
Faloutsos CMU SCS 15-415/615

1

CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

Lecture #15: Query Optimization
(R&G ch. 15; Sys. R q-opt paper)

CMU SCS

Faloutsos CMU SCS 15-415/615 2

Overview - detailed

•  Why q-opt?
•  Equivalence of expressions
•  Cost estimation
•  Plan generation
•  Plan evaluation

CMU SCS

Faloutsos CMU SCS 15-415/615 3

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

Faloutsos CMU SCS 15-415/615

2

CMU SCS

Faloutsos CMU SCS 15-415/615 4

Why Q-opt?

•  SQL: ~declarative
•  good q-opt -> big difference

–  eg., seq. Scan vs
– B-tree index, on P=1,000 pages

CMU SCS

Faloutsos CMU SCS 15-415/615 5

Q-opt steps

•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans
•  estimate cost; pick best

CMU SCS

Faloutsos CMU SCS 15-415/615 6

Q-opt - example

select name

from STUDENT, TAKES

where c-id=‘415’ and

STUDENT.ssn=TAKES.ssn

STUDENT TAKES

σ	

π	

Faloutsos CMU SCS 15-415/615

3

CMU SCS

Faloutsos CMU SCS 15-415/615 7

Q-opt - example

STUDENT TAKES

σ	

π	

STUDENT TAKES

σ	

π	

 Canonical form

CMU SCS

Faloutsos CMU SCS 15-415/615 8

Q-opt - example

STUDENT TAKES

σ	

π	

STUDENT TAKES

σ	

π	

 Canonical form

CMU SCS

Faloutsos CMU SCS 15-415/615 9

Q-opt - example

STUDENT TAKES

σ	

π	

Index; seq scan

Hash join;
merge join;
nested loops;

Faloutsos CMU SCS 15-415/615

4

CMU SCS

Faloutsos CMU SCS 15-415/615 10

Overview - detailed

•  Why q-opt?
•  Equivalence of expressions
•  Cost estimation
•  ...

CMU SCS

Faloutsos CMU SCS 15-415/615 11

Equivalence of expressions

•  A.k.a.: syntactic q-opt
•  in short: perform selections and projections

early
•  More details: see transf. rules in text

CMU SCS

Faloutsos CMU SCS 15-415/615 12

Equivalence of expressions

•  Q: How to prove a transf. rule?

•  A: use RTC, to show that LHS = RHS, eg:

Faloutsos CMU SCS 15-415/615

5

CMU SCS

Faloutsos CMU SCS 15-415/615 13

Equivalence of expressions

CMU SCS

Faloutsos CMU SCS 15-415/615 14

Equivalence of expressions

CMU SCS

Faloutsos CMU SCS 15-415/615 15

Equivalence of expressions

•  Q: how to disprove a rule??

Faloutsos CMU SCS 15-415/615

6

CMU SCS

Faloutsos CMU SCS 15-415/615 16

Equivalence of expressions

•  Q: how to disprove a rule??

R1 A B
Smith pizza

R2 A B
Smith steak

CMU SCS

Faloutsos CMU SCS 15-415/615 17

Equivalence of expressions

•  Selections
–  perform them early
–  break a complex predicate, and push

–  simplify a complex predicate
•  (‘X=Y and Y=3’) -> ‘X=3 and Y=3’

CMU SCS

Faloutsos CMU SCS 15-415/615 18

Equivalence of expressions

•  Projections
–  perform them early (but carefully…)

•  Smaller tuples
•  Fewer tuples (if duplicates are eliminated)

–  project out all attributes except the ones
requested or required (e.g., joining attr.)

Faloutsos CMU SCS 15-415/615

7

CMU SCS

Faloutsos CMU SCS 15-415/615 19

Equivalence of expressions

•  Joins
– Commutative , associative

– Q: n-way join - how many diff. orderings?

CMU SCS

Faloutsos CMU SCS 15-415/615 20

Equivalence of expressions

•  Joins - Q: n-way join - how many diff.
orderings?

•  A: Catalan number ~ 4^n
– Exhaustive enumeration: too slow.

