

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 – DB Applications

C. Faloutsos
Lecture#5: *Relational calculus*

General Overview - rel. model

- history
- concepts
- Formal query languages
 - relational algebra
 - **rel. tuple calculus**
 - rel. domain calculus

Faloutsos

CMU SCS 15-415/615

#2

Overview - detailed

- rel. tuple calculus
 - why?
 - details
 - examples
 - equivalence with rel. algebra
 - more examples; ‘safety’ of expressions
- rel. domain calculus + QBE

Faloutsos

CMU SCS 15-415/615

#3

Motivation

- Q: weakness of rel. algebra?
- A: procedural
 - describes the steps (ie., ‘how’)
 - (still useful, for query optimization)

Faloutsos

CMU SCS 15-415/615

#4

Solution: rel. calculus

- describes **what** we want
- two equivalent flavors: ‘tuple’ and ‘domain’ calculus
- basis for SQL and QBE, resp.
- Useful for proofs (see query optimization, later)

Faloutsos

CMU SCS 15-415/615

#5

Rel. tuple calculus (RTC)

- first order logic

$$\{t \mid P(t)\}$$

‘Give me tuples ‘t’, satisfying predicate P - eg:

$$\{t \mid t \in STUDENT\}$$

Faloutsos

CMU SCS 15-415/615

#6

Details

- symbols allowed:

$\wedge, \vee, \neg, \Rightarrow$
 $>, <, =, \neq, \leq, \geq,$
 $(,), \in$

- quantifiers \forall, \exists

Faloutsos

CMU SCS 15-415/615

#7

Specifically

- Atom

$t \in TABLE$
 $t.attr \leq const$
 $t.attr \leq s.attr^i$

Faloutsos

CMU SCS 15-415/615

#8

Specifically

- Formula:

- atom
- if P_1, P_2 are formulas, so are $P_1 \wedge P_2; P_1 \vee P_2 \dots$
- if $P(s)$ is a formula, so are $\exists s(P(s))$
 $\forall s(P(s))$

Faloutsos

CMU SCS 15-415/615

#9

Specifically

- Reminders:

- DeMorgan $P1 \wedge P2 \equiv \neg(\neg P1 \vee \neg P2)$
- implication: $P1 \Rightarrow P2 \equiv \neg P1 \vee P2$
- double negation:

$\forall s \in \text{TABLE } (P(s)) \equiv \neg \exists s \in \text{TABLE } (\neg P(s))$

‘every human is mortal : no human is immortal’

Faloutsos

CMU SCS 15-415/615

#10

Reminder: our Mini-U db

STUDENT		
Ssn	Name	Address
123	smith	main str
234	jones	forbes ave

CLASS		
c-id	c-name	units
15-413	s.e.	2
15-412	o.s.	2

TAKES		
SSN	c-id	grade
123	15-413	A
234	15-413	B

Faloutsos

CMU SCS 15-415/615

#11

Examples

- find all student records

$\{t \mid t \in \text{STUDENT}\}$

output tuple of type ‘STUDENT’

Faloutsos

CMU SCS 15-415/615

#12

Examples

- (selection) find student record with ssn=123

Faloutsos

CMU SCS 15-415/615

#13

Examples

- (selection) find student record with ssn=123

$\{t \mid t \in STUDENT \wedge t.ssn = 123\}$

Environ Biol Fish (2007) 79:1–14

CMU-SCS 15-415/CS15

613

Examples

- (projection) find **name** of student with ssn=123

$\{t \mid t \in STUDENT \wedge t.ssn = 123\}$

Elaeagnaceae

CMU SCS 15-415/615

418

Examples

- (projection) find name of student with ssn=123

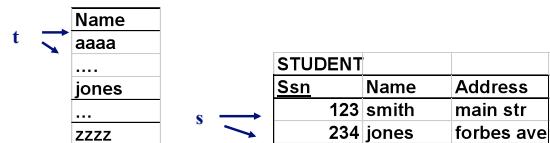
$$\{t \mid \exists s \in STUDENT (s.ssn = 123 \wedge t.name = s.name)\}$$

