
Faloutsos CMU SCS 15-415/615

CMU - 15-415 1

CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 – DB Applications

Lecture#9: Indexing (R&G ch. 10)

CMU SCS

Faloutsos CMU SCS 15-415/615 2

Outline

•  Motivation
•  ISAM
•  B-trees (not in book)
•  B+ trees
•  duplicates
•  B+ trees in practice

CMU SCS

Faloutsos CMU SCS 15-415/615 3

Introduction
•  How to support range searches?
•  equality searches?

Faloutsos CMU SCS 15-415/615

CMU - 15-415 2

CMU SCS

Faloutsos CMU SCS 15-415/615 4

Range Searches
•  ``Find all students with gpa > 3.0’’
•  may be slow, even on sorted file
•  What to do?

Page 1 Page 2 Page N Page 3 Data File

CMU SCS

Faloutsos CMU SCS 15-415/615 5

Range Searches
•  ``Find all students with gpa > 3.0’’
•  may be slow, even on sorted file
•  Solution: Create an `index’ file.

Page 1 Page 2 Page N Page 3 Data File

k2 kN k1 Index File

CMU SCS

Faloutsos CMU SCS 15-415/615 6

Range Searches
•  More details:
•  if index file is small, do binary search there
•  Otherwise??

Page 1 Page 2 Page N Page 3 Data File

k2 kN k1 Index File

Faloutsos CMU SCS 15-415/615

CMU - 15-415 3

CMU SCS

Faloutsos CMU SCS 15-415/615 7

ISAM

•  Repeat recursively!

Non-leaf
Pages

Pages
Leaf

CMU SCS

Faloutsos CMU SCS 15-415/615 8

ISAM

•  OK - what if there are insertions and
overflows?

Non-leaf
Pages

Pages
Leaf

CMU SCS

Faloutsos CMU SCS 15-415/615 9

ISAM

•  Overflow pages, linked to the primary page

Non-leaf
Pages

Pages
Overflow

page
Primary pages

Leaf

Faloutsos CMU SCS 15-415/615

CMU - 15-415 4

CMU SCS

Faloutsos CMU SCS 15-415/615 10

Example ISAM Tree
•  2 entries per page

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

CMU SCS

Faloutsos CMU SCS 15-415/615 11

ISAM

Details
•  format of an index page?
•  how full would a newly created ISAM be?

CMU SCS

Faloutsos CMU SCS 15-415/615 12

ISAM

Details
•  format of an index page?
•  how full would a newly created ISAM be?

–  ~80-90% (not 100%)

P 0 K 1 P 1 K 2 P 2 K m P m

Faloutsos CMU SCS 15-415/615

CMU - 15-415 5

CMU SCS

Faloutsos CMU SCS 15-415/615 13

ISAM is a STATIC Structure

•  that is, index pages don’t change
•  File creation: Leaf (data) pages

allocated sequentially, sorted by search
key; then index pages allocated, then
overflow pgs.

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

CMU SCS

Faloutsos CMU SCS 15-415/615 14

ISAM is a STATIC Structure

•  Search: Start at root; use key
comparisons to go to leaf.

•  Cost = log F N ;
•  F = # entries/pg (i.e., fanout),
•  N = # leaf pgs

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

CMU SCS

Faloutsos CMU SCS 15-415/615 15

ISAM is a STATIC Structure
Insert: Find leaf that data entry belongs

to, and put it there. Overflow page if
necessary.

Delete: Find and remove from leaf; if
empty page, de-allocate.

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

Faloutsos CMU SCS 15-415/615

CMU - 15-415 6

CMU SCS

Faloutsos CMU SCS 15-415/615 16

48*

Example: Insert 23*, 48*, 41*,
42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 41*

42*

CMU SCS

Faloutsos CMU SCS 15-415/615 17

48*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 41*

42*

  Note that 51* appears in index levels, but not in leaf!

... then delete 42*, 51*, 97*

CMU SCS

Faloutsos CMU SCS 15-415/615 18

ISAM ---- Issues?