CMU SCS

Faloutsos CMU SCS 15-415/615 21

Q-opt steps

•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans
•  estimate cost; pick best

Faloutsos CMU SCS 15-415/615

8

CMU SCS

Faloutsos CMU SCS 15-415/615 22

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

CMU SCS

Faloutsos CMU SCS 15-415/615 23

Cost estimation

•  Eg., find ssn’s of students with an ‘A’ in
415 (using seq. scanning)

•  How long will a query take?
– CPU (but: small cost; decreasing; tough to

estimate)
– Disk (mainly, # block transfers)

•  How many tuples will qualify?
•  (what statistics do we need to keep?)

CMU SCS

Faloutsos CMU SCS 15-415/615 24

Cost estimation

•  Statistics: for each relation
‘r’ we keep
–  nr : # tuples;
– Sr : size of tuple in bytes

…

Sr

#2
#3

#nr

#1

Faloutsos CMU SCS 15-415/615

9

CMU SCS

Faloutsos CMU SCS 15-415/615 25

Cost estimation

•  Statistics: for each relation
‘r’ we keep
– …
– V(A,r): number of distinct

values of attr. ‘A’
–  (histograms, too)

…

Sr

#1
#2

#3

#nr

CMU SCS

Faloutsos CMU SCS 15-415/615 26

Derivable statistics

•  blocking factor =
max# records/block
(=??)

•  br: # blocks (=??)
•  SC(A,r) = selection

cardinality = avg# of
records with A=given
(=??)

…

fr

Sr

#1

#2

#br

CMU SCS

Faloutsos CMU SCS 15-415/615 27

Derivable statistics

•  blocking factor = max# records/block (= B/
Sr ; B: block size in bytes)

•  br: # blocks (= nr / (blocking-factor))

Faloutsos CMU SCS 15-415/615

10

CMU SCS

Faloutsos CMU SCS 15-415/615 28

Derivable statistics

•  SC(A,r) = selection cardinality = avg# of
records with A=given (= nr / V(A,r))
(assumes uniformity...) – eg: 10,000
students, 10 colleges – how many students
in SCS?

CMU SCS

Faloutsos CMU SCS 15-415/615 29

Additional quantities we need:

•  For index ‘i’:
–  fi: average fanout (~50-100)
– HTi: # levels of index ‘i’ (~2-3)

•  ~ log(#entries)/log(fi)

– LBi: # blocks at leaf level

HTi

CMU SCS

Faloutsos CMU SCS 15-415/615 30

Statistics

•  Where do we store them?
•  How often do we update them?

Faloutsos CMU SCS 15-415/615

11

CMU SCS

Faloutsos CMU SCS 15-415/615 31

Q-opt steps

•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans
•  estimate cost; pick best

CMU SCS

Faloutsos CMU SCS 15-415/615 32

Selections

•  we saw simple predicates (A=constant; eg.,
‘name=Smith’)

•  how about more complex predicates, like
–  ‘salary > 10K’
–  ‘age = 30 and job-code=“analyst” ’

•  what is their selectivity?

CMU SCS

Faloutsos CMU SCS 15-415/615 33

Selections – complex predicates

•  selectivity sel(P) of predicate P :
== fraction of tuples that qualify
sel(P) = SC(P) / nr

Faloutsos CMU SCS 15-415/615

12

CMU SCS

Faloutsos CMU SCS 15-415/615 34

Selections – complex predicates

•  eg., assume that V(grade, TAKES)=5
distinct values

•  simple predicate P: A=constant
–  sel(A=constant) = 1/V(A,r)
–  eg., sel(grade=‘B’) = 1/5

•  (what if V(A,r) is unknown??) grade

count

A F

CMU SCS

Faloutsos CMU SCS 15-415/615 35

Selections – complex predicates

•  range query: sel(grade >= ‘C’)
–  sel(A>a) = (Amax – a) / (Amax – Amin)

grade

count

A F

CMU SCS

Faloutsos CMU SCS 15-415/615 36

Selections - complex predicates

•  negation: sel(grade != ‘C’)
–  sel(not P) = 1 – sel(P)
–  (Observation: selectivity =~ probability)

grade

count

A F

‘P’

Faloutsos CMU SCS 15-415/615

13

CMU SCS

Faloutsos CMU SCS 15-415/615 37

Selections – complex predicates

conjunction:
–  sel(grade = ‘C’ and course = ‘415’)
–  sel(P1 and P2) = sel(P1) * sel(P2)
–  INDEPENDENCE ASSUMPTION

