Faloutsos

g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

Lecture #22: Concurrency Control
Part 2 (R&G ch. 17)

Faloutsos SCS 15-415/615 #1

SCS 15-415/615

% CMU SCS
Outline

v« conflict/view serializability

v Two-phase locking (2PL); strict 2PL (==
2PL-C, for ‘Commit’)
v« deadlocks prevention & detection
* Locking granularity
* Tree locking protocols
* Phantoms & predicate locking

Faloutsos SCS 15-415/615 #2

g CMU SCS

Review questions

« conflict serializability?

+ 2PL theorem?

 what is strict 2PL? why do we need it?
— ‘dirty read’?
— cascading aborts?

» who generates the lock requests?

Faloutsos. SCS 15-415/615 #3

Faloutsos

g CMUSCS
Not in book: ‘Lost update’ problem

Tl T2
Read(N)
Read(N)
time N=N-1
N=N-1
Write(N)
Write(N)

Faloutsos SCS 15-415/615 #4

SCS 15-415/615

Major conclusions so far:

* (strict) 2PL: extremely popular
* Deadlock may still happen
— detection: wait-for graph
— prevention: abort some xacts, defensively
* philosophically: concurrency control uses:
— locks
— and aborts

Faloutsos SCS 15-415/615 #5

g CMU SCS
Outline

v« conflict/view serializability
v Two-phase locking (2PL); strict 2PL (==
2PL-C, for ‘Commit’)
v« deadlocks prevention & detection
ﬂ * Locking granularity
 Tree locking protocols
» Phantoms & predicate locking

Faloutsos. SCS 15-415/615 #6

Faloutsos

g CMUSCS
Lock granularity?

- lock granularity
- field? record? page? table?
- Pros and cons?

- (Ideally, each transaction should obtain a few
locks)

Faloutsos SCS 15-415/615 #1

SCS 15-415/615

Multiple granularity
* Eg (o8
C taber)
G
Cawr)

Faloutsos SCS 15-415/615 #3

g CMU SCS

What would you do?

* T1: read Smith’s salary,
» while T2: give 10% raise to everybody
 what locks should they obtain?

(o)
@"
Creeoran D Creeoraz D

Faloutsos. SCS 15-415/615 #9

Faloutsos

CMU SCS

What types of locks?

* X/S locks for leaf level +
* ‘intent’ locks, for higher levels

Faloutsos SCS 15-415/615 #10

SCS 15-415/615

CMU SCS

What types of locks?

* X/S locks for leaf level +

* ‘intent’ locks, for higher levels

« IS: intent to obtain S-lock underneath
* IX: intent X-lock ...

* S: shared lock for this level

* X: ex- lock for this level

» SIX: shared lock here; + IX

Faloutsos SCS 15-415/615 #11

CMU SCS

Protocol
- each xact obtains appropriate lock at highest

level

- proceeds to desirable lower levels

Faloutsos. SCS 15-415/615 #12

Faloutsos SCS 15-415/615

Compatibility matrix
RuamslIs |IX|S[SIX (X
T1 has
IS
X
S
SIX
X
Faloutsos. SCS 15-415/615 #13

Compatibility matrix
Ruaslls X [S 0 [SIX (X
TI has
IS Y Y Y Y N
X
S
SIX
X
Faloutsos SCS 15-415/615 #14
Compatibility matrix
Reeells XS |SIX X
T1 has
IS Y | v % %
IX y || N
S
SIX
X
Faloutsos SCS 15-415/615 #15

Faloutsos

g CMU SCS

Compatibility matrix

w‘s IS |IX S SIX X
T1 has
IS Y %
IX @™ |~
S Y | N N
SIX
X
Faloutsos SCS 15-415/615

#16

SCS 15-415/615

% CMU SCS

Compatibility matrix

w‘“ IS IX S SIX |X
TI has
IS Y Y | Y | N
IX ™ N
S Y N N
SIX N | N
X N
Faloutsos SCS 15-415/615

#17

g CMU SCS
Multiple Granularity Lock

Protocol

Each Xact: lock root.

To get S or IS lock on a node, must hold at least
IS on parent node.

— What if Xact holds SIX on parent? S on parent?

To get X or IX or SIX on a node, must hold at

least IX on parent node.

Must release locks in bottom-up order.

Faloutsos.

