

CMU SCS

15-826: Multimedia Databases and Data Mining

Lecture #29: Graph mining - Generators & tools

Christos Faloutsos

15-826 Copyright: C. Faloutsos (2016) #1

CMU SCS

Must-read material (1 of 2)

Fully Automatic Cross-Associations,
by D. Chakrabarti, S. Papadimitriou, D. Modha and C. Faloutsos, in KDD 2004
(pages 79-88), Washington, USA

15-826 Copyright: C. Faloutsos (2016) #2

CMU SCS

Must-read material (2 of 2)

J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos,
Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, in PKDD 2005, Porto, Portugal

15-826 Copyright: C. Faloutsos (2016) #3

CMU SCS

Main outline

- Introduction
- Indexing
- Mining
 - Graphs – patterns
 - Graphs – generators and tools
 - Association rules
 - ...

15-826 Copyright: C. Faloutsos (2016) #4

CMU SCS

Detailed outline

- Graphs – generators
 - Erdos-Renyi
 - Other generators
 - Kronecker
- Graphs - tools

15-826 Copyright: C. Faloutsos (2016) 5

CMU SCS

Generators

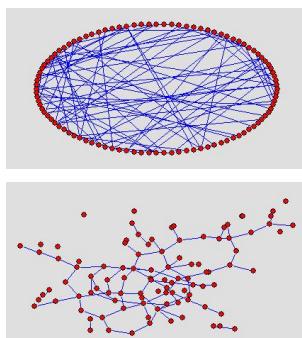
- How to generate random, realistic graphs?
 - Erdos-Renyi model: beautiful, but unrealistic
 - degree-based generators
 - process-based generators
 - recursive/self-similar generators

15-826 Copyright: C. Faloutsos (2016) 6

CMU SCS

Erdos-Renyi

- random graph – 100 nodes, avg degree = 2
- Fascinating properties (phase transition)
- But: unrealistic (Poisson degree distribution != power law)

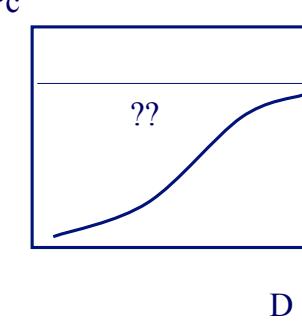


15-826 Copyright: C. Faloutsos (2016) 7

CMU SCS

E-R model & Phase transition

- vary avg degree D
- watch $P_c =$
Prob(there is a giant connected component)
- How do you expect it to be?



15-826 Copyright: C. Faloutsos (2016) 8

CMU SCS

E-R model & Phase transition

- vary avg degree D
- watch P_c = $\text{Prob}(\text{ there is a giant connected component})$
- How do you expect it to be?

15-826 Copyright: C. Faloutsos (2016) 9

CMU SCS

Degree-based

- Figure out the degree distribution (eg., ‘Zipf’)
- Assign degrees to nodes
- Put edges, so that they match the original degree distribution

15-826 Copyright: C. Faloutsos (2016) 10

CMU SCS

Process-based

- Barabasi; Barabasi-Albert: Preferential attachment \rightarrow power-law tails!
 - ‘rich get richer’
- [Kumar+]: preferential attachment + mimick
 - Create ‘communities’

15-826 Copyright: C. Faloutsos (2016) 11

CMU SCS

Process-based (cont’d)

- [Fabrikant+, ‘02]: H.O.T.: connect to closest, high connectivity neighbor
- [Pennock+, ‘02]: Winner does NOT take all

15-826 Copyright: C. Faloutsos (2016) 12

CMU SCS

Detailed outline

- Graphs – generators
 - Erdos-Renyi
 - Other generators
 - Kronecker
- Graphs - tools

→

15-826 Copyright: C. Faloutsos (2016) 13

CMU SCS

Recursive generators

- (RMAT [Chakrabarti+,'04])
- Kronecker product

15-826 Copyright: C. Faloutsos (2016) 14

CMU SCS

Wish list for a generator:

- Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- **shrinking/constant** diameter
- Densification Power Law
- communities-within-communities