P1 P2

CMU SCS

Faloutsos CMU SCS 15-415/615 38

Selections – complex predicates

disjunction:
–  sel(grade = ‘C’ or course = ‘415’)
–  sel(P1 or P2) = sel(P1) + sel(P2) – sel(P1 and P2)
–  = sel(P1) + sel(P2) – sel(P1)*sel(P2)
–  INDEPENDENCE ASSUMPTION, again

P1 P2

CMU SCS

Faloutsos CMU SCS 15-415/615 39

Selections – complex predicates

disjunction: in general
sel(P1 or P2 or … Pn) =
1 - (1- sel(P1)) * (1 - sel(P2)) * … (1 - sel(Pn))

P1 P2

Faloutsos CMU SCS 15-415/615

14

CMU SCS

Faloutsos CMU SCS 15-415/615 40

Selections – summary
–  sel(A=constant) = 1/V(A,r)
–  sel(A>a) = (Amax – a) / (Amax – Amin)
–  sel(not P) = 1 – sel(P)
–  sel(P1 and P2) = sel(P1) * sel(P2)
–  sel(P1 or P2) = sel(P1) + sel(P2) – sel(P1)*sel(P2)
–  sel(P1 or ... or Pn) = 1 - (1-sel(P1))*...*(1-sel(Pn))

–  UNIFORMITY and INDEPENDENCE ASSUMPTIONS

CMU SCS

Faloutsos CMU SCS 15-415/615 41

Result Size Estimation for Joins

•  Q: Given a join of R and S, what is the range of
possible result sizes (in #of tuples)?
– Hint: what if R_cols∩S_cols = ∅?

– R_cols∩S_cols is a key for R (and a Foreign Key in
S)?

nr

ns

CMU SCS

Faloutsos CMU SCS 15-415/615 42

Result Size Estimation for Joins

•  Q: Given a join of R and S, what is the range of
possible result sizes (in #of tuples)?
– Hint: what if R_cols∩S_cols = ∅?

– R_cols∩S_cols is a key for R (and a Foreign Key in
S)?

nr * ns

nr

ns

Faloutsos CMU SCS 15-415/615

15

CMU SCS

Faloutsos CMU SCS 15-415/615 43

Result Size Estimation for Joins

•  Q: Given a join of R and S, what is the range of
possible result sizes (in #of tuples)?
– Hint: what if R_cols∩S_cols = ∅?

– R_cols∩S_cols is a key for R (and a Foreign Key in
S)?

nr * ns

nr

ns

<=ns

CMU SCS

Faloutsos CMU SCS 15-415/615 44

Result Size Estimation for Joins
•  General case: R_cols∩S_cols = {A} (and A is key for

neither)

nr

ns

Hint: for a given tuple of R,

how many tuples of S will it match?

CMU SCS

Faloutsos CMU SCS 15-415/615 45

Result Size Estimation for Joins
•  General case: R_cols∩S_cols = {A} (and A is key for

neither)
–  match each R-tuple with S-tuples

 est_size <~ NTuples(R) * NTuples(S)/NKeys(A,S)
 <~ nr * ns / V(A,S)
–  symmetrically, for S:

 est_size <~ NTuples(R) * NTuples(S)/NKeys(A,R)
 <~ nr * ns / V(A,R)
–  Overall:
 est_size = NTuples(R)*NTuples(S)/MAX{NKeys(A,S),

NKeys(A,R)}

Faloutsos CMU SCS 15-415/615

16

CMU SCS

Faloutsos CMU SCS 15-415/615 46

On the Uniform Distribution
Assumption

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uniform distribution approximating D Distribution D

•  Assuming uniform distribution is rather
crude

CMU SCS

Faloutsos CMU SCS 15-415/615 47

Histograms

•  For better estimation, use a histogram

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Equidepth histogram ~ quantiles Equiwidth histogram

Bucket 1
Count=8

Bucket 2
Count=4

Bucket 3
Count=15

Bucket 4
Count=3

Bucket 5
Count=15

Bucket 1
Count=9

Bucket 2
Count=10

Bucket 3
Count=10

Bucket 4
Count=7

Bucket 5
Count=9

CMU SCS

Faloutsos CMU SCS 15-415/615 48

Q-opt steps

•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans

–  single relation
– multiple relations

•  estimate cost; pick best

Faloutsos CMU SCS 15-415/615

17

CMU SCS

Faloutsos CMU SCS 15-415/615 49

plan generation

•  Selections – eg.,
select *
from TAKES
where grade = ‘A’

