

- Why q-opt?
- Equivalence of expressions
- Cost estimation
- Plan generation
- Plan evaluation

Faloutsos
CMU SCS 15-415/61

\qquad
-
\qquad
Why Q-opt?

- SQL: \sim declarative
- good q-opt -> big difference
- eg., seq. Scan vs
- B-tree index, on $\mathrm{P}=1,000$ pages
Faloutsos
cmuscs $15-415 / 615$
\qquad

Q-opt steps - bring query in internal form (eg., parse tree) - ... into 'canonical form' (syntactic q-opt) - generate alt. plans - estimate cost; pick best
Falouts s CMU SCS 15.415/15

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Overview - detailed
Cruscs

- Why q-opt?
- Equivalence of expressions
- Cost estimation
- ...
Faloutsos
\qquad
\qquad

Equivalence of expressions

- A.k.a.: syntactic q-opt
- in short: perform selections and projections early
- More details: see transf. rules in text

Faloutsos
CMU SCS 15-415/615
${ }^{11}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Equivalence of expressions - Q: How to prove a transf. rule? $\sigma_{P}(R 1 \triangleright \triangleleft R 2) \stackrel{?}{=} \sigma_{P}(R 1) \triangleright \triangleleft \sigma_{P}(R 2)$ - A: use RTC, to show that LHS = RHS, eg: $\sigma_{P}(R 1 \cup R 2)=\sigma_{P}(R 1) \cup \sigma_{P}(R 2)$
Faloutsos \quad CMU SCS 15-415615

\qquad
\qquad
Equivalence of expressions

\quad| $\sigma_{P}(R 1 \cup R 2)=\sigma_{P}(R 1) \cup \sigma_{P}(R 2)$ |
| :--- |
| \ldots |
| $(t \in R 1 \wedge P(t)) \quad \vee \quad(t \in R 2) \wedge P(t)) \quad \Leftrightarrow$ |
| $\left(t \in \sigma_{P}(R 1)\right) \quad \vee \quad\left(t \in \sigma_{P}(R 2)\right) \quad \Leftrightarrow$ |
| $t \in \sigma_{P}(R 1) \cup \sigma_{P}(R 2) \quad \Leftrightarrow$ |
| $t \in R H S$ |
| $Q E D$ |

Faloutos
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Selections
- perform them early
- break a complex predicate, and push
$\sigma_{p 1^{\wedge} p 2^{\wedge} \ldots p n}(R)=\sigma_{p 1}\left(\sigma_{p 2}\left(\ldots \sigma_{p n}(R)\right) \ldots\right)$
- simplify a complex predicate
- (' $\mathrm{X}=\mathrm{Y}$ and $\mathrm{Y}=3$ ') -> ' $\mathrm{X}=3$ and $\mathrm{Y}=3$ '

Faloutsos
CMU SCS 15-415/615
17

\qquad

Equivalence of expressions

- Joins - Q: n-way join - how many diff. orderings?
- A: Catalan number $\sim 4 \wedge n$
- Exhaustive enumeration: too slow.

cmu scs

Cost estimation

- Eg., find ssn's of students with an ' A ' in 415 (using seq. scanning)
- How long will a query take?
- CPU (but: small cost; decreasing; tough to estimate)
- Disk (mainly, \# block transfers)
- How many tuples will qualify?
- (what statistics do we need to keep?)

Faloutsos
CMU SCS 15-415/615
23
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad

\qquad

\qquad
\qquad

CMU SCS		
Selections - summary		
$-\operatorname{sel}(\mathrm{A}=\text { constant })=1 / \mathrm{V}(\mathrm{~A}, \mathrm{r})$		
$-\operatorname{sel}(A>a)=(A m a x-a) /(A m a x-A m i n)$		
$-\operatorname{sel}(\operatorname{not} P)=1-\operatorname{sel}(\mathrm{P})$		
$-\operatorname{sel}(\mathrm{P} 1$ and P2) $=\operatorname{sel}(\mathrm{P} 1) * \operatorname{sel}(\mathrm{P} 2)$		
$-\operatorname{sel}(\mathrm{P} 1$ or P 2$)=\operatorname{sel}(\mathrm{P} 1)+\operatorname{sel}(\mathrm{P} 2)-\operatorname{sel}(\mathrm{P} 1) * \operatorname{sel}(\mathrm{P} 2)$		
$-\operatorname{sel}(\mathrm{P} 1$ or \ldots or Pn$)=1-(1-\operatorname{sel}(\mathrm{P} 1))^{*} \ldots *(1-\operatorname{sel}(\mathrm{Pn}))$		
- UNIFORMITY and INDEPENDENCE ASSUMPTIONS		
Faloutsos	CMU SCS 15-415/615	40