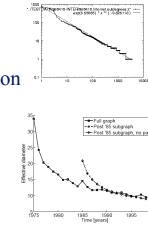
Q: how to achieve all of them?
A: Kronecker matrix product [Leskovec+05b]

15-826 Copyright: C. Faloutsos (2016) 15

CMU SCS

Graph gen.: Problem dfn

- Given a growing graph with count of nodes N_1, N_2, \dots
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - S1 Power Law Degree Distribution
 - S2 Power Law eigenvalue and eigenvector distribution
 - Small Diameter
 - Dynamic Patterns
 - T2 Growth Power Law (2x nodes; 3x edges)
 - T1 Shrinking/Stabilizing Diameters



15-826 Copyright: C. Faloutsos (2016) 16

CMU SCS

Graph Patterns

Power Laws

Count vs Indegree Count vs Outdegree Eigenvalue vs Rank

Now to match all these properties (+ small diameters, etc)

15-826 Copyright: C. Faloutsos (2016) 17

CMU SCS

Hint: self-similarity

- A: R-MAT/Kronecker generators
 - With self-similarity, we get all power-laws, automatically,
 - And small/shrinking diameter
 - And 'no good cuts'

R-MAT: A Recursive Model for Graph Mining,
by D. Chakrabarti, Y. Zhan and C. Faloutsos,
SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication,
by J. Leskovec, D. Chakrabarti, J. Kleinberg,