•  Plans?
…

fr

Sr

#1

#2

#br

CMU SCS

CMU SCS 15-415/615 50 Faloutsos

Cost estimation
REMINDER

CMU SCS

Faloutsos CMU SCS 15-415/615 51

plan generation

•  Plans?
–  seq. scan
–  binary search

•  (if sorted &
consecutive)

–  index search
•  if an index exists

…

fr

Sr

#1

#2

#br

Faloutsos CMU SCS 15-415/615

18

CMU SCS

Faloutsos CMU SCS 15-415/615 52

plan generation

seq. scan – cost?
•  br (worst case)
•  br/2 (average, if we

search for primary
key)

…

fr

Sr

#1

#2

#br

CMU SCS

Faloutsos CMU SCS 15-415/615 53

plan generation

binary search – cost?
if sorted and

consecutive:
•  ~log(br) +
•  SC(A,r)/fr (=blocks

spanned by qual.
tuples)

…

fr

Sr

#1

#2

#br

CMU SCS

Faloutsos CMU SCS 15-415/615 54

plan generation

estimation of selection
cardinalities SC(A,r):

non-trivial – we saw it
earlier

…

fr

Sr

#1

#2

#br

Faloutsos CMU SCS 15-415/615

19

CMU SCS

Faloutsos CMU SCS 15-415/615 55

plan generation

method#3: index – cost?
–  levels of index +
–  blocks w/ qual. tuples

…

fr

Sr

#1

#2

#br

...

case#1: primary key

case#2: sec. key –
clustering index

case#3: sec. key – non-
clust. index

CMU SCS

Faloutsos CMU SCS 15-415/615 56

plan generation

method#3: index – cost?
–  levels of index +
–  blocks w/ qual. tuples

…

fr

Sr

#1

#2

#br

..

case#1: primary key – cost:

 HTi + 1

HTi

CMU SCS

Faloutsos CMU SCS 15-415/615 57

plan generation

method#3: index – cost?
–  levels of index +
–  blocks w/ qual. tuples

…

fr

Sr

#1

#2

#br

case#2: sec. key –
clustering index

HTi + SC(A,r)/fr
HTi

Faloutsos CMU SCS 15-415/615

20

CMU SCS

Faloutsos CMU SCS 15-415/615 58

plan generation

method#3: index – cost?
–  levels of index +
–  blocks w/ qual. tuples

…

fr

Sr

#1

#2

#br

...

case#3: sec. key – non-
clust. index

HTi + SC(A,r)

(actually, pessimistic...)

CMU SCS

Faloutsos CMU SCS 15-415/615 59

plan generation

method#3: index – cost?
–  levels of index +
–  blocks w/ qual. tuples fr

Sr

…

#1

#2

#br

...

(actually, pessimistic...

better estimates:
Cardenas’ formula)

CMU SCS

Faloutsos CMU SCS 15-415/615 60

Cardena’s formula

•  q: # qual records
•  Q: # qual. blocks
•  N: # records total
•  B: # blocks total

•  Q=?? …

#1

#2

#B
Alfonso Cardenas
(IBM->UCLA)

Not in exam

Faloutsos CMU SCS 15-415/615

21

CMU SCS

Faloutsos CMU SCS 15-415/615 61

Cardena’s formula

•  Pessimistic:
– Q = q

…

#1

#2

#B

q

q

Q

Not in exam

CMU SCS

Faloutsos CMU SCS 15-415/615 62

Cardena’s formula

•  Pessimistic:
– Q = q

•  More realistic
– Q = q if q<=B
– Q = B otherwise

…

#1

#2

#B

q

Q

Not in exam

CMU SCS

Faloutsos CMU SCS 15-415/615 63

Cardena’s formula

•  Cardenas’ formula

…

#1

#2

#B

q

Q

Not in exam

Faloutsos CMU SCS 15-415/615

22

CMU SCS

Faloutsos CMU SCS 15-415/615 64

Cardena’s formula

•  Cardenas’ formula

…

#1

#2

#B
Prob (single shot,

hits our favorite block)