't' has only one column

Faloutsos

CMU SCS 15-415/615

#16



'Tracing'

$$\{t \mid \exists s \in STUDENT (s.ssn = 123 \wedge t.name = s.name)\}$$

Faloutsos

CMU SCS 15-415/615

#17

Examples cont'd

- (union) get records of both PT and FT students

Faloutsos

CMU SCS 15-415/615

#18

Examples cont'd

- (union) get records of both PT and FT students

$\{t \mid t \in FT_STUDENT \quad \vee$
 $t \in PT_STUDENT\}$

Faloutsos

CMU SCS 15-415/615

#19

Examples

- difference: find students that are not staff

(assuming that STUDENT and STAFF are union-compatible)

Faloutsos

CMU SCS 15-415/615

#20

Examples

- difference: find students that are not staff

$\{t \mid t \in STUDENT \wedge t \notin STAFF\}$

Faloutsos

CMU SCS 15-415/615

#21

Cartesian product

- eg., dog-breeding: MALE x FEMALE
- gives all possible couples

MALE	FEMALE
<u>name</u>	<u>name</u>
spike	lassie
spot	shiba

	M.name	F.name
=	spike	lassie
	spike	shiba
	spot	lassie
	spot	shiba

Faloutsos

CMU SCS 15-415/615

#22

Cartesian product

- find all the pairs of (male, female)

$$\{t \mid \exists m \in \text{MALE} \wedge \exists f \in \text{FEMALE} \wedge t.m - \text{name} = m.\text{name} \wedge t.f - \text{name} = f.\text{name}\}$$

Faloutsos

CMU SCS 15-415/615

#23

‘Proof’ of equivalence

- rel. algebra \leftrightarrow rel. tuple calculus

Faloutsos

CMU SCS 15-415/615

#24

Overview - detailed

- rel. tuple calculus
 - why?
 - details
 - examples
 - equivalence with rel. algebra
 - **more examples**; ‘safety’ of expressions
- re. domain calculus + QBE

Faloutsos

CMU SCS 15-415/615

#25

More examples

- join: find names of students taking 15-415

Faloutsos

CMU SCS 15-415/615

#26

Reminder: our Mini-U db

STUDENT			CLASS		
Ssn	Name	Address	c-id	c-name	units
123	smith	main str	15-413	s.e.	2
234	jones	forbes ave	15-412	o.s.	2

TAKES		
SSN	c-id	grade
123	15-413	A
234	15-413	B

Faloutsos

CMU SCS 15-415/615

#27

More examples

- join: find names of students taking 15-415

$$\{t \mid \exists s \in STUDENT \wedge \exists e \in TAKES (s.ssn = e.ssn \wedge t.name = s.name \wedge e.c-id = 15-415)\}$$

Faloutsos

CMU SCS 15-415/615

#28

More examples

- join: find names of students taking 15-415

$$\{t \mid \exists s \in STUDENT \wedge \exists e \in TAKES (s.ssn = e.ssn \wedge t.name = s.name \wedge e.c-id = 15-415)\}$$

join

projection

selection

Faloutsos

CMU SCS 15-415/615

#29

More examples

- 3-way join: find names of students taking a 2-unit course

Faloutsos

CMU SCS 15-415/615

#30

CMU SCS

Reminder: our Mini-U db

STUDENT		
Ssn	Name	Address
123	smith	main str
234	jones	forbes ave

CLASS		
c-id	c-name	units
15-413	s.e.	2
15-412	o.s.	2

TAKES		
SSN	c-id	grade
123	15-413	A
234	15-413	B

Faloutsos CMU SCS 15-415/615 #31

CMU SCS

More examples

- 3-way join: find names of students taking a 2-unit course

$$\{t \mid \exists s \in \text{STUDENT} \wedge \exists e \in \text{TAKES} \wedge \exists c \in \text{CLASS} (s.ssn = e.ssn \wedge e.c-id = c.c-id \wedge t.name = s.name \wedge c.units = 2)\}$$

join
projection
selection

Faloutsos CMU SCS 15-415/615 #32

CMU SCS

More examples

- 3-way join: find names of students taking a 2-unit course - in rel. algebra??