CMU SCS

Kronecker Graphs

G_1

1	1	0
1	1	1
0	1	1

Adjacency matrix

CMU SCS

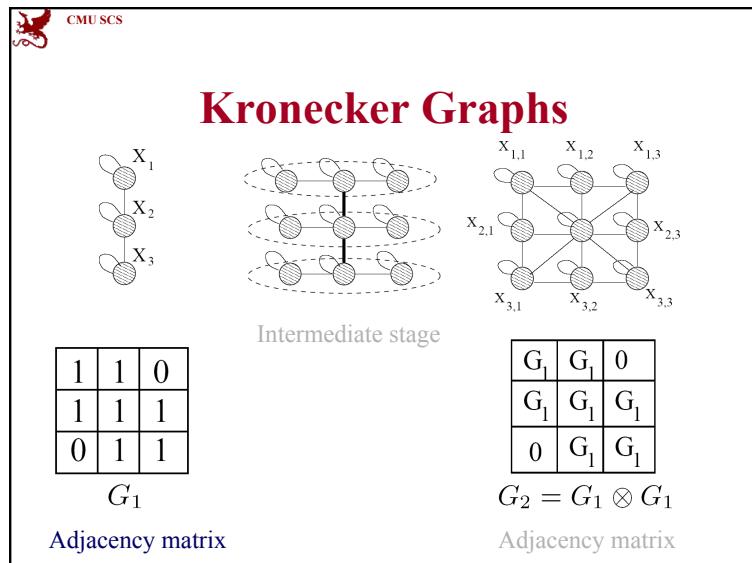
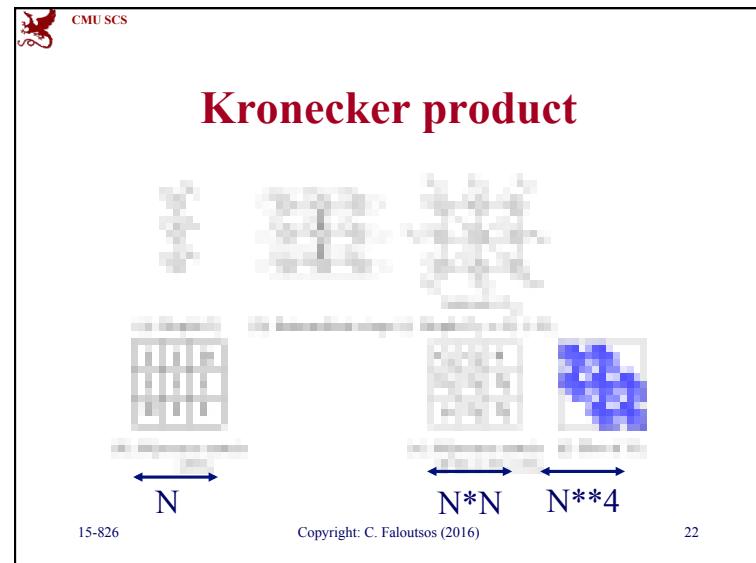
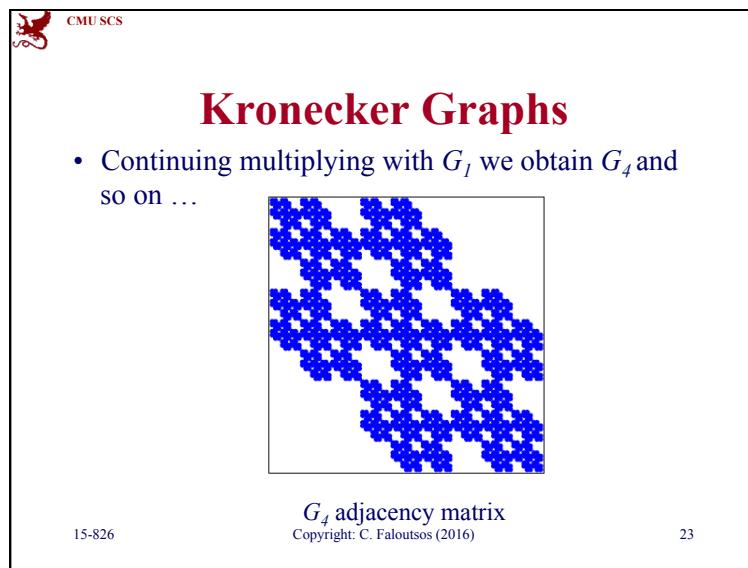
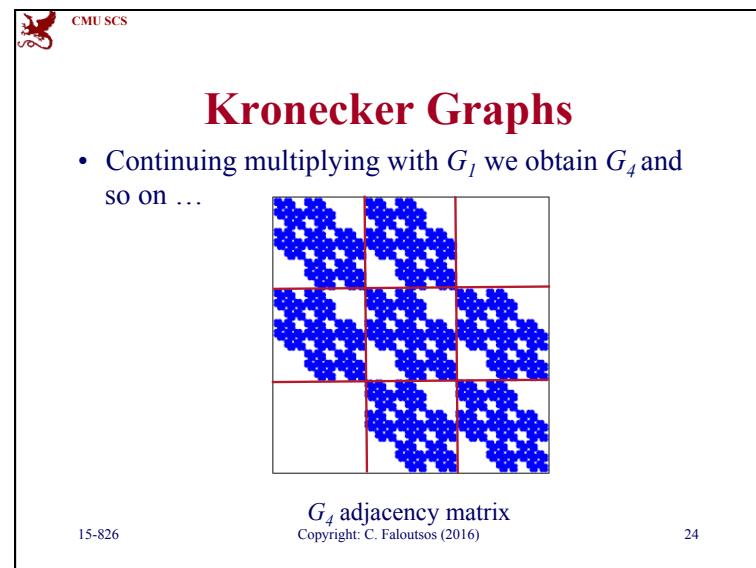
Kronecker Graphs

Intermediate stage

1	1	0
1	1	1
0	1	1

G_1

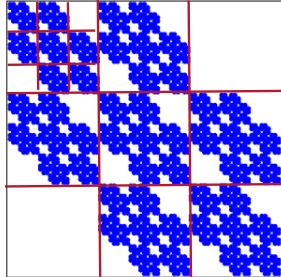
Adjacency matrix



CMU SCS

Kronecker Graphs

- Continuing multiplying with G_1 we obtain G_4 and so on ...



G_4 adjacency matrix
Copyright: C. Faloutsos (2016)

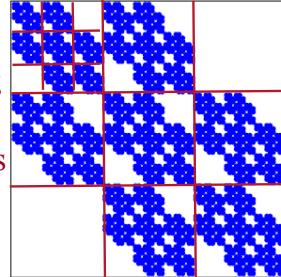
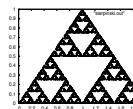
15-826 25

CMU SCS

Kronecker Graphs

- Continuing multiplying with G_1 we obtain G_4 and so on ...

