faloutsos SCS 15-415/615

25

CMU SCS

Faloutsos SCS 15-415/615 #73

Solution

practical solution:
•  index locking: if an index (on ‘rating’)

exists, lock the appropriate entries (rating=1
in our case)

•  otherwise, lock whole table (and thus block
insertions/deletions)

CMU SCS

Faloutsos SCS 15-415/615 #74

Transaction Support in SQL-92

•  SERIALIZABLE – No phantoms, all reads
repeatable, no “dirty” (uncommited) reads.

•  REPEATABLE READS – phantoms may
happen.

•  READ COMMITTED – phantoms and
unrepeatable reads may happen

•  READ UNCOMMITTED – all of them may
happen.

recommended

CMU SCS

Faloutsos SCS 15-415/615 #75

Transaction Support in SQL-92

•  SERIALIZABLE : obtains all locks first;
plus index locks, plus strict 2PL

•  REPEATABLE READS – as above, but no
index locks

•  READ COMMITTED – as above, but S-
locks are released immediately

•  READ UNCOMMITTED – as above, but
allowing ‘dirty reads’ (no S-locks)

Faloutsos SCS 15-415/615

26

CMU SCS

Faloutsos SCS 15-415/615 #76

Transaction Support in SQL-92

SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE READ ONLY

Defaults:
 SERIALIZABLE
 READ WRITE

isolation level

access mode

CMU SCS

Faloutsos SCS 15-415/615 #77

•  Multiple granularity locking: leads to few
locks, at appropriate levels

•  Tree-structured indexes:
–  ‘crabbing’ and ‘safe nodes’

•  (notice:
– Multiple gran. locking: releases locks bottom-

up
– Tree-locking: top-down (to max. concurrency)

Summary

CMU SCS

Faloutsos SCS 15-415/615 #78

•  “phantom problem”, if insertions/deletions
–  (Predicate locking prevents phantoms)
–  Index locking, or table locking

Summary