$$\pi_{name}(\sigma_{units=2}(\text{STUDENT} \bowtie \text{TAKES} \bowtie \text{CLASS}))$$

Faloutsos CMU SCS 15-415/615 #33

Even more examples:

- self-joins: find Tom's grandparent(s)

PC	
p-id	c-id
Mary	Tom
Peter	Mary
John	Tom

PC	
p-id	c-id
Mary	Tom
Peter	Mary
John	Tom

Faloutsos

CMU SCS 15-415/615

#34

Even more examples:

- self-joins: find Tom's grandparent(s)

$$\{t \mid \exists p \in PC \wedge \exists q \in PC \\
 (p.c_id = q.p_id \wedge \\
 p.p_id = t.p_id \wedge \\
 q.c_id = "Tom")\}$$

Faloutsos

CMU SCS 15-415/615

#35

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

SHIPMENT	
s#	p#
s1	p1
s2	p1
s1	p2
s3	p1
s5	p3

$$\begin{array}{c} \div \\ \boxed{\text{ABOMB}} \\ \boxed{\begin{array}{c} p\# \\ p1 \\ p2 \end{array}} \end{array} = \boxed{\text{BAD_S}} \quad \boxed{\begin{array}{c} s\# \\ s1 \end{array}}$$

Faloutsos

CMU SCS 15-415/615

#36

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

$\{t \mid \forall p(p \in ABOMB \Rightarrow (\exists s \in SHIPMENT (t.s\# = s.s\# \wedge s.p\# = p.p\#))))\}$

Faloutsos

CMU SCS 15-415/615

#37

General pattern

- three equivalent versions:
 - 1) if it's bad, he shipped it
 $\{t \mid \forall p(p \in ABOMB \Rightarrow (P(t)))\}$
 - 2) either it was good, or he shipped it
 $\{t \mid \forall p(p \notin ABOMB \vee (P(t)))\}$
 - 3) there is no bad shipment that he missed
 $\{t \mid \neg \exists p(p \in ABOMB \wedge (\neg P(t)))\}$

Faloutsos

CMU SCS 15-415/615

#38

a \Rightarrow b is the same as $\neg a \vee b$

		b
	T	F
a	T	F

	T	F
a	T	F

	T	F
a	T	F

- If a is true, b must be true for the implication to be true. If a is true and b is false, the implication evaluates to false.
- If a is not true, we don't care about b , the expression is always true.

Faloutsos

true

#39

More on division

- find (SSNs of) students that take all the courses that ssn=123 does (and maybe even more)
 find students 's' so that
 if 123 takes a course => so does 's'

Faloutsos

CMU SCS 15-415/615

#40

More on division

- find students that take all the courses that ssn=123 does (and maybe even more)

$$\{o \mid \forall t((t \in \text{TAKES} \wedge t.\text{ssn} = 123) \Rightarrow \exists t_1 \in \text{TAKES} (t_1.c - id = t.c - id \wedge t_1.\text{ssn} = o.\text{ssn}))\}$$

Faloutsos

CMU SCS 15-415/615

#41

Safety of expressions

- FORBIDDEN: $\{t \mid t \notin \text{STUDENT}\}$

It has infinite output!!

- Instead, always use

$$\{t \mid \dots, t \in \text{SOME_TABLE}\}$$

Faloutsos

CMU SCS 15-415/615

#42

Overview - conclusions

- rel. tuple calculus: DECLARATIVE
 - dfn
 - details
 - equivalence to rel. algebra
- rel. domain calculus + QBE

Faloutsos

CMU SCS 15-415/615

#43

General Overview

- relational model
- Formal query languages
 - relational algebra
 - rel. tuple calculus
 - **rel. domain calculus**

Faloutsos

CMU SCS 15-415/615

44

Rel. domain calculus (RDC)

- Q: why?
- A: slightly easier than RTC, although equivalent - basis for QBE.
- idea: domain variables (w/ F.O.L.) - eg:
- ‘find STUDENT record with ssn=123’

Faloutsos

CMU SCS 15-415/615

#45

Rel. Dom. Calculus

- find STUDENT record with ssn=123?