SCS 15-415/615

#18

Faloutsos SCS 15-415/615

g CMU SCS

Multiple granularity protocol

stronger

(more privileges)

weaker

Faloutsos SCS 15-415/615 #19

Examples — 2 level hierarchy
Tab‘les
* T1 scans R, and updates a few tuples: Tuples
Faloutsos SCS 15-415/615 #20

g CMU SCS

Examples — 2 level hierarchy

* T1 scans R, and updates a few tuples:

* T1 gets an SIX lock on R, then get X lock
on tuples that are updated.

Faloutsos. SCS 15-415/615 #21

Faloutsos

g CMU SCS

Examples — 2 level hierarchy

» T2: find avg salary of ‘Sales’ employees

Faloutsos SCS 15-415/615 #22

SCS 15-415/615

CMU SCS

Examples — 2 level hierarchy
» T2: find avg salary of ‘Sales’ employees

» T2 gets an IS lock on R, and repeatedly gets
an S lock on tuples of R.

Faloutsos SCS 15-415/615 #23

CMU SCS

Examples — 2 level hierarchy

* T3: sum of salaries of everybody in ‘R’:

Faloutsos. SCS 15-415/615 #24

Faloutsos

g CMU SCS

Examples — 2 level hierarchy

* T3: sum of salaries of everybody in ‘R’:
* T3 gets an S lock on R.
* OR, T3 could behave like T2; can
use lock escalation to decide which.
— Lock escalation dynamically asks for
coarser-grained locks when too many
low level locks acquired

Faloutsos SCS 15-415/615 #25

SCS 15-415/615

CMU SCS

Multiple granularity

* Very useful in practice
* cach xact needs only a few locks

Faloutsos SCS 15-415/615 #26

Outline

* Locking granularity
Tree locking protocols
* Phantoms & predicate locking

Faloutsos. SCS 15-415/615 #27

Faloutsos

g CMU SCS

Locking in B+ Trees

* What about locking indexes?

Faloutsos SCS 15-415/615

SCS 15-415/615

% CMU SCS
Example B-+tree

* T1 wants to insert in H
e T2 wants to insert in I
* why not plain 2PL?

Faloutsos SCS 15-415/615

#29

g CMU SCS

Example B+tree

* T2 wants to insert in I

e T1 wants to insert in H }VT/
7\
(

* why not plain 2PL?).
* Because: X/S locks for ()

too long! N
©)

Faloutsos. SCS 15-415/615

root

#30

10

Faloutsos

Two main ideas:

* ‘crabbing’: get lock for parent; get lock for
child; release lock for parent (if ‘safe’)

* ‘safe’ nodes == nodes that won’t split or
merge, ie:
— not full (on insertion)
— more than half-full (on deletion)

Faloutsos SCS 15-415/615 #31

SCS 15-415/615

% CMU SCS
Example B-+tree

* T1 wants to insert in H
* crabbing:

Faloutsos SCS 15-415/615 #32

g CMU SCS

Example B+tree

root

e T1 wants to insert in H }v{/

Faloutsos. SCS 15-415/615 #33

11

Faloutsos

g CMU SCS

Example B+tree

e T1 wants to insert in H
+ (if ‘B’ is ‘safe’)

Faloutsos SCS 15-415/615 #34

SCS 15-415/615

% CMU SCS

Example B-+tree

root
» T1 wants to insert in H °
* continue ‘crabbing’

Faloutsos SCS 15-415/615 #35

A Simple Tree Locking
Algorithm: “crabbing”

* Search: Start at root and go down; repeatedly,
— S lock child
— then unlock parent

* Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is safe:
— If child is safe, release all locks on ancestors.

Faloutsos. SCS 15-415/615 #36

12

Faloutsos

g CMU SCS ROOT
Example

Do:

I A 1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

SCS 15-415/615

/II Hl - /Ir

]

% CMU SCS

Answers:

1. Search 38*
-‘crabbing:SA,SB,UA,SC,UB,SD,UC
2. Delete 38*%
-XAXB,XCUA,UB,XD,UC
3. Insert 45*
-XAXB,UA XC, XE, UC
4. Insert 25*
-XA XB,UA XF UB, XH