Not in exam

CMU SCS

Faloutsos CMU SCS 15-415/615 65

Cardena’s formula

•  Cardenas’ formula

…

#1

#2

#B
Prob(it avoids it)

Not in exam

CMU SCS

Faloutsos CMU SCS 15-415/615 66

Cardena’s formula

•  Cardenas’ formula

…

#1

#2

#B Prob(it avoids it, q times)

Not in exam

Faloutsos CMU SCS 15-415/615

23

CMU SCS

Faloutsos CMU SCS 15-415/615 67

Cardena’s formula

•  Cardenas’ formula

…

#1

#2

#B
Prob(our favorite block is hit

at least once, after q selections)

Not in exam

CMU SCS

Faloutsos CMU SCS 15-415/615 68

Plans for single relation -
summary

•  no index: scan (dup-elim; sort)
•  with index:

–  single index access path
– multiple index access path
–  sorted index access path
–  index-only access path

CMU SCS

Faloutsos CMU SCS 15-415/615 69

Overview - detailed

•  Why q-opt?
•  Equivalence of expressions
•  Cost estimation
•  Plan generation
•  Plan evaluation

Faloutsos CMU SCS 15-415/615

24

CMU SCS

Faloutsos CMU SCS 15-415/615 70

Citation

•  P. G. Selinger, M. M. Astrahan, D. D.
Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational
database management system. In SIGMOD
Conference, pages 23--34, 1979.

CMU SCS

Faloutsos CMU SCS 15-415/615 71

Frequently cited database publications
http://www.informatik.uni-trier.de/~ley/db/about/top.html

Publication
608 Peter P. Chen: The Entity-Relationship Model - Toward a

Unified View of Data. ACM Trans. Database Syst. 1(1): 9-36
(1976)

580 E. F. Codd: A Relational Model of Data for Large Shared Data
Banks. Commun. ACM 13(6): 377-387(1970)

371 Patricia G. Selinger, Morton M. Astrahan, Donald D.
Chamberlin, Raymond A. Lorie, Thomas G. Price: Access Path
Selection in a Relational Database Management System.
SIGMOD Conference 1979: 23-34

366 Jeffrey D. Ullman: Principles of Database and Knowledge Base
Systems, Volume I. Computer Science Press 1988, ISBN
0-7167-8158-1

… …

CMU SCS

Faloutsos CMU SCS 15-415/615 72

Statistics for Optimization

•  NCARD (T) - cardinality of relation T in tuples
•  TCARD (T) - number of pages containing tuples

from T
•  P(T) = TCARD(T)/(# of non-empty pages in the

segment)
–  If segments only held tuples from one relation there

would be no need for P(T)

•  ICARD(I) - number of distinct keys in index I
•  NINDX(I) - number of pages in index I

Faloutsos CMU SCS 15-415/615

25

CMU SCS

Faloutsos CMU SCS 15-415/615 73

Predicate Selectivity Estimation

F = 1 – F(expr) NOT expr
F = F(expr1) * F(expr2) expr1 and expr2
F = F(expr1)+F(expr2)–F(expr1)*F(expr2) expr1 or expr2

F = (value2-value1)/(high key-low key)
F = 1/4 otherwise

val1 < attr < val2

F = 1/max(ICARD(I1),ICARD(I2)) or
F = 1/ICARD(Ii) – if only index i exists, or
F = 1/10

attr1 = attr2

F = 1/ICARD(attr index) – if index exists
F = 1/10 otherwise

attr = value

CMU SCS

Faloutsos CMU SCS 15-415/615 74

Costs per Access Path Case

TCARD/P + W*RSICARD Segment scan

F(preds)*(NINDX(I)+TCARD)+W*RSICARD Clustered index I
matching >=1
preds

F(preds)*(NINDX(I)+NCARD)+W*RSICARD Non-clustered
index I matching
>=1 preds

1+1+W Unique index
matching equal
predicate

CMU SCS

Faloutsos CMU SCS 15-415/615 75

Q-opt steps
•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans

–  single relation
– multiple relations

•  Main idea
•  Dynamic programming – reminder
•  Example

•  estimate cost; pick best

Faloutsos CMU SCS 15-415/615

26

CMU SCS

Faloutsos CMU SCS 15-415/615 76

•  r1 JOIN r2 JOIN ... JOIN rn
•  typically, break problem into 2-way joins

–  choose between NL, sort merge, hash join, ...

n-way joins

CMU SCS
Queries Over Multiple Relations

•  As number of joins increases, number of alternative plans
grows rapidly  need to restrict search space

•  Fundamental decision in System R: only left-deep join trees
are considered. Advantages?
–  fully pipelined plans.