$\{ < s, n, a > | < s, n, a > \in STUDENT \wedge s = 123 \}$

Faloutsos

CMU SCS 15-415/615

#46

Details

- Like R.T.C - symbols allowed:
 $\wedge, \vee, \neg, \Rightarrow$
 $>, <, =, \neq, \leq, \geq,$
 $(,)$, \in
- quantifiers \forall, \exists

Faloutsos

CMU SCS 15-415/615

#47

Details

- but: domain (= column) variables, as opposed to tuple variables, eg:

$< s, n, a > \in STUDENT$

```

    graph TD
      s[ssn] --> s1[ ]
      n[name] --> s2[ ]
      a[address] --> s3[ ]
  
```

Faloutsos

CMU SCS 15-415/615

#48

 CMU SCS

 CMU SCS

Examples

- find all student records

$$\{< s, n, a > | s, n, a \in \text{STUDENT}\}$$

RTC: $\{t | t \in \text{STUDENT}\}$

 CMU SCS

Examples

- (selection) find student record with ssn=123

$$\{<123, n, a> | <123, n, a> \in STUDENT\}$$

or

$$\{< s, n, a> | < s, n, a> \in STUDENT \wedge s = 123\}$$

RTC: $\{t | t \in STUDENT \wedge t.ssn = 123\}$

Faloutsos

CMU SCS 15-415/615

#52

Examples

- (projection) find name of student with ssn=123

$$\{< n > | < 123, n, a > \in STUDENT \}$$

Faloutsos

CMU SCS 15-415/615

#53

Examples

- (projection) find name of student with ssn=123

$$\{< n > | \exists a (< 123, n, a > \in STUDENT) \}$$

↑
need to ‘restrict’ “a”

RTC: $\{t | \exists s \in STUDENT (s.ssn = 123 \wedge t.name = s.name)\}$

Faloutsos

CMU SCS 15-415/615

#54

Examples cont'd

- (union) get records of both PT and FT students

RTC: $\{t \mid t \in FT_STUDENT \vee t \in PT_STUDENT\}$

Faloutsos

CMU SCS 15-415/615

#55

Examples cont'd

- (union) get records of both PT and FT students

$\{< s, n, a > \mid < s, n, a > \in FT_STUDENT \vee < s, n, a > \in PT_STUDENT\}$

Faloutsos

CMU SCS 15-415/615

#56

Examples

- difference: find students that are not staff

RTC: $\{t \mid t \in STUDENT \wedge t \notin STAFF\}$

Faloutsos

CMU SCS 15-415/615

#57

Examples

- difference: find students that are not staff

$$\{ \langle s, n, a \rangle | \langle s, n, a \rangle \in STUDENT \wedge \langle s, n, a \rangle \notin STAFF \}$$

Faloutsos

CMU SCS 15-415/615

#58

Cartesian product

- eg., dog-breeding: MALE x FEMALE
- gives all possible couples

MALE	FEMALE	=	M.name	F.name
name	name		spike	lassie
spike	lassie		spike	shiba
spot	shiba		spot	lassie

Faloutsos

CMU SCS 15-415/615

#59

Cartesian product

- find all the pairs of (male, female) - RTC:

$$\{ t | \exists m \in MALE \wedge \exists f \in FEMALE \wedge t.m - name = m.name \wedge t.f - name = f.name \}$$

Faloutsos

CMU SCS 15-415/615

#60

Cartesian product

- find all the pairs of (male, female) - RDC:

$$\{ \langle m, f \rangle \mid \langle m \rangle \in \text{MALE} \wedge \langle f \rangle \in \text{FEMALE} \}$$

Faloutsos

CMU SCS 15-415/615

#61

‘Proof’ of equivalence

- rel. algebra \leftrightarrow rel. domain calculus
 \leftrightarrow rel. tuple calculus

Faloutsos

CMU SCS 15-415/615

#62

Overview - detailed

- rel. domain calculus
 - why?
 - details
 - examples
 - equivalence with rel. algebra
 - **more examples**; ‘safety’ of expressions