Faloutsos SCS 15-415/615 #38

g CMU SCS

Answer: search 38*

A

Faloutsos. SCS 15-415/615 #39

13

Faloutsos

SCS 15-415/615

Answer: search 38*
SA
SB A
UA B
sc
UB C
SD
ucC D
<read 38*>
UD
Faloutsos SCS 15-415/615 #40
Answer: delete 38*
A
B
C
D
Faloutsos SCS 15-415/615 #41
Answer: delete 38*
XA
XB A
XC B
U A < max concurrency
UB C
XD
UucC D
<delete 38%>
UD
Faloutsos SCS 15-415/615 #42

14

Faloutsos

g CMU SCS

Answer: insert 45*

SCS 15-415/615

A
B
C
E
Faloutsos SCS 15-415/615 #43
Answer: insert 45*
XA
XB A
UA B
XC
XE C
UB
ucC E
<insert 45%* >
UE
Faloutsos SCS 15-415/615 #44
Answer: insert 25%
A
B
F
H
Faloutsos SCS 15-415/615 #45

15

Faloutsos

g CMU SCS

Answer: insert 25*
XA
XB A
UA
XF B
UB
XH F
<insert 25*>
<split H> H
<update F>
UF
UH

Faloutsos SCS 15-415/615 #46

SCS 15-415/615

% CMU SCS

Answer: insert 25*

XA
XB A

UA
XF B

UB
XH F
<insert 25%>
<split H> H
<update F>

vH D Why not ?
UF Q: y not swap?

Faloutsos SCS 15-415/615 #47

g CMU SCS

Answer: insert 25*
XA
XB A
UA
XF B
UB
XH F
<insert 25%>
<split H> H
<update F>
UH
UF > Q: Why not swap?

A: swapping does not help concurrency!

Faloutsos.

16

Faloutsos

g CMU SCS

Answers:

1. Search 38*
-’crabbing’:SA,SB,UA,SC,UB,SD,UC
2. Delete 38*
-XAXB,XCUA,UB,XD,UC
3. Insert 45*
-XA,XB;UA, XC, XE, UC
4. Insert 25*
-XA XB,UA XF,UB,XH

Faloutsos SCS 15-415/615 #49

SCS 15-415/615

% CMU SCS

Answers:

1. Search 38*
-‘crabbing:SA,SB,UA,SC,UB,SD,UC
2. Delete 38*%
(XA XB,XCUA UBXD,UC
3. Insert 45*
XB,UA XC, XE,UC
4. Insert 25*
XB,UA,XF,UB,XH

CAN WE DO BETTER? #0

g CMU SCS

Can we do better?

* Yes [Bayer and Schkolnik]:

* Idea: hope that the leaf is ‘safe’, and use S-
locks & crabbing to reach it, and verify

* (if false, do previous algo)

Faloutsos. SCS 15-415/615 #51

17

Faloutsos

g CMU SCS
Can we do better?

* Yes [Bayer and Schkolnik]:

e

Rudolf Bayer, Mario Schkolnick: Concurrency

of Operations on B-Trees. Acta Inf. 9: 1-21 (1977)

SCS 15-415/615

% CMU SCS
Can we do better?

* Yes [Bayer and Schkolnik]:
* Main idea:

— Gamble, that leaf is not over- (or under-)
flowing

— Thus, act as-if search, and only X-lock leaf, if
bet is right

— Otherwise, re-start, from top, with previous
algo

Faloutsos SCS 15-415/615

#53

g CMU SCS

A Better Tree Locking Algorithm
(From Bayer-Schkolnick paper)

* Search: As before.
* Insert/Delete:

— Set locks as if for search, get to leaf, and set X
lock on leaf.

— If leaf is not safe, release all locks, and restart
Xact using previous Insert/Delete protocol.

» Gambles that only leaf node will be modified; if
not, S locks set on the first pass to leaf are wasteful.
In practice, better than previous alg.
Faloutsos.

