Faloutsos

15-415/615

g CMUSCS
Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 — DB Applications
Lecture 12: external sorting
(R&G ch. 13)

% CMUSCS

Why Sort?
g CMU SCS

Why Sort?

select ... order by
- e.g., find students in increasing gpa order

bulk loading B+ tree index.
duplicate elimination (select distinct)
select ... group by

Sort-merge join algorithm involves sorting.

Faloutsos. 15-415/615 3

Faloutsos

g CMU SCS
Outline

=+ two-way merge sort
* external merge sort

* fine-tunings
* B+ trees for sorting

Faloutsos 15-415/615

15-415/615

% CMU SCS

Pass 0: Read a page, sort it, write it.
- only one buffer page is used

— merge pairs of runs into runs twice as long
— three buffer pages used.

1 INPUT 2

Disk Main memory buffers

Faloutsos 15-415/615

2-Way Sort: Requires 3 Buffers

Pass 1, 2, 3, ..., etc.: requires 3 buffer pages

INPUT 1
OUTPUT | E—
—

Disk

CMU SCS

write each page in file.

Faloutsos.

Two-Way External Merge Sort

Each d (34 [6.2] [o4] se [34] [2] Input file
* Each pass we read + PASS 0
El - 1-page runs

Faloutsos

CMU SCS

Two-Way External Merge Sort

* Each pass we read +
write each page in file.

Faloutsos

(34 2] I inputtite
PASS 0
(2] I 1-pageruns

R
4,7 1
. 2-page runs
E

15-415/615

CMU SCS

Two-Way External Merge Sort

+ Each pass we read +
write each page in file.

Faloutsos

(34 [6.2] [o4] sg [34] [2] Input file

PASS 0
(2] B tpageruns

PASS 1

PASS 2

EEEE]
33

112 4

-page runs
[35]
Le]

CMU SCS

Two-Way External Merge Sort

« Each pass we read +
write each page in file.

Faloutsos.

(34 [6.2] [o4] se [34] [2] Input file
PASS 0

El - 1-page runs

PASS 1
E Zpageruns

p PASS 2
(23]
% 4-page runs
lag] Le]
PASS 3
8-page runs|

=~
0

15-415/615

Faloutsos

CMU SCS

Two-Way External Merge Sort

15-415/615

Each d+ (34 [62 (54 [87] 5] (4] [2] I inputsiie
¢ Each pass we rea 111 1 rasso
write each page in file. L ey
* N pages in the file => E 2-page runs
= |'10g2 N] +1 / - PASS 2
* So total cost is: 35| “page runs
[l Le]
2N([10g2 N]+1) PASS 3
&
* Idea: Divide and [34] e-page rund]
conquer: sort subfiles %
and merge
Faloutsos 15-415/615 o] 10
% CMUSCS
Outline
* two-way merge sort
= « external merge sort
* fine-tunings
* B+ trees for sorting
Faloutsos 15-415/615 11

g CMUSCS

External merge sort

B > 3 buffers
* QI: how to sort?
* Q2: cost?

Faloutsos. 15-415/615

Faloutsos

g CMUSCS
General External Merge Sort

B>3 buffer pages. How to sort a file with N pages?

<
—
| — ——
— E—
Disk Disk

15-415/615

Faloutsos

15-415/615

% CMU SCS
General External Merge Sort

— Pass 0: use B buffer pages. Produce [N/ B] sorted runs

of B pages each.
— Pass 1, 2, ..., etc.: merge B-/ runs.

Disk

15-415/615

Faloutsos

External merge sort
B > 3 buffers

v« Q1: how to sort?
* Q2: cost?

Faloutsos. 15-415/615

Faloutsos

g CMU SCS
Sorting

— create sorted runs of size B (how many?)
— merge them (how?)

S5 L
L1 [

mifin

Faloutsos 15-415/615

15-415/615

% CMU SCS
Sorting

— create sorted runs of size B
— merge first B-1 runs into a sorted run of
(B-1) *B, ...