•  Pros
–  ????

•  Cons
–  ????

Faloutsos CMU SCS 15-415/615

CMU - 15-415 7

CMU SCS

Faloutsos CMU SCS 15-415/615 19

Outline

•  Motivation
•  ISAM
•  B-trees (not in book)
•  B+ trees
•  duplicates
•  B+ trees in practice

CMU SCS

Faloutsos CMU SCS 15-415/615 20

B-trees	

•  the most successful family of index
schemes (B-trees, B+-trees, B*-trees)	

•  Can be used for primary/secondary,
clustering/non-clustering index.	

•  balanced “n-way” search trees	

CMU SCS

Faloutsos CMU SCS 15-415/615 21

B-trees	

[Rudolf Bayer and McCreight, E. M.
Organization and Maintenance of Large
Ordered Indexes. Acta Informatica 1,
173-189, 1972.]

Faloutsos CMU SCS 15-415/615

CMU - 15-415 8

CMU SCS

Faloutsos CMU SCS 15-415/615 22

B-trees	

Eg., B-tree of order d=1:	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 23

B - tree properties:	

•  each node, in a B-tree of order d:	

–  Key order	

–  at most n=2d keys	

–  at least d keys (except root, which may have just 1 key)	

–  all leaves at the same level	

–  if number of pointers is k, then node has exactly k-1

keys	

–  (leaves are empty)	

v1 v2
… vn

p1
pn+1

CMU SCS

Faloutsos CMU SCS 15-415/615 24

Properties	

•  “block aware” nodes: each node -> disk

page	

•  O(log (N)) for everything! (ins/del/search)	

•  typically, if d = 50 - 100, then 2 - 3 levels	

•  utilization >= 50%, guaranteed; on average
69%	

Faloutsos CMU SCS 15-415/615

CMU - 15-415 9

CMU SCS

Faloutsos CMU SCS 15-415/615 25

Queries	

•  Algo for exact match query? (eg., ssn=8?)	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 26

JAVA animation!

http://slady.net/java/bt/

strongly recommended! (with all usual pre-

cautions – VM etc)

CMU SCS

Faloutsos CMU SCS 15-415/615 27

Queries	

•  Algo for exact match query? (eg., ssn=8?)	

1 3

6

7

9

13

<6

>6 <9 >9

Faloutsos CMU SCS 15-415/615

CMU - 15-415 10

CMU SCS

Faloutsos CMU SCS 15-415/615 28

Queries	

•  Algo for exact match query? (eg., ssn=8?)	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 29

Queries	

•  Algo for exact match query? (eg., ssn=8?)	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 30

Queries	

•  Algo for exact match query? (eg., ssn=8?)	

1 3

6

7

9

13

<6

>6 <9 >9
H steps (= disk
accesses)

Faloutsos CMU SCS 15-415/615

CMU - 15-415 11

CMU SCS

Faloutsos CMU SCS 15-415/615 31

Queries	

•  what about range queries? (eg., 5<salary<8)	

•  Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)	

CMU SCS

Faloutsos CMU SCS 15-415/615 32

Queries	

•  what about range queries? (eg., 5<salary<8)	

•  Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 33

Queries	

•  what about range queries? (eg., 5<salary<8)	

•  Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)	

1 3

6

7

9

13

<6

>6 <9 >9

Faloutsos CMU SCS 15-415/615

CMU - 15-415 12

CMU SCS

Faloutsos CMU SCS 15-415/615 34

Queries	

•  what about range queries? (eg., 5<salary<8)	

•  Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 35

Queries	

•  what about range queries? (eg., 5<salary<8)	

•  Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 36

B-trees: Insertion	

•  Insert in leaf; on overflow, push middle up
(recursively)	

•  split: preserves B - tree properties	

Faloutsos CMU SCS 15-415/615

CMU - 15-415 13

CMU SCS

Faloutsos CMU SCS 15-415/615 37

B-trees	

Easy case: Tree T0; insert ‘8’	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 38