•  Intermediate results not written to temporary files.
•  Not all left-deep trees are fully pipelined (e.g., SM join).

C D B A
77 B A

C

D

B A

C

D

Faloutsos CMU SCS 15-415/615

CMU SCS

78

Queries Over Multiple Relations
•  As number of joins increases, number of alternative plans

grows rapidly  need to restrict search space
•  Fundamental decision in System R: only left-deep join trees

are considered. Advantages?
–  fully pipelined plans.

•  Intermediate results not written to temporary files.
•  Not all left-deep trees are fully pipelined (e.g., SM join).

B A

C

D

B A

C

D

C D B A
Faloutsos CMU SCS 15-415/615

Faloutsos CMU SCS 15-415/615

27

CMU SCS

Faloutsos CMU SCS 15-415/615 79

Queries over Multiple Relations

•  Enumerate the orderings (= left deep tree)
•  enumerate the plans for each operator
•  enumerate the access paths for each table

Dynamic programming, to save cost
estimations

CMU SCS

Faloutsos CMU SCS 15-415/615 80

Q-opt steps
•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans

–  single relation
– multiple relations

•  Main idea
•  Dynamic programming – reminder
•  Example

•  estimate cost; pick best

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 81

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500

Cheapest flight PIT -> SG ?

$800

Faloutsos CMU SCS 15-415/615

28

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 82

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500

Assumption: NO package deals: cost CDG->SG

is always $800, no matter how reached CDG

$800

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 83

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 84

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

Faloutsos CMU SCS 15-415/615

29

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 85

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 86

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 87

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500

So, best price is $1,500 – which legs?

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

Faloutsos CMU SCS 15-415/615

30

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 88

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 89

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 90

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

Faloutsos CMU SCS 15-415/615

31

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 91

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

Q: what are the states, costs and arrows, in q-opt?

CMU SCS

(Reminder: Dynamic
Programming)

Faloutsos CMU SCS 15-415/615 92

PIT

CDG

ATL

SG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

Q: what are the states (and costs and arrows), in q-opt?

A: set of intermediate result tables

CMU SCS

Q-opt and Dyn. Programming
•  E.g., compute R join S join T

Faloutsos CMU SCS 15-415/615 93

R

S

T

R join S

T

R

S join T

R join S join T …

150 (SM)

2,500 (NL)

…

…

Faloutsos CMU SCS 15-415/615

32

CMU SCS

Q-opt and Dyn. Programming
•  Details: how to record the fact that, say R is

sorted on R.a? or that the user requires
sorted output?

•  A:
•  E.g., consider the query

select *

from R, S, T

where R.a = S.a and S.b = T.b

order by R.a 94 CMU SCS 15-415/615

CMU SCS

Q-opt and Dyn. Programming
•  Details: how to record the fact that, say R is

sorted on R.a? or that the user requires
sorted output?

•  A: record orderings, in the state
•  E.g., consider the query

select *

from R, S, T

where R.a = S.a and S.b = T.b

order by R.a 95 CMU SCS 15-415/615

CMU SCS

Q-opt and Dyn. Programming
•  E.g., compute R join S join T order by R.a

Faloutsos CMU SCS 15-415/615 96

R

S

T

R join S

T

R

S join T

R join S join T …

150 (SM)

2,500 (NL)

Faloutsos CMU SCS 15-415/615

33

CMU SCS

Q-opt and Dyn. Programming
•  E.g., compute R join S join T order by R.a

Faloutsos CMU SCS 15-415/615 97

R

S

T

R join S

T

R

S join T

R join S join T …

150 (SM)

2,500 (NL) R join S join T,

sorted R.a

sort

Any other changes?