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Result Size Estimation for Joins

- Q: Given a join of R and S, what is the range of possible result sizes (in \#of tuples)?
- Hint: what if R _cols $\cap \mathrm{S}$ _cols $=\varnothing$? $\quad \mathrm{nr}$ * ns
- R_cols \cap S_cols is a key for R (and a Foreign Key in S)?

Faloutsos
CMU SCS $15-415 / 615$

cmuscs
 Result Size Estimation for Joins

- General case: R_cols $\cap \mathrm{S} _$cols $=\{\mathrm{A}\}$ (and A is key for neither)

Hint: for a given tuple of R,
how many tuples of S will it match?

CMU SCS 15-415/615
44
Faloutsos

```
cmuscs
```


Result Size Estimation for Joins

```
- General case: \(R_{-}\)cols \(\cap S_{-}\)cols \(=\{A\}\) (and \(A\) is key for neither)
- match each R-tuple with S-tuples
est_size < NTuples(R) * NTuples(S)/NKeys(A,S)
\[
<\sim \mathrm{nr} * \mathrm{~ns} / \mathrm{V}(\mathrm{~A}, \mathrm{~S})
\]
- symmetrically, for S:
est_size <~ NTuples(R) * NTuples(S)/NKeys(A,R)
\(<\sim n r * n s / V(A, R)\)
- Overall:
est_size \(=\) NTuples(R)*NTuples(S)/MAX \{NKeys(A,S), NKeys(A,R)\}
Faloutsos
CMU SCS 15-415/615

五
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)








- no index: scan (dup-elim; sort)
- with index:
- single index access path
- multiple index access path
- sorted index access path
- index-only access path

Faloutsos
CMU SCS 15-415/615
68


\section*{Citation}
- P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational database management system. In SIGMOD Conference, pages 23--34, 1979.
cmuscs
Frequently cited database publications http://www.informatik.uni-trier.de/~ley/db/about/top.html
\begin{tabular}{|ll|}
\hline\(\#\) & Publication \\
\hline 608 & \begin{tabular}{l} 
Peter P. Chen: The Entity-Relationship Model - Toward a \\
Unified View of Data. ACM Trans. Database Syst. 1(1): 9-36 \\
(1976)
\end{tabular} \\
\hline 580 & \begin{tabular}{l} 
E. F. Codd: A Relational Model of Data for Large Shared Data \\
Banks. Commun. ACM 13(6): 377-387(1970)
\end{tabular} \\
\hline 371 & \begin{tabular}{l} 
Patricia G. Selinger, Morton M. Astrahan, Donald D. \\
Chamberlin, Raymond A. Lorie, Thomas G. Price: Access Path \\
Selection in a Relational Database Management System. \\
SIGMOD Conference 1979: 23-34
\end{tabular} \\
\hline 366 & \begin{tabular}{l} 
Jeffrey D. Ullman: Principles of Database and Knowledge Base \\
Systems, Volume I. Computer Science Press 1988, ISBN \\
\(0-7167-8158-1\)
\end{tabular} \\
\hline\(\ldots\) & \(\ldots\) \\
\hline Faloutsos & \(\quad\) CMU SCS 15-415/615
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Predicate Selectivity Estimation} \\
\hline \(\mathrm{attr}=\) value & F = 1/ICARD(attr index) - if index exists F=1/10 otherwise \\
\hline \(\operatorname{attr} 1=\operatorname{attr} 2\) & \[
\begin{aligned}
& \text { F = 1/max(ICARD(I1),ICARD(I2)) or } \\
& \text { F = 1/ICARD(Ii) }- \text { if only index i exists, or } \\
& \text { F }=\mathbf{1} / \mathbf{1 0}
\end{aligned}
\] \\
\hline vall < attr < val2 & \[
\begin{aligned}
& F=(\text { value2-value1)/(high key-low key) } \\
& F=1 / 4 \text { otherwise }
\end{aligned}
\] \\
\hline expr1 or expr2 & \(\mathrm{F}=\mathrm{F}(\) expr1) \(+\mathrm{F}(\) expr 2\()-\mathrm{F}(\) expr 1\() * \mathrm{~F}(\) expr2) \\