B-trees	

Tree T0; insert ‘8’	

1 3

6

7

9

13

<6

>6 <9 >9

8

CMU SCS

Faloutsos CMU SCS 15-415/615 39

B-trees	

Hardest case: Tree T0; insert ‘2’	

1 3

6

7

9

13

<6

>6 <9 >9

2

Faloutsos CMU SCS 15-415/615

CMU - 15-415 14

CMU SCS

Faloutsos CMU SCS 15-415/615 40

B-trees	

Hardest case: Tree T0; insert ‘2’	

1 2

6

7

9

13 3

push middle up

CMU SCS

Faloutsos CMU SCS 15-415/615 41

B-trees	

Hardest case: Tree T0; insert ‘2’	

6

7

9

13 1 3

2 2 Ovf; push middle

CMU SCS

Faloutsos CMU SCS 15-415/615 42

B-trees	

Hardest case: Tree T0; insert ‘2’	

7

9

13 1 3

2

6
Final state

Faloutsos CMU SCS 15-415/615

CMU - 15-415 15

CMU SCS

Faloutsos CMU SCS 15-415/615 43

B-trees: Insertion	

•  Insert in leaf; on overflow, push middle up
(recursively – ‘propagate split’)	

•  split: preserves all B - tree properties (!!)	

•  notice how it grows: height increases when

root overflows & splits	

•  Automatic, incremental re-organization

(contrast with ISAM!)	

CMU SCS

Faloutsos CMU SCS 15-415/615 44

INSERTION OF KEY ’K’

 find the correct leaf node ’L’;

 if (’L’ overflows){

 split ’L’, and push middle key to parent node ’P’;

 if (’P’ overflows){

 repeat the split recursively; }

 else{

 add the key ’K’ in node ’L’;

 /* maintaining the key order in ’L’ */ }

Pseudo-code

CMU SCS

Faloutsos CMU SCS 15-415/615 45

Overview	

•  ...	

•  B – trees	

– Dfn, Search, insertion, deletion	

•  ...	

Faloutsos CMU SCS 15-415/615

CMU - 15-415 16

CMU SCS

Faloutsos CMU SCS 15-415/615 46

Deletion	

Rough outline of algo:	

•  Delete key;	

•  on underflow, may need to merge	

	

In practice, some implementors just allow

underflows to happen…	

CMU SCS

Faloutsos CMU SCS 15-415/615 47

B-trees – Deletion	

Easiest case: Tree T0; delete ‘3’	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 48

B-trees – Deletion	

Easiest case: Tree T0; delete ‘3’	

1

6

7

9

13

<6

>6 <9 >9

Faloutsos CMU SCS 15-415/615

CMU - 15-415 17

CMU SCS

Faloutsos CMU SCS 15-415/615 49

B-trees – Deletion	

•  Case1: delete a key at a leaf – no underflow	

•  Case2: delete non-leaf key – no underflow	

•  Case3: delete leaf-key; underflow, and ‘rich

sibling’	

•  Case4: delete leaf-key; underflow, and ‘poor

sibling’	

CMU SCS

Faloutsos CMU SCS 15-415/615 50

B-trees – Deletion	

•  Case1: delete a key at a leaf – no underflow
(delete 3 from T0)	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 51

B-trees – Deletion	

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)	

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

Faloutsos CMU SCS 15-415/615

CMU - 15-415 18

CMU SCS

Faloutsos CMU SCS 15-415/615 52

B-trees – Deletion	

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)	

1 3 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

CMU SCS

Faloutsos CMU SCS 15-415/615 53

B-trees – Deletion	

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)	

1 7

9

13

<6

>6 <9 >9

Delete &
promote, ie: 3

CMU SCS

Faloutsos CMU SCS 15-415/615 54

B-trees – Deletion	

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)	

1 7

9

13

<3

>3 <9 >9
3

FINAL TREE

Faloutsos CMU SCS 15-415/615

CMU - 15-415 19

CMU SCS

Faloutsos CMU SCS 15-415/615 55

B-trees – Deletion	

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)	

•  Q: How to promote? 	