CMU SCS
Q-opt and Dyn. Programming

Faloutsos CMU SCS 15-415/615 98

R

S

T

R join S

T

R

S join T

R join S join T …

150 (SM)

2,500 (NL) R join S join T,

sorted R.a

sort

R join S (R.a)

T 2000 (NL)

50 (HJ)

CMU SCS

Faloutsos CMU SCS 15-415/615 99

Q-opt steps
•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans

–  single relation
– multiple relations

•  Main idea
•  Dynamic programming – reminder
•  Example

•  estimate cost; pick best

Faloutsos CMU SCS 15-415/615

34

CMU SCS

Faloutsos CMU SCS 15-415/615 100

Candidate
Plans

R S

B

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

1.  Enumerate relation orderings:

B S

R

S R

B

B R

S

R B

S x

S B

R x

Prune plans with cross-products immediately!

CMU SCS

Faloutsos CMU SCS 15-415/615 101

R S

B

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

2.  Enumerate join algorithm choices:

R S

B

HJ

HJ

R S

B

HJ

NLJ

R S

B

NLJ

HJ

R S

B

NLJ

NLJ

+ do same for
4 other plans

 4*4 = 16 plans so far..

Candidate
Plans

CMU SCS

Faloutsos CMU SCS 15-415/615 102

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

3.  Enumerate access method choices:

R S

B

NLJ

NLJ

+ do same for
other plans

R S

B

NLJ

NLJ

(heap scan)

(heap scan)

(heap scan)

R S

B

NLJ

NLJ

(INDEX scan on R.bid)

(heap scan)
(heap scan)

Candidate
Plans

Faloutsos CMU SCS 15-415/615

35

CMU SCS

Faloutsos CMU SCS 15-415/615 103

Now estimate the cost of each
plan

Example:

R S

B

NLJ

NLJ

(INDEX scan on R.sid)

(heap scan)

(heap scan)

CMU SCS

Faloutsos CMU SCS 15-415/615 104

Q-opt steps
•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans

–  single relation
– multiple relations
– nested subqueries

•  estimate cost; pick best

CMU SCS

Faloutsos CMU SCS 15-415/615 105

Q-opt steps

•  Everything so far: about a single query
block

Faloutsos CMU SCS 15-415/615

36

CMU SCS

Faloutsos CMU SCS 15-415/615 106

Query Rewriting

•  Re-write nested queries
•  to: de-correlate and/or flatten them

CMU SCS

Faloutsos CMU SCS 15-415/615 107

Example: Decorrelating a Query

SELECT S.sid
FROM Sailors S
WHERE EXISTS
 (SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND R.sid=S.sid)

Equivalent uncorrelated query:
SELECT S.sid
FROM Sailors S
WHERE S.sid IN
 (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

•  Advantage: nested block only needs to be
executed once (rather than once per S tuple)

CMU SCS

Faloutsos CMU SCS 15-415/615 108

Example: “Flattening” a Query

SELECT S.sid
FROM Sailors S
WHERE S.sid IN
 (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103) Equivalent non-nested query:

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid
 AND R.bid=103

•  Advantage: can use a join algorithm + optimizer can
select among join algorithms & reorder freely

Faloutsos CMU SCS 15-415/615

37

CMU SCS

Faloutsos CMU SCS 15-415/615 109

System R:
–  break query in query blocks
–  simple queries (ie., no joins): look at stats
–  n-way joins: left-deep join trees; ie., only one

intermediate result at a time
•  pros: smaller search space; pipelining
•  cons: may miss optimal

–  2-way joins: NL and sort-merge

Structure of query optimizers:

r1 r2 r3 r4

CMU SCS

Faloutsos CMU SCS 15-415/615 110

More heuristics by Oracle, Sybase and
Starburst (-> DB2)

In general: q-opt is very important for large
databases.

(‘explain select <sql-statement>’ gives plan)

Structure of query optimizers:

CMU SCS

Faloutsos CMU SCS 15-415/615 111

Q-opt steps

•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans
•  estimate cost; pick best

Faloutsos CMU SCS 15-415/615

38

CMU SCS

Faloutsos CMU SCS 15-415/615 112

Conclusions

•  Ideas to remember:
–  syntactic q-opt – do selections early
–  selectivity estimations (uniformity, indep.;

histograms; join selectivity)
–  hash join (nested loops; sort-merge)
–  left-deep joins
–  dynamic programming