SCS 15-415/615 #54

18

Faloutsos

g CMU SCS ROOT
Example

SCS 15-415/615

Do:
I A 1) Delete 38*
2) Insert 25*
/ll Hl - /Ir

Cor |]

% CMU SCS
delete 38*
A
B
C
D
g CMUSCS
Answer: delete 38*
S A
B
C
D

19

Faloutsos

g CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #58

SCS 15-415/615

% CMU SCS

Answer: delete 38*

Faloutsos SCS 15-415/615 #59

g CMU SCS

Answer: delete 38*

Faloutsos. SCS 15-415/615 #60

20

Faloutsos

g CMU SCS
Answer: delete 38*

A

Faloutsos SCS 15-415/615 #61

SCS 15-415/615

% CMU SCS
Answer: delete 38*

A

Faloutsos SCS 15-415/615 #62

g CMU SCS

Answer: delete 38*

Faloutsos. SCS 15-415/615 #63

21

Faloutsos

g CMU SCS

Answers:

1. Delete 38* (‘(‘ B

-SA,SB,UA,SC,UB,XD,UC L'$-C

2. Insert 25* D
-SA SB,UA SF UB, XH;UH;
-XA,XB,UA, XF, UB, XH

SCS 15-415/615

¢t s
C C
(‘ F
X H
Faloutsos SCS 15-415/615 #64
% CMU SCS
Notice:

» Textbook has a third variation, that uses
lock-upgrades (and may lead to deadlocks)

Faloutsos SCS 15-415/615 #65

g CMU SCS
Outline

* Locking granularity
q' Tree locking protocols NN o
» Phantoms & predicate locking \ﬂ'\\\\“

Faloutsos. SCS 15-415/615 #66

22

Faloutsos

g CMU SCS
A subtle point:

* QI1: Which order to release locks in
multiple-granularity locking?
— Al: bottom up

* Q2: Which order to release locks in tree-
locking?
— A2: as early as possible (to max concurrency)

Faloutsos SCS 15-415/615 #67

SCS 15-415/615

Outline
* Locking granularity

» Tree locking protocols
‘- Phantoms & predicate locking

Faloutsos SCS 15-415/615 #68

g CMU SCS Dyl’lamic Databases - The
“Phantom” Problem

* so far: only reads and updates — no insertions/
deletions

 with insertions/deletions, new problems:

Faloutsos. SCS 15-415/615

#69

23

Faloutsos SCS 15-415/615

g CMU SCS

The phantom problem @ T
1] 1

=

insert ... age=96 rating=1

T1 T2

time
T select max(age) ...

where rating=1

96— select max(age) ...

where rating=1

Faloutsos SCS 15-415/615 #70

% CMU SCS

Why?

* because T1 locked only *existing* records —
not ones under way!

 Solution?

Faloutsos SCS 15-415/615 #71

g CMU SCS

Solution

theoretical solution:

* ‘predicate locking’: e.g., lock all records
(current or incoming) with rating=1
— VERY EXPENSIVE

Faloutsos. SCS 15-415/615 #72

24

Faloutsos

CMU SCS

Solution

practical solution:

* index locking: if an index (on ‘rating”)
exists, lock the appropriate entries (rating=1
in our case)

* otherwise, lock whole table (and thus block
insertions/deletions)

Faloutsos SCS 15-415/615 #73

SCS 15-415/615

ES

CMU SCS

Tragsaction Support in SQL-92

e“&

o
‘e@“\SERIALIZABLE — No phantoms, all reads

repeatable, no “dirty” (uncommited) reads.

+ REPEATABLE READS - phantoms may
happen.

« READ COMMITTED - phantoms and
unrepeatable reads may happen

* READ UNCOMMITTED - all of them may
happen.

Faloutsos SCS 15-415/615 #14

CMU SCS

Transaction Support in SQL-92

» SERIALIZABLE : obtains all locks first;
plus index locks, plus strict 2PL

« REPEATABLE READS — as above, but no
index locks

« READ COMMITTED - as above, but S-
locks are released immediately

« READ UNCOMMITTED - as above, but
allowing ‘dirty reads’ (no S-locks)

Faloutsos. SCS 15-415/615 #75

25

Faloutsos SCS 15-415/615

g CMU SCS
Transaction Support in SQL-92

SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE READ ONLY

Defaults:
SERIALIZABLE <« isolation level
READ WRITE «—— access mode

Faloutsos SCS 15-415/615 #76

% CMU SCS

Summary

* Multiple granularity locking: leads to few
locks, at appropriate levels

e Tree-structured indexes:
— ‘crabbing’ and ‘safe nodes’

* (notice:

— Multiple gran. locking: releases locks bottom-
up
— Tree-locking: top-down (to max. concurrency)

Faloutsos SCS 15-415/615 #17

g CMU SCS

Summary

+ “phantom problem”, if insertions/deletions
— (Predicate locking prevents phantoms)
— Index locking, or table locking

Faloutsos. SCS 15-415/615 #78

26