•  A: pick the largest key from the left sub-tree

(or the smallest from the right sub-tree)	

•  Observation: every deletion eventually
becomes a deletion of a leaf key	

CMU SCS

Faloutsos CMU SCS 15-415/615 56

B-trees – Deletion	

•  Case1: delete a key at a leaf – no underflow	

•  Case2: delete non-leaf key – no underflow	

•  Case3: delete leaf-key; underflow, and ‘rich

sibling’	

•  Case4: delete leaf-key; underflow, and ‘poor

sibling’	

CMU SCS

Faloutsos CMU SCS 15-415/615 57

B-trees – Deletion	

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)	

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Faloutsos CMU SCS 15-415/615

CMU - 15-415 20

CMU SCS

Faloutsos CMU SCS 15-415/615 58

B-trees – Deletion	

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)	

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Rich sibling

CMU SCS

Faloutsos CMU SCS 15-415/615 59

B-trees – Deletion	

•  Case3: underflow & ‘rich sibling’	

•  ‘rich’ = can give a key, without
underflowing	

•  ‘borrowing’ a key: THROUGH the
PARENT!	

CMU SCS

Faloutsos CMU SCS 15-415/615 60

B-trees – Deletion	

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)	

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Rich sibling

NO!!

Faloutsos CMU SCS 15-415/615

CMU - 15-415 21

CMU SCS

Faloutsos CMU SCS 15-415/615 61

B-trees – Deletion	

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)	

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

CMU SCS

Faloutsos CMU SCS 15-415/615 62

B-trees – Deletion	

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)	

1

3 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

6

CMU SCS

Faloutsos CMU SCS 15-415/615 63

B-trees – Deletion	

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)	

1

3 9

13

<3

>3 <9 >9

Delete &
borrow,
through the
parent

6

FINAL TREE

Faloutsos CMU SCS 15-415/615

CMU - 15-415 22

CMU SCS

Faloutsos CMU SCS 15-415/615 64

B-trees – Deletion	

•  Case1: delete a key at a leaf – no underflow	

•  Case2: delete non-leaf key – no underflow	

•  Case3: delete leaf-key; underflow, and ‘rich

sibling’	

•  Case4: delete leaf-key; underflow, and ‘poor

sibling’	

CMU SCS

Faloutsos CMU SCS 15-415/615 65

B-trees – Deletion	

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)	

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

Faloutsos CMU SCS 15-415/615 66

B-trees – Deletion	

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)	

1 3

6

7

9 <6

>6 <9 >9

Faloutsos CMU SCS 15-415/615

CMU - 15-415 23

CMU SCS

Faloutsos CMU SCS 15-415/615 67

B-trees – Deletion	

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)	

1 3

6

7

9 <6

>6 <9 >9

A: merge w/
‘poor’ sibling

CMU SCS

Faloutsos CMU SCS 15-415/615 68

B-trees – Deletion	

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)	

•  Merge, by pulling a key from the parent 	

•  exact reversal from insertion: ‘split and push

up’, vs. ‘merge and pull down’	

•  Ie.:	

CMU SCS

Faloutsos CMU SCS 15-415/615 69

B-trees – Deletion	

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)	

1 3

6

7

<6

>6

A: merge w/
‘poor’ sibling

9

Faloutsos CMU SCS 15-415/615

CMU - 15-415 24

CMU SCS

Faloutsos CMU SCS 15-415/615 70

B-trees – Deletion	

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)	

1 3

6

7

<6

>6
9

FINAL TREE

CMU SCS

Faloutsos CMU SCS 15-415/615 71

B-trees – Deletion	

•  Case4: underflow & ‘poor sibling’	

•  -> ‘pull key from parent, and merge’	

•  Q: What if the parent underflows?	