Faloutsos

CMU SCS 15-415/615

#63

More examples

- join: find names of students taking 15-415

Faloutsos

CMU SCS 15-415/615

#64

Reminder: our Mini-U db

STUDENT		
Ssn	Name	Address
123	smith	main str
234	jones	forbes ave

CLASS		
c-id	c-name	units
15-413	s.e.	2
15-412	o.s.	2

TAKES		
SSN	c-id	grade
123	15-413	A
234	15-413	B

Faloutsos

CMU SCS 15-415/615

#65

More examples

- join: find names of students taking 15-415 - in RTC

$$\{t \mid \exists s \in STUDENT \wedge \exists e \in TAKES (s.ssn = e.ssn \wedge t.name = s.name \wedge t.c-id = 15-415)\}$$

Faloutsos

CMU SCS 15-415/615

#66

More examples

- join: find names of students taking 15-415 - in RDC

$\{ < n > | \exists s \exists a \exists g (< s, n, a > \in STUDENT \wedge < s, 15 - 415, g > \in TAKES) \}$

Faloutsos

CMU SCS 15-415/615

#67

Sneak preview of QBE:

$\{ < n > | \exists s \exists a \exists g (< s, n, a > \in STUDENT \wedge < s, 15 - 415, g > \in TAKES) \}$

STUDENT		
Ssn	Name	Address
_x	P.	

TAKES		
<u>SSN</u>	<u>c-id</u>	grade
_x	15-415	

Faloutsos

CMU SCS 15-415/615

#68

Sneak preview of QBE:

- very user friendly
- heavily based on RDC
- very similar to MS Access interface

STUDENT		
Ssn	Name	Address
_x	P.	

TAKES		
SSN	c-id	grade
x	15-415	

Faloutsos

CMU SCS 15-415/615

#69

 CMU SCS

More examples

- 3-way join: find names of students taking a 2-unit course - in RTC:

$$\begin{array}{l}
 \{ t \mid \exists s \in STUDENT \wedge \exists e \in TAKES \\
 \exists c \in CLASS(s.ssn = e.ssn \wedge \\
 e.c - id = c.c - id \wedge \\
 t.name = s.name \wedge \\
 c.units = 2) \}
 \end{array}$$

join

projection

selection

Faloutsos

CMU SCS 15-415/615

#70

Reminder: our Mini-U db

STUDENT		
Ssn	Name	Address
123	smith	main str
234	jones	forbes ave

CLASS		
c-id	c-name	units
15-413	s.e.	2
15-412	o.s.	2

TAKES		
SSN	c-id	grade
123	15-413	A
234	15-413	B

x y 2

 CMU SCS

More examples

- 3-way join: find names of students taking a 2-unit course

$$\{ \langle n \rangle | \exists s, a, c, g, cn($$

$$\langle s, n, a \rangle \in STUDENT \wedge$$

$$\langle s, c, g \rangle \in TAKES \wedge$$

$$\langle c, cn, 2 \rangle \in CLASS$$

$$))\}$$

Faloutsos

CMU SCS 15-415/615

#73

Even more examples:

- self -joins: find Tom's grandparent(s)

PC		PC	
p-id	c-id	p-id	c-id
Mary	Tom	Mary	Tom
Peter	Mary	Peter	Mary
John	Tom	John	Tom

Faloutsos

CMU SCS 15-415/615

#74

Even more examples:

- self -joins: find Tom's grandparent(s)

$$\{ t | \exists p \in PC \wedge \exists q \in PC$$

$$(p.c_id = q.p_id \wedge$$

$$p.p_id = t.p_id \wedge$$

$$q.c_id = "Tom") \}$$

Faloutsos

CMU SCS 15-415/615

#75

Even more examples:

- self -joins: find Tom's grandparent(s)

$$\{t \mid \exists p \in PC \wedge \exists q \in PC \quad \{ < g, p > \in PC \wedge \\ (\text{p.c-id} = q.p - id \wedge \\ p.p - id = t.p - id \wedge \\ q.c - id = "Tom") \} \quad \{ < g, p > \in PC \wedge \\ < p, "Tom" > \in PC \} \}$$

Faloutsos

CMU SCS 15-415/615

#76

Even more examples:

