CMU SCS

Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications

Lecture #15: Query Optimization (R&G ch. 15; Sys. R q-opt paper)

CMU SCS

Faloutsos

orderings?

• A: Catalan number $\sim 4^n$

Equivalence of expressions

CMU SCS 15-415/615

20

• Joins - Q: n-way join - how many diff.

- Exhaustive enumeration: too slow.

#	Publication	
608	Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1): 9-36 (1976)	
580	E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13(6): 377-387(1970)	
371	Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, Thomas G. Price: Access Path Selection in a Relational Database Management System. SIGMOD Conference 1979: 23-34	
366	Jeffrey D. Ullman: Principles of Database and Knowledge B Systems, Volume I. Computer Science Press 1988, ISBN 0-7167-8158-1	

CMU SCS			
Predicat	e Selectivity Estimation		
attr = value	F = 1/ICARD(attr index) – if index exists		
	$\mathbf{F} = 1/10$ otherwise		
attr1 = attr2	F = 1/max(ICARD(I1),ICARD(I2)) or		
	F = 1/ICARD(Ii) – if only index i exists, o	r	
	F = 1/10		
val1 < attr < val2	F = (value2-value1)/(high key-low key)		
	$\mathbf{F} = 1/4$ otherwise		
expr1 or expr2	F = F(expr1)+F(expr2)-F(expr1)*F(expr	2)	
expr1 and expr2	F = F(expr1) * F(expr2)		
NOT expr	$\mathbf{F} = 1 - \mathbf{F}(\mathbf{expr})$		
Faloutsos	CMU SCS 15-415/615	73	

Cost:	s per Access Path Case
Unique index matching equal predicate	1+1+W
Clustered index I matching >=1 preds	F(preds)*(NINDX(I)+TCARD)+W*RSICARD
Non-clustered index I matching >=1 preds	F(preds)*(NINDX(I)+NCARD)+W*RSICARD
Segment scan	TCARD/P + W*RSICARD
Faloutsos	CMU SCS 15-415/615 74

CNUSCS Q-opt and Dyn. Programming Details: how to record the fact that, say R is sorted on P. 62 or that the war requires

- sorted on R.a? or that the user requires sorted output?
- A:
- E.g., consider the query select * from R, S, T where R.a = S.a and S.b = T.b

CMU SCS

Falout

SELECT S.sid FROM Sailors S WHERE EXISTS

(SELECT *

FROM Reserves R

WHERE R.bid=103

AND R.sid=(S.sid)

Example: Decorrelating a Query

Equivalent uncorrelated query:

, 107

SELECT S.sid

FROM Sailors S

WHERE S.sid IN

(SELECT R.sid FROM Reserves R WHERE R.bid=103)

• Advantage: nested block only needs to be executed once (rather than once per S tuple)

CMU SCS 15-415/615