•  A: repeat recursively	

CMU SCS

Faloutsos CMU SCS 15-415/615 72

B-tree deletion - pseudocode
DELETION OF KEY ’K’
 locate key ’K’, in node ’N’
 if(’N’ is a non-leaf node) {
 delete ’K’ from ’N’;
 find the immediately largest key ’K1’;
 /* which is guaranteed to be on a leaf node ’L’ */
 copy ’K1’ in the old position of ’K’;
 invoke this DELETION routine on ’K1’ from the leaf node ’L’;
 else {
/* ’N’ is a leaf node */
... (next slide..)

Faloutsos CMU SCS 15-415/615

CMU - 15-415 25

CMU SCS

Faloutsos CMU SCS 15-415/615 73

B-tree deletion - pseudocode
/* ’N’ is a leaf node */
 if(’N’ underflows){
 let ’N1’ be the sibling of ’N’;
 if(’N1’ is "rich"){ /* ie., N1 can lend us a key */
 borrow a key from ’N1’ THROUGH the parent node;
 }else{ /* N1 is 1 key away from underflowing */
 MERGE: pull the key from the parent ’P’,
 and merge it with the keys of ’N’ and ’N1’ into a new

node;
 if(’P’ underflows){ repeat recursively }
 }
 }

CMU SCS

Faloutsos CMU SCS 15-415/615 74

Outline
•  Motivation
•  ISAM
•  B-trees (not in book)

–  algorithms
–  extensions

•  B+ trees
•  duplicates
•  B+ trees in practice

CMU SCS

Faloutsos CMU SCS 15-415/615 75

Variations

•  How could we do even better than the B-
trees above?

Faloutsos CMU SCS 15-415/615

CMU - 15-415 26

CMU SCS

Faloutsos CMU SCS 15-415/615 76

B*-tree	

•  In B-trees, worst case util. = 50%, if we
have just split all the pages	

•  how to increase the utilization of B - trees?	

•  ..with B* - trees!	

CMU SCS

Faloutsos CMU SCS 15-415/615 77

B-trees and B*-trees	

Eg., Tree T0; insert ‘2’	

1 3

6

7

9

13

<6

>6 <9 >9

2

CMU SCS

Faloutsos CMU SCS 15-415/615 78

B*-trees: deferred split!
•  Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 3

6

7

9

13

<6

>6 <9 >9

2

Faloutsos CMU SCS 15-415/615

CMU - 15-415 27

CMU SCS

Faloutsos CMU SCS 15-415/615 79

B*-trees: deferred split!
•  Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 2

3

6

9

13

<3

>3 <9 >9

2

7

FINAL TREE

CMU SCS

Faloutsos CMU SCS 15-415/615 80

B*-trees: deferred split!
•  Notice: shorter, more packed, faster tree
•  It’s a rare case, where space utilization and

speed improve together
•  BUT: What if the sibling has no room for

our ‘lending’?

CMU SCS

Faloutsos CMU SCS 15-415/615 81

B*-trees: deferred split!
•  A: 2-to-3 split: get the keys from the

sibling, pool them with ours (and a key
from the parent), and split in 3.

•  Could we extend the idea to 3-to-4 split, 4-
to-5 etc?

Faloutsos CMU SCS 15-415/615

CMU - 15-415 28

CMU SCS

Faloutsos CMU SCS 15-415/615 82

B*-trees: deferred split!
•  A: 2-to-3 split: get the keys from the

sibling, pool them with ours (and a key
from the parent), and split in 3.

•  Could we extend the idea to 3-to-4 split, 4-
to-5 etc?

•  Yes, but: diminishing returns

CMU SCS

Faloutsos CMU SCS 15-415/615 83

Outline

•  Motivation
•  ISAM
•  B-trees (not in book)
•  B+ trees
•  duplicates
•  B+ trees in practice

CMU SCS

Faloutsos CMU SCS 15-415/615 84

B+ trees - Motivation	

For clustering index, data records are
scattered:	

1 3

6

7

9

13

<6

>6 <9 >9

Faloutsos CMU SCS 15-415/615

CMU - 15-415 29

CMU SCS

Faloutsos CMU SCS 15-415/615 85

Solution: B+ - trees 	

•  facilitate sequential ops	

•  They string all leaf nodes together 	

•  AND	

•  replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level	

•  (vital, for clustering index!)	