S5 | L
L1 [

miNin

Faloutsos 15-415/615

g CMUSCS
Sorting

— How many steps we need to do?
‘1", where B*(B-1)"i>N
— How many reads/writes per step? N+N

48 | L
L1 [

milin

Faloutsos. 15-415/615

Faloutsos

CMU SCS

Cost of External Merge Sort

* Number of passes: 1+[log, [N/ B]]
* Cost=2N * (# of passes)

Faloutsos 15-415/615 19

15-415/615

% CMU SCS
Cost of External Merge Sort

» E.g., with 5 buffer pages, to sort 108 page

file:

~ Pass 0: [108/57 =22 sorted runs of 5 pages
each (last run is only 3 pages)

- Pass 1. [22/4] = 6 sorted runs of 20 pages
each (last run is only 8 pages)

— Pass 2: 2 sorted runs, 80 pages and 28 pages

- Pass 3: Sorted file of 108 pages

Formula check: "log, 22" =3 ...+1-> 4 passes v
20

Faloutsos 15-415/615

3 " Number of Passes of External
Sort

(I/O cost is 2N times number of passes)

N B=3 |B=5 [B=9 |B=17|B=129|B=257
100 7 4 3 2 1 1
1,000 10 |5 4 3 2 2
10,000 13 |7 5 4 2 2
100,000 17 |9 6 5 3 3
1,000,000 20 | 10 7 5 3 3
10,000,000 23 |12 8 6 4 3
100,000,000 | 26 | 14 9 7 4 4
1,000,000,000 30 | 15 10 8 5 4

Faloutsos. 15-415/615 21

Faloutsos 15-415/615

g CMU SCS

Outline

* two-way merge sort

* external merge sort

= « fine-tunings
* B+ trees for sorting

Faloutsos 15-415/615 22

% CMU SCS

Outline

* two-way merge sort

+ external merge sort
* fine-tunings
= — which internal sort for Phase 0?
— blocked I/O

» B+ trees for sorting

Faloutsos 15-415/615 23

Internal Sort Algorithm

* Quicksort is a fast way to sort in memory.
* But: we get B buffers, and produce 1 run of length
B.

« Can we produce longer runs than that?

Faloutsos. 15-415/615 24

Faloutsos

Internal Sort Algorithm

* Quicksort is a fast way to sort in memory.

» But: we get B buffers, and produce 1 run of length
B.

« Can we produce longer runs than that?

Heapsort:
B=3 B=3 « Pick smallest
* Output
* Read from next

buffer

Faloutsos 15-415/615

15-415/615

Internal Sort Algorithm

* Quicksort is a fast way to sort in memory.

« But: we get B buffers, and produce 1 run of length
B.

« Can we produce longer runs than that?

« Alternative: “tournament sort” (a.k.a. “heapsort”,
“replacement selection”)

* Produces runs of length ~ 2*B

 Clever, but not implemented, for subtle reasons:
tricky memory management on variable length

records
Faloutsos 15-415/615 26

Reminder: Heapsort

pick smallest, write to output buffer:

Faloutsos. 15-415/615 27

Faloutsos

g CMU SCS

Faloutsos

I

Heapsort:

pick smallest, write to output buffer:

15-415/615 28

15-415/615

% CMU SCS

Faloutsos

Heapsort:

get next key; put at top and ‘sink’ it

15-415/615 29

g CMUSCS

Faloutsos.

Heapsort:

get next key; put at top and ‘sink’ it

15-415/615 30

10

Faloutsos 15-415/615

Heapsort:

get next key; put at top and ‘sink’ it

Faloutsos 15-415/615

Heapsort:

When done, pick top (= smallest)
and output it, if ‘legal’ (ie., >=10
in our example

This way, we can keep on reading
new key values (beyond the B
ones of quicksort)

Faloutsos 15-415/615 32

g CMUSCS

Outline

two-way merge sort

external merge sort

fine-tunings

— which internal sort for Phase 0?
- — blocked 1/0

» B+ trees for sorting

Faloutsos. 15-415/615

11

Faloutsos

CMU SCS

Blocked I/0 & double-buffering

» So far, we assumed random disk access

* Cost changes, if we consider that runs are
written (and read) sequentially

* What could we do to exploit it?

Faloutsos 15-415/615 34

15-415/615

CMU SCS

Blocked I/O & double-buffering

 So far, we assumed random disk access

 Cost changes, if we consider that runs are
written (and read) sequentially

* What could we do to exploit it?

