Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 – DB Applications

Lecture #10 (R&G ch8) File Organizations and Indexing

Review: Memory, Disks

- Storage Hierarchy: cache, RAM, disk, tape, ... – Can't fit everything in RAM (usually).
- "Page" or "Frame" unit of buffer management in RAM.
- "Page" or "Block" unit of interaction with disk.
- Importance of "locality" and sequential access for good disk performance.
- Buffer pool management
 - Slots in RAM to hold Pages
- Faloutsos Policy to move Pages between RAM & disk

Review: File Storage

- Page or block is OK when doing I/O, but higher levels of DBMS operate on *records*, and *files of records*.
- We saw:
 - How to organize records within pages.
 - How to keep pages of records on disk
- Today we'll see:
 - How to support operations on files of records efficiently.

Faloutsos

FILE: A collection of pages, each containing a collection of records.

• Must support:

Files

- insert/delete/modify record
- read a particular record (specified using record id)
- scan all records (possibly with some conditions on the records to be retrieved)

Faloutsos

CMU SCS 15-415/615

Alternative File Organizations

Many alternatives exist, each good for some situations, and not so good in others:

- <u>Heap files:</u> Suitable when typical access is a file scan retrieving all records.
- <u>Sorted Files:</u> Best for retrieval in some order, or for retrieving a `range' of records.
- Index File Organizations: (will cover shortly...)

CMU SCS 15-415/615

```
Faloutsos
```

5

6

Faloutsos

Indexes

- Sometimes, we want to retrieve records by specifying the values in one or more fields, e.g.,
 - Find all students in the "CS" department
 - Find all students with a gpa > 3
- An *index* on a file speeds up selections on the *search key fields* for the index.
 - Any subset of the fields of a relation can be the search key for an index on the relation.
 - Search key is not the same as key (e.g., doesn't have to be unique).

CMU SCS 15-415/615

Faloutsos

Details

- 'data entries' == what we store at the bottom of the index pages
- what would you use as data entries?

CMU SCS 15-415/615

• (3 alternatives here)

Faloutsos

Alternatives for Data Entry **k*** in Index

- 1. Actual data record (with key value k)
- 2. <k, rid of matching data record>
- 3. < k, list of rids of matching data records>
- Choice is orthogonal to the indexing technique.
 Examples of indexing techniques: B+ trees, hash-based structures, R trees, ...
 - Typically, index contains auxiliary info that directs searches to the desired data entries
- Can have multiple (different) indexes per file.
 E.g. file sorted on *age*, with a hash index on *name* and a B+tree index on *salary*.

- leads to *variable sized data entries* even if search keys are of fixed length.
- Even worse, for large rid lists the data entry would have to span multiple pages!

Overview

Review

- Index classification
 - Representation of data entries in index
 - Clustered vs. Unclustered
 - Primary vs. Secondary
 - Dense vs. Sparse
 - Single Key vs. Composite
- Indexing technique
- Cost estimation

Faloutsos

EMU \$E\$ 15:415/615

- Index classification
 - Representation of data entries in index
 - Clustered vs. Unclustered
 - Primary vs. SecondaryDense vs. Sparse

 - Single Key vs. Composite
- Indexing technique
- Cost estimation

Faloutsos

Faloutsos

EMU 8E8 15:415/615

Primary vs. Secondary Index

- *Primary*: index key includes the file's primary key
- Secondary: any other index
 - Sometimes confused with Alt. 1 vs. Alt. 2/3 $\,$
 - Primary index never contains duplicates
 - Secondary index may contain duplicates
 - If index key contains a candidate key, no duplicates => unique index

CMU SCS 15-415/615

- Index classification
 - Representation of data entries in index
 - Clustered vs. Unclustered
 - Primary vs. Secondary
 - Dense vs. Sparse
- Single Key vs. Composite
- Indexing technique
- Cost estimation

Faloutsos

EMH \$E\$ 15:415/615

Tree vs. Hash-based index

• Hash-based index

- Good for equality selections.
 - File = a collection of <u>buckets</u>, Bucket = primary page plus 0 or more overflow pages.
 - *Hash function* **h**: **h**(*r.search_key*) = bucket in which record *r* belongs.
- Tree-based index
 - Good for range selections.
 - Hierarchical structure (Tree) directs searches
 - Leaves contain data entries sorted by search key value
 - B+ tree: all root->leaf paths have equal length (height)

Cost est	imat	tion				
	scan	eq	range	ins	del	
Неар						
sorted						
Clust.						
u-tree						
u-hash						
Assume the • Clustered • Data entr	at: 1 index y= 1/2	c spans 1 10 of da	1.5 <i>B</i> pag ta recor	ges (due d	e to emp	ty space)
	Cost est Heap sorted Clust. u-tree u-hash Assume th. • Clusterec • Data entr	Cost estimat	Scan eq Heap	Scan eq range Heap	Scan eq range ins Heap Image Image <td>Scan eq range ins del Heap Image Image Image Image Image sorted Image Image Image Image Image Image Clust. Image Image</td>	Scan eq range ins del Heap Image Image Image Image Image sorted Image Image Image Image Image Image Clust. Image Image

Cost	est	imat	ion			
		scan	eq	range	ins	del
He	ap	В				
SO	rted	В				
Clu	ust.	1.5B				
u-t	tree	~B				
u-l	hash	~B				
				•	•	
		CM	U SCS 15-415/6	15		

Co	ost est	timat	tion				
		scan	eq	range	ins	del	
	Неар	В	B/2				
	sorted	В	log ₂ B				
	Clust.	1.5B	h				
	u-tree	~B	1+h'				
	u-hash	~B	~2				
	h= heig h' = hei	, ght of b ight of	otree ~ le unclus	og _F (1.5) tered in	B) dex btre	ee ~ log	(1.5B)
Faloutsos		CM	IU SCS 15-415/6	15			44

	scan	eq	range	ins	del
Неар	В	B/2	В		
sorted	В	log ₂ B	<- +m		
Clust.	1.5B	h	<- +m		
u-tree	~B	1+h'	<- +m'		
u-hash	~B	~2	В		

	scan	eq	range	ins	del
Неар	В	B/2	В	2	Search+1
sorted	В	log ₂ B	<- +m	Search+B	Search+I
Clust.	1.5B	h	<- +m	Search+1	Search+1
u-tree	~B	1+h′	<- +m'	Search+2	Search+2
u-hash	~B	~2	В	Search+2	Search+2

	scan	eq	range	ins	del
Неар	В	В	В	2	В
sorted	В	log ₂ B	log ₂ B	B	B
Clust.	В	log _F B	log _F B	log _F B	log _F B
u-tree	В	log _F B	log _F B	log _F B	log _F B
u-hash	В	1	B	1	1

Index specification in SQL:1999

CREATE INDEX IndAgeRating ON Students WITH STRUCTURE=BTREE, KEY = (age, gpa)

CMU SCS 15-415/615

Faloutsos

Summary

- To speed up selection queries: index.
- Terminology:
 - Clustered / non-clustered index
 - primary / secondary index
- Typically, B-tree index
- hashing is only good for equality search

CMU SCS 15-415/615

- At most one clustered index per table – many non-clustered ones are possible
 - composite indexes are possible

Faloutsos

51