CMU SCS

Faloutsos CMU SCS 15-415/615 86

B+ trees	

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

CMU SCS

Faloutsos CMU SCS 15-415/615 87

B+ trees	

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

Faloutsos CMU SCS 15-415/615

CMU - 15-415 30

CMU SCS

Faloutsos CMU SCS 15-415/615 88

B+trees

•  More details: next (and textbook)
•  In short: on split

–  at leaf level: COPY middle key upstairs
–  at non-leaf level: push middle key upstairs (as

in plain B-tree)

CMU SCS

Faloutsos CMU SCS 15-415/615 89

Example B+ Tree

•  Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

•  Search for 5*, 15*, all data entries >=
24* ...

 Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

CMU SCS

Faloutsos CMU SCS 15-415/615 90

B+ Trees in Practice
•  Typical order: 100. Typical fill-factor:

67%.
–  average fanout = 2*100*0.67 = 134

•  Typical capacities:
– Height 4: 1334 = 312,900,721 entries
– Height 3: 1333 = 2,406,104 entries

Faloutsos CMU SCS 15-415/615

CMU - 15-415 31

CMU SCS

Faloutsos CMU SCS 15-415/615 91

B+ Trees in Practice
•  Can often keep top levels in buffer pool:

– Level 1 = 1 page = 8 KB
– Level 2 = 134 pages = 1 MB
– Level 3 = 17,956 pages = 140 MB

CMU SCS

Faloutsos CMU SCS 15-415/615 92

Inserting a Data Entry into a B+
Tree

•  Find correct leaf L.
•  Put data entry onto L.

–  If L has enough space, done!
– Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle
key.

•  parent node may overflow
–  but then: push up middle key. Splits “grow” tree;

root split increases height.

CMU SCS

Faloutsos CMU SCS 15-415/615 93

Example B+ Tree - Inserting 8*
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

Faloutsos CMU SCS 15-415/615

CMU - 15-415 32

CMU SCS

Faloutsos CMU SCS 15-415/615 94

Example B+ Tree - Inserting 8*
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 23* 7* 8*

5* 13 17 24

5*

<5 >=5

CMU SCS

Faloutsos CMU SCS 15-415/615 95

Example B+ Tree - Inserting 21*

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8* 23*

CMU SCS

Faloutsos CMU SCS 15-415/615 96

Example B+ Tree - Inserting 21*

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 24* 27* 29* 7* 5* 8* 21* 22* 23*

Faloutsos CMU SCS 15-415/615

CMU - 15-415 33

CMU SCS

Faloutsos CMU SCS 15-415/615 97

Example B+ Tree

•  Notice that root was split, increasing height.
•  Could use defer-split here. (Pros/Cons?)

2* 3*

Root

17

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

13 5

7* 5* 8*

CMU SCS

Faloutsos CMU SCS 15-415/615 98

Example: Data vs. Index Page
Split

•  leaf: ‘copy’
•  non-leaf: ‘push’

•  why not ‘copy’
@ non-leaves?

2* 3* 5* 7* 8*

5

5 21 24

17

13

…
2* 3* 5* 7*

17 21 24 13

Data
Page
Split

Index
Page
Split

8*

5

CMU SCS

Faloutsos CMU SCS 15-415/615 99

Now you try…

2* 3*

Root

30

14* 16* 21* 22* 23*

13 5

7* 5* 8*

20 … (not shown)

11*

Insert the following data entries (in order): 28*, 6*, 25*

Faloutsos CMU SCS 15-415/615

CMU - 15-415 34

CMU SCS

Faloutsos CMU SCS 15-415/615 100

Answer…

2* 3*

30

7* 8* 14* 16*

7 5

6* 5*

13 …

After inserting 28*, 6*

After inserting 25*

21* 22* 23* 28*

20

11*

CMU SCS

Faloutsos CMU SCS 15-415/615 101

Answer…

2* 3*

13

20 23

7* 8* 14* 16* 21* 22* 23* 25* 28*

7 5

6* 5*

30

…

11*

After inserting 25*

CMU SCS

Faloutsos CMU SCS 15-415/615 102

Deleting a Data Entry from a B+
Tree

•  Start at root, find leaf L where entry belongs.
•  Remove the entry.