- self -joins: find Tom's grandparent(s)

$$\{<g> | \exists p (<g, p> \in PC \wedge <p, "Tom"> \in PC)\}$$

Faloutsos

CMU SCS 15-415/615

#77

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

SHIPMENT	
s#	p#
s1	p1
s2	p1
s1	p2
s3	p1
s5	p3

$$\begin{array}{c} \div \\ \boxed{\begin{array}{c} \text{ABOME} \\ \hline \text{p\#} \\ \text{p1} \\ \text{p2} \end{array}} = \boxed{\begin{array}{c} \text{BAD_S} \\ \hline \text{s\#} \\ \text{s1} \end{array}} \end{array}$$

Faloutsos

CMU SCS 15-415/615

#78

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

$$\{t \mid \forall p(p \in ABOMB \Rightarrow (\exists s \in SHIPMENT (t.s\# = s.s\# \wedge s.p\# = p.p\#)))\}$$

Faloutsos

CMU SCS 15-415/615

#79

Hard examples: DIVISION

- find suppliers that shipped all the ABOMB parts

$$\{t \mid \forall p(p \in ABOMB \Rightarrow (\exists s \in SHIPMENT (t.s\# = s.s\# \wedge s.p\# = p.p\#))) \mid \forall p(< p > \in ABOMB \Rightarrow < s, p > \in SHIPMENT))\}$$

Faloutsos

CMU SCS 15-415/615

#80

More on division

- find students that take all the courses that ssn=123 does (and maybe even more)

$$\{o \mid \forall t((t \in TAKES \wedge t.ssn = 123) \Rightarrow \exists t1 \in TAKES (t1.c - id = t.c - id \wedge t1.ssn = o.ssn))\}$$

Faloutsos

CMU SCS 15-415/615

#81

More on division

- find students that take all the courses that ssn=123 does (and maybe even more)

$$\{ < s > | \forall c (\exists g (< 123, c, g > \in \text{TAKES}) \Rightarrow \exists g' (< s, c, g' > \in \text{TAKES})) \}$$

Faloutsos

CMU SCS 15-415/615

#82

Safety of expressions

- similar to RTC
- FORBIDDEN:

$$\{ < s, n, a > | < s, n, a > \notin \text{STUDENT} \}$$

Faloutsos

CMU SCS 15-415/615

#83

Overview - detailed

- rel. domain calculus + QBE
 - dfn
 - details
 - equivalence to rel. algebra

Faloutsos

CMU SCS 15-415/615

#84

Fun Drill: Your turn ...

- Schema:

Movie(title, year, studioName)

ActsIn(movieTitle, starName)

Star(name, gender, birthdate, salary)

Faloutsos

CMU SCS 15-415/615

#85

Your turn ...

- Queries to write in TRC:

- Find all movies by Paramount studio
- ... movies starring Kevin Bacon
- Find stars who have been in a film w/Kevin Bacon
- Stars within six degrees of Kevin Bacon*
- Stars connected to K. Bacon via any number of films**

* Try *two* degrees for starters ** Good luck with this one!

Faloutsos

CMU SCS 15-415/615

#86

Answers ...

- Find all movies by Paramount studio

{M | M \in Movie \wedge
M.studioName = 'Paramount'}

Faloutsos

CMU SCS 15-415/615

#87

Answers ...

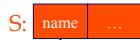
- Movies starring Kevin Bacon

$$\{M \mid M \in \text{Movie} \wedge \exists A \in \text{ActsIn}(A.\text{movieTitle} = M.\text{title} \wedge A.\text{starName} = \text{'Bacon'})\}$$

Faloutsos

CMU SCS 15-415/615

#88



Answers ...

- Stars who have been in a film w/Kevin Bacon

$$\{S \mid S \in \text{Star} \wedge \exists A \in \text{ActsIn}(A.\text{starName} = S.\text{name} \wedge \exists A2 \in \text{ActsIn}(A2.\text{movieTitle} = A.\text{movieTitle} \wedge A2.\text{starName} = \text{'Bacon'})\}$$

S:

A:

'Bacon'

Faloutsos

A2:

#89

Answers ...