\hline expr1 and expr2 & \(\mathrm{F}=\mathbf{F}(\) expr 1\() ~ * ~ F(e x p r 2) ~\) \\
\hline NOT expr & \(\mathrm{F}=1-\mathrm{F}\) (expr) \\
\hline Faloutsos & CMU SCS 15-415/615 \({ }^{73}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Costs per Access Path Case} \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Unique index } \\
\text { matching equal } \\
\text { predicate }
\end{array} \\
\hline
\end{array}
\] & 1+1+W \\
\hline Clustered index I matching \(>=1\) preds & F(preds)*(NINDX(I)+TCARD)+W*RSICARD \\
\hline \[
\begin{aligned}
& \text { Non-clustered } \\
& \text { index I matching } \\
& >=1 \text { preds }
\end{aligned}
\] & F(preds)*(NINDX(I)+NCARD)+W*RSICARD \\
\hline Segment scan & TCARD/P + W*RSICARD \\
\hline Faloutsos & CMU SCS 15-415/615 \({ }^{\text {c }}\) \\
\hline
\end{tabular}
Q-opt steps
• bring query in internal form (eg., parse tree)
• ... into 'canonical form' (syntactic q-opt)
• generate alt. plans
\(\quad\) - single relation
\(\quad\) - multiple relations
\(\quad\) • Main idea
\(\quad\) • Dynamic programming - reminder
• extimate cost; pick best
Faloutsos

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)



Assumption: NO package deals: cost CDG->SG is always \(\$ 800\), no matter how reached CDG

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Solution: compute partial optimal, left-to-right:
\[
\text { Faloutsos } \quad \text { CMU SCS 15-415/615 }
\]
\({ }^{83}\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Solution: compute partial optimal, left-to-right:

\footnotetext{
Faloutsos
}

CMU SCS 15-415/615
84



So, best price is \(\$ 1,500\) - which legs?
A: follow the winning edges, backwards


So, best price is \(\$ 1,500\) - which legs?
A: follow the winning edges, backwards
\({ }^{89}\)


So, best price is \(\$ 1,500\) - which legs?
A: follow the winning edges, backwards



Q-opt and Dyn. Programming
- Details: how to record the fact that, say R is sorted on R.a? or that the user requires sorted output?
- A: record orderings, in the state
- E.g., consider the query
select *
from \(R, S, T\)
where R. \(\mathrm{a}=\mathrm{S} . \mathrm{a}\) and S. \(\mathrm{b}=\) T. b
order by R.a. смuscs 15-415/615



1. Enumerate relation orderings:


Prune plans with cross-products immediately! \(\underset{\mathbf{R}}{\mathbf{R}} \stackrel{\mathbf{B}}{\mathbf{R}}\)
Faloutsos
CMU SCS 15-415/615
100

2. Enumerate join algorithm choices:



\section*{Q-opt steps}
- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
- single relation
- multiple relations
- nested subqueries
- estimate cost; pick best
Faloutsos
CMU SCS 15-415/615
104
cmu scs
Q-opt steps
- Everything so far: about a single query block

\(\qquad\)




\section*{Structure of query optimizers:}

More heuristics by Oracle, Sybase and Starburst (-> DB2)
In general: \(q\)-opt is very important for large databases.
('explain select <sql-statement>' gives plan)
cmu scs
Q-opt steps
- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best

\section*{Conclusions}
- Ideas to remember:
- syntactic q-opt - do selections early
- selectivity estimations (uniformity, indep.; histograms; join selectivity)
- hash join (nested loops; sort-merge)
- left-deep joins
- dynamic programming \(\qquad\)```