–  If L is at least half-full, done!
–  If L underflows

• Try to re-distribute, borrowing from sibling
(adjacent node with same parent as L).

•  If re-distribution fails, merge L and sibling.
–  update parent
–  and possibly merge, recursively

Faloutsos CMU SCS 15-415/615

CMU - 15-415 35

CMU SCS

Faloutsos CMU SCS 15-415/615 103

Example: Delete 19* & 20*

Deleting 19*
is easy:

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

2* 3*

Root
17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

20* 22*

•  Deleting 20* -> re-distribution (notice:
27 copied up)

1 2

3

CMU SCS

Faloutsos CMU SCS 15-415/615 104

2* 3*

Root
17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

 ... And Then Deleting 24*

2* 3*

Root
17

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 27*

30

29*

•  Must merge leaves … but are we done??

3

4

CMU SCS

Faloutsos CMU SCS 15-415/615 105

 ... Merge Non-Leaf Nodes, Shrink
Tree

2* 3*

Root
17

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 27*

30

29*

4

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8*

Root
30 13 5 17 5

Faloutsos CMU SCS 15-415/615

CMU - 15-415 36

CMU SCS

Faloutsos CMU SCS 15-415/615 106

Example of Non-leaf Re-
distribution

•  Tree is shown below during deletion of 24*.
•  Now, we can re-distribute keys

Root

13 5 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39* 22* 27* 29* 21* 7* 5* 8* 3* 2*

CMU SCS

Faloutsos CMU SCS 15-415/615 107

After Re-distribution

•  need only re-distribute ‘20’; did ‘17’, too
•  why would we want to re-distributed more

keys?

14* 16* 33* 34* 38* 39* 22* 27* 29* 17* 18* 20* 21* 7* 5* 8* 2* 3*

Root

13 5

17

30 20 22

CMU SCS

Faloutsos CMU SCS 15-415/615 108

Main observations for deletion

•  If a key value appears twice (leaf +
nonleaf), the above algorithms delete it
from the leaf, only

•  why not non-leaf, too?

Faloutsos CMU SCS 15-415/615

CMU - 15-415 37

CMU SCS

Faloutsos CMU SCS 15-415/615 109

Main observations for deletion

•  If a key value appears twice (leaf +
nonleaf), the above algorithms delete it
from the leaf, only

•  why not non-leaf, too?
•  ‘lazy deletions’ - in fact, some vendors just

mark entries as deleted (~ underflow),
–  and reorganize/compact later

CMU SCS

Faloutsos CMU SCS 15-415/615 110

Recap: main ideas

•  on overflow, split (and ‘push’, or ‘copy’)
–  or consider deferred split

•  on underflow, borrow keys; or merge
–  or let it underflow...

CMU SCS

Faloutsos CMU SCS 15-415/615 111

Outline

•  Motivation
•  ISAM
•  B-trees (not in book)
•  B+ trees
•  duplicates
•  B+ trees in practice

–  prefix compression; bulk-loading; ‘order’

Faloutsos CMU SCS 15-415/615

CMU - 15-415 38

CMU SCS

Faloutsos CMU SCS 15-415/615 112

B+ trees with duplicates

•  Everything so far: assumed unique key
values

•  How to extend B+-trees for duplicates?
– Alt. 2: <key, rid>
– Alt. 3: <key, {rid list}>

•  2 approaches, roughly equivalent

CMU SCS

Faloutsos CMU SCS 15-415/615 113

B+ trees with duplicates

•  approach#1: repeat the key values, and
extend B+ tree algo’s appropriately - eg.
many ‘14’s

