
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Design decisions
1) formula $h()$ for hashing function
2) size of hash table M 3) collision resolution method Faloussos cmuscs $15-415615$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{3}$ Design decisions - functions

- Goal: uniform spread of keys over hash buckets
- Popular choices: \qquad
- Division hashing
- Multiplication hashing
Division hashing
$h(x)=\left(a^{*} x+b\right) \bmod M$
- eg., $\mathrm{h}(\mathrm{ssn})=(\mathrm{ssn}) \bmod 1,000$
- gives the last three digits of ssn
- M: size of hash table - choose a prime
number, defensively (why?)
Faloutos
cnuscs $15-415615$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiplication hashing		
$\begin{aligned} & h(x)=[\text { fractional-part-of }(x * \varphi)] * M \\ & \varphi: \text { golden ratio }(0.618 \ldots=(\operatorname{sqrt}(5)-1) / 2) \end{aligned}$		
- in general, we need an irrational number		
- advantage: M need not be a prime number		
- but φ must be irrational		
	cmuscs 5.4 .45615	${ }^{14}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad

$33^{\text {cnuscs }}$
Size of hash table
- eg., 50,000 employees, 10 employeerecords / page - $\mathrm{Q}: M=$?? pages/buckets/slots
Faloutos \quad cMu SCS 15-415/615

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Size of hash table
• eg., 50,000 employees, 10 employees/page
• Q: $M=$?? pages/buckets/slots

- A: utilization $\sim 90 \%$ and
$-M$: prime number
Eg., in our case: $M=$ closest prime to
$50,000 / 10 / 0.9=5,555$
Falousos
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
Collision resolution
- Q: what is a 'collision'?
- A: ??
- Q: why worry about collisions/overflows?
(recall that buckets are $\sim 90 \%$ full)
- A: 'birthday paradox'
Faloutos
cmuscs $15-415615$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Solution: Dynamic/extendible
hashing
• idea: shrink / expand hash table on demand..
- ..dynamic hashing
$\left.\begin{array}{l}\text { Details: how to grow gracefully, on overflow? } \\ \begin{array}{l}\text { Many solutions - One of them: 'extendible } \\ \text { hashing' [Fagin et al] }\end{array} \\ \text { Falousos }\end{array}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Extendible hashing
in detail:
- keep a directory, with ptrs to hash-buckets
- Q: how to divide contents of bucket in two?
- A: hash each key into a very long bit string;
keep only as many bits as needed
Eventually:
Falousos
${ }^{\text {cmu scs } 15-415615}$
\qquad
\qquad
\qquad
- keep a directory, with ptrs to hash-buckets
- Q: how to divide contents of bucket in two? \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

$3^{\text {cmuscs }}$	
Outline	
- (static) hashing - extendible hashing - linear hashing - Hashing vs B-trees	
Falousos \quad CMUSCS 15-415615	${ }^{47}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Linear hashing
Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)
Q: can we do something simpler, with
smoother growth?
A: split buckets from left to right, regardless
of which one overflowed ('crazy', but it
works well!) - Eg.:
Faloutos
\qquad
\qquad
\qquad etc; which doubles (ouch!)
Q: can we do something simpler, with \qquad
\qquad
\qquad
\qquad

$3^{\text {cnuscs }}$					
Linear hashing					
Initially: $h(x)=x \bmod N \quad(\mathrm{~N}=4$ here)					
Assume capacity: 3 records / bucket					
Insert key '17'					
bucket- id	$0 \quad 1$		23		
	48	5 13	6	711	
Falutus		nuscs 15-4			${ }_{51}$

\qquad
overflow of bucket\#1
bucket- id

Faloutsos
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Linear hashing - insertion?
notice: overflow criterion is up to us!!
Q: suggestions?
A1: space utilization $>=$ u-max
Faloustos
cnuscs $15-415615$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Linear hashing - insertion?
notice: overflow criterion is up to us!!
Q: suggestions?
A1: space utilization $>=$ u-max
A2: avg length of ovf chains $>$ max-len
A3: ...
नаloutsos
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Conclusions - B-trees and variants: in all DBMSs - hash indices: in some - (but hashing is useful for joins - later...)	
Faloutsos \quad CMU SCS 15-415/15	89

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