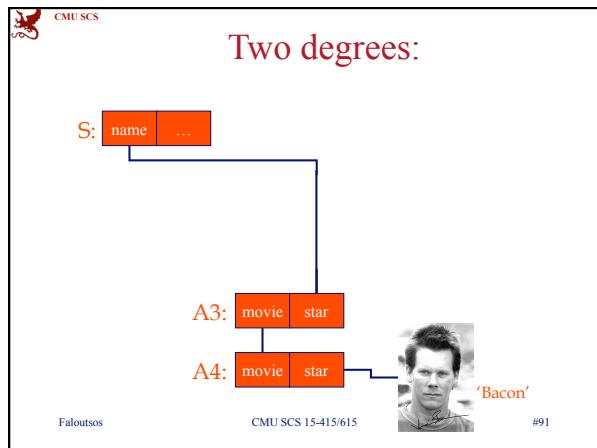
- Stars within ~~six~~^{two} degrees of Kevin Bacon

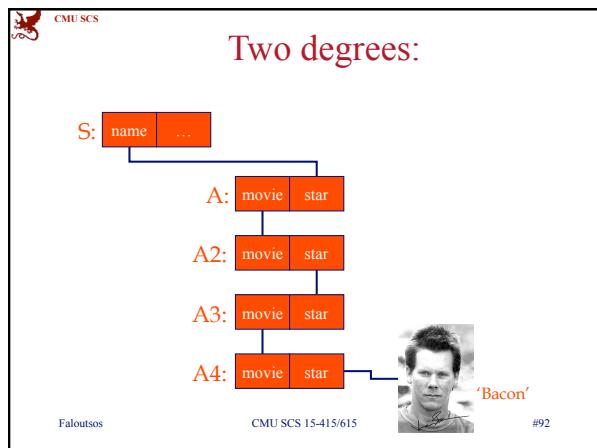
$$\{S \mid S \in \text{Star} \wedge \exists A \in \text{ActsIn}(A.\text{starName} = S.\text{name} \wedge \exists A2 \in \text{ActsIn}(A2.\text{movieTitle} = A.\text{movieTitle} \wedge \exists A3 \in \text{ActsIn}(A3.\text{starName} = A2.\text{starName} \wedge \exists A4 \in \text{ActsIn}(A4.\text{movieTitle} = A3.\text{movieTitle} \wedge A4.\text{starName} = \text{'Bacon'})\})$$

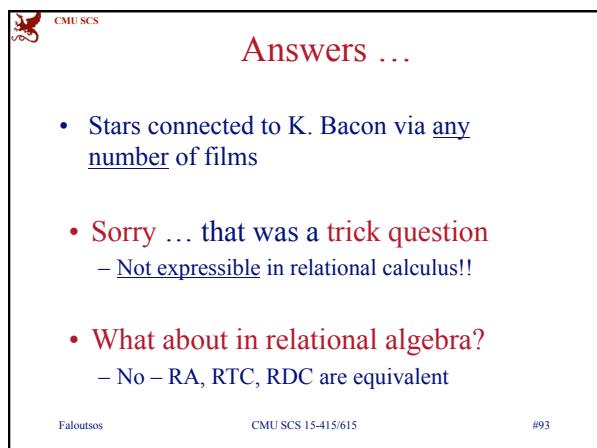
Faloutsos

CMU SCS 15-415/615

#90







Expressive Power

- Expressive Power (Theorem due to Codd):
 - Every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness:

Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.
(actually, SQL is more powerful, as we will see...)

Faloutsos

CMU SCS 15-415/615

#94

Summary

- The relational model has rigorously defined query languages — simple and powerful.
- Relational algebra is more operational/procedural
 - useful as internal representation for query evaluation plans
- Relational calculus is declarative
 - users define queries in terms of what they want, not in terms of how to compute it.

Faloutsos

CMU SCS 15-415/615

#95

Summary - cnt'd

- Several ways of expressing a given query
 - a *query optimizer* should choose the most efficient version.
- Algebra and safe calculus have same *expressive power*
 - leads to the notion of *relational completeness*.

Faloutsos

CMU SCS 15-415/615

#96