14 24

2* 3* 5* 7* 13* 14* 14* 14* 22* 24* 27* 29*

13

23* 14* 14*

CMU SCS

Faloutsos CMU SCS 15-415/615 114

B+ trees with duplicates

•  approach#1: subtle problem with deletion:
•  treat rid as part of the key, thus making it

unique

14 24

2* 3* 5* 7* 13* 14* 14* 14* 22* 24* 27* 29*

13

23* 14* 14*

Faloutsos CMU SCS 15-415/615

CMU - 15-415 39

CMU SCS

Faloutsos CMU SCS 15-415/615 115

B+ trees with duplicates

•  approach#2: store each key value: once
•  but store the {rid list} as variable-length

field (and use overflow pages, if needed)

14 24

2* 3* 5* 7* 13* 14* 22* 24* 27* 29*

13

23* {rid list}

{rid list, cont’d}

CMU SCS

Faloutsos CMU SCS 15-415/615 116

Outline

•  Motivation
•  ISAM
•  B-trees (not in book)
•  B+ trees
•  duplicates
•  B+ trees in practice

– prefix compression; bulk-loading; ‘order’

CMU SCS

Faloutsos CMU SCS 15-415/615 117

Prefix Key Compression

•  Important to increase fan-out. (Why?)
•  Key values in index entries only `direct

traffic’; can often compress them.

Papadopoulos Pernikovskaya

Faloutsos CMU SCS 15-415/615

CMU - 15-415 40

CMU SCS

Faloutsos CMU SCS 15-415/615 118

Prefix Key Compression

•  Important to increase fan-out. (Why?)
•  Key values in index entries only `direct

traffic’; can often compress them.

Pap Per <room for more separators/keys>

CMU SCS

Faloutsos CMU SCS 15-415/615 119

Bulk Loading of a B+ Tree

•  In an empty tree, insert many keys
•  Why not one-at-a-time?

CMU SCS

Faloutsos CMU SCS 15-415/615 120

Bulk Loading of a B+ Tree

•  Initialization: Sort all data entries
•  scan list; whenever enough for a page, pack
•  <repeat for upper level - even faster than

book’s algo>

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Faloutsos CMU SCS 15-415/615

CMU - 15-415 41

CMU SCS

Faloutsos CMU SCS 15-415/615 121

Bulk Loading (Contd.)

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages
not yet in B+ tree 35 23 12 6

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

• Book’s algo

• (any problems?)

CMU SCS

Faloutsos CMU SCS 15-415/615 122

Outline

•  Motivation
•  ISAM
•  B-trees (not in book)
•  B+ trees
•  duplicates
•  B+ trees in practice

–  prefix compression; bulk-loading; ‘order’

CMU SCS

Faloutsos CMU SCS 15-415/615 123

A Note on `Order’
•  Order (d) concept replaced by physical space

criterion in practice (`at least half-full’).
•  Why do we need it?

–  Index pages can typically hold many more entries
than leaf pages.

– Variable sized records and search keys mean different
nodes will contain different numbers of entries.

– Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Faloutsos CMU SCS 15-415/615

CMU - 15-415 42

CMU SCS

Faloutsos CMU SCS 15-415/615 124

A Note on `Order’

•  Many real systems are even sloppier than this:
they allow underflow, and only reclaim space
when a page is completely empty.

•  (what are the benefits of such ‘slopiness’?)

CMU SCS

Faloutsos CMU SCS 15-415/615 125

Conclusions	

•  B+tree is the prevailing indexing method 	

•  Excellent, O(logN) worst-case performance

for ins/del/search; (~3-4 disk accesses in
practice)	

•  guaranteed 50% space utilization; avg 69%	

CMU SCS

Faloutsos CMU SCS 15-415/615 126

Conclusions	

•  Can be used for any type of index: primary/

secondary, sparse (clustering), or dense
(non-clustering)	

•  Several fine-extensions on the basic
algorithm	

–  deferred split; prefix compression; (underflows)	

–  bulk-loading	

–  duplicate handling	