» Al: Blocked I/O (exchange a few r.d.a for
several sequential ones) [use bigger pages]

* A2: double-buffering [mask I/O delays with
prefetching]

Faloutsos 15-415/615 35

B

CMU SCS

A1l: blocked I/0

« Normally, ‘B’ buffers of size (say) 1K

—
1 INPUT 2
_.‘—‘\
INPUT 5

6 Main memory buffers

Disk

Faloutsos. 15-415/615 36

12

Faloutsos 15-415/615

g CMU SCS
A1l: blocked I/0

* Normally, ‘B’ buffers of size (say) 1K
+ INSTEAD: B/b buffers, of size ‘b’ Kilobytes

INPUT 1

—— N OUTPUT
1 ——
INPUT 2 [—
______ / —
—
Disk Disk

6 Main memory buffers
Faloutsos 15-415/615 37

B A1l: blocked I/0

* Normally, ‘B’ buffers of size (say) 1K
INSTEAD: B/b buffers, of size ‘b’ Kilobytes
* Pros?

e Cons?

Faloutsos 15-415/615 38

g CMU SCS
Al: blocked I/0
« Normally, ‘B’ buffers of size (say) 1K
« INSTEAD: B/b buffers, of size ‘b’ Kilobytes

* Pros? Fewer random d.a. (because some of them ->
sequential)

» Cons? Smaller fanout -> maybe more passes

Faloutsos. 15-415/615 39

13

Faloutsos

g CMU SCS
Blocked I/0 & double-buffering

» So far, we assumed random disk access

* Cost changes, if we consider that runs are
written (and read) sequentially

* What could we do to exploit it?

* Al: Blocked I/O (exchange a few r.d.a for
several sequential ones) [use bigger pages]

mp » A2: double-buffering [mask I/O delays with
prefetching]

Faloutsos 15-415/615 40

15-415/615

A2: Double buffering
* Normally, when, say ‘INPUTI1’ is exhausted
— Weissue a ‘read” request and
— We wait ...

INPUT B-1

Disk B Main memory buffers Disk

Faloutsos 15-415/615 41

g CMUSCS
A2: Double Buffering

+ w/ double bufferning, we prefetch INPUT1’
into “shadow block’
— When INPUT! is exhausted, we issue a ‘read’,
— BUT we proceed with INPUT1’

INPUT 1

[—] —
I weurz > fouren] | |—=
XX iweur2 | | ceo
— ves —

b
Disk \ block size Disk

Faloutsos B main mempry buﬂ%rs, k-way merge 0

14

Faloutsos

g CMU SCS

INPUT 1

A2: Double Buffering

- Potentially, more passes; in practice, most
files still sorted in 2-3 passes.

15-415/615

I Wtz > fouren] | |e—=
— e / - —
Disk \ block size Disk
Faloutsos B main mempry buff%rs, k-way merge 03
% CMUSCS
Outline
* two-way merge sort
+ external merge sort
* fine-tunings
= . B+ trees for sorting
Faloutsos 15-415/615 44

B

CMU SCS

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on
sorting column(s).

Idea: Can retrieve records in order by traversing
leaf pages.

Is this a good idea?

Cases to consider:
- B+ tree is clustered
- B+ tree is not clustered

Faloutsos. 15-415/615 45

15

Faloutsos

g CMU SCS

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on
sorting column(s).
Idea: Can retrieve records in order by traversing
leaf pages.
Is this a good idea?

Cases to consider:

- B+ tree is clustered Good idea!

- B+ tree is not clustered ~ Could be a very bad idea!

Faloutsos 15-415/615 46

15-415/615

" Clustered B+ Tree Used for
Sorting

Index
(Directs search)

Data Entries

2384 (“Sequence set")
AN
o o o o

Cost: root to the left-
most leaf, then retrieve
all leaf pages
(Alternative 1)

Always better than external sorting!
Faloutsos 15-415/615 47

¥ " Unclustered B+ Tree Used for

Sorting

* Alternative (2) for data entries; each data
entry contains rid of a data record. In
general, one I/0 per data record!

Index
(Directs search)

Data Entries
"Sequence set")

Faloutsos Data Records 48

16

Faloutsos

3 " External Sorting vs. Unclustered

Index
N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 {1,000,000 {10,000,000
1,000,000 (8,000,000 |1,000,000 (10,000,000 |100,000,000
10,000,000 (80,000,000 10,000,000 (100,000,000 |1,000,000,000
N: # pages
p: # of records per page

B=1,000 and block size=32 for sorting
Faloutsos p=100 is the more realistic value. ¥

15-415/615

% CMU SCS

Summary

 External sorting is important
+ External merge sort minimizes disk I/O cost:
- Pass 0: Produces sorted runs of size B (# buffer
pages).
- Later passes: merge runs.
« Clustered B+ tree is good for sorting; unclustered
tree is usually very bad.

Faloutsos 15-415/615 50

17