Holes within holes;
Communities
within communities

G_4 adjacency matrix
Copyright: C. Faloutsos (2016)

15-826 26

CMU SCS

Self-similarity -> power laws

Properties:

- We can PROVE that
 - Degree distribution is multinomial \sim power law
 - Diameter: constant
 - Eigenvalue distribution: multinomial
 - First eigenvector: multinomial

new

15-826 Copyright: C. Faloutsos (2016) 27

CMU SCS

Problem Definition

- Given a growing graph with nodes N_1, N_2, \dots
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - ✓ Power Law Degree Distribution
 - ✓ Power Law eigenvalue and eigenvector distribution
 - ✓ Small Diameter
 - Dynamic Patterns
 - ✓ Growth Power Law
 - ✓ Shrinking/Stabilizing Diameters
- First generator for which we can **prove** all these properties

15-826 Copyright: C. Faloutsos (2016) 28

Impact: Graph500

- Based on RMAT (= 2x2 Kronecker)
- Standard for graph benchmarks
- <http://www.graph500.org/>
- Competitions 2x year, with all major entities: LLNL, Argonne, ITC-U. Tokyo, Riken, ORNL, Sandia, PSC, ...

To iterate is human, to recurse is devine

R-MAT: A Recursive Model for Graph Mining,
by D. Chakrabarti, Y. Zhan and C. Faloutsos,
SDM 2004, Orlando, Florida, USA

Conclusions - Generators

- Erdos-Renyi: phase transition
- Preferential attachment (Barabasi)
 - Power-law-tail in degree distribution
- Variations
- Recursion – Kronecker graphs
 - Numerous power-laws, + small diameters

15-826

Copyright: C. Faloutsos (2016)

30

Resources

Generators:

- Kronecker (christos@cs.cmu.edu)
- BRITE <http://www.cs.bu.edu/brite/>
- INET: <http://topology.eecs.umich.edu/inet>

15-826

Copyright: C. Faloutsos (2016)

31

Other resources

Visualization - graph algo's:

- Graphviz: <http://www.graphviz.org/>
- pajek: <http://vlado.fmf.uni-lj.si/pub/networks/pajek/>

Kevin Bacon web site: <http://www.cs.virginia.edu/oracle/>

15-826

Copyright: C. Faloutsos (2016)

32

References

- [Aiello+, '00] William Aiello, Fan R. K. Chung, Linyuan Lu: *A random graph model for massive graphs*. STOC 2000: 171-180
- [Albert+] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi: *Diameter of the World Wide Web*, Nature 401 130-131 (1999)
- [Barabasi, '03] Albert-Laszlo Barabasi *Linked: How Everything Is Connected to Everything Else and What It Means* (Plume, 2003)

15-826

Copyright: C. Faloutsos (2016)

33

References, cont'd

- [Barabasi+, '99] Albert-Laszlo Barabasi and Reka Albert. *Emergence of scaling in random networks*. Science, 286:509--512, 1999
- [Broder+, '00] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. *Graph structure in the web*, WWW, 2000

15-826

Copyright: C. Faloutsos (2016)

34

References, cont'd

- [Chakrabarti+, '04] RMAT: *A recursive graph generator*, D. Chakrabarti, Y. Zhan, C. Faloutsos, SIAM-DM 2004
- [Dill+, '01] Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins: *Self-similarity in the Web*. VLDB 2001: 69-78

15-826

Copyright: C. Faloutsos (2016)

35

References, cont'd

- [Fabrikant+, '02] A. Fabrikant, E. Koutsoupias, and C.H. Papadimitriou. *Heuristically Optimized Trade-offs: A New Paradigm for Power Laws in the Internet*. ICALP, Malaga, Spain, July 2002
- [FFF, 99] M. Faloutsos, P. Faloutsos, and C. Faloutsos, "On power-law relationships of the Internet topology," in SIGCOMM, 1999.

15-826

Copyright: C. Faloutsos (2016)

36

References, cont'd

- [Jovanovic+, '01] M. Jovanovic, F.S. Annexstein, and K.A. Berman. *Modeling Peer-to-Peer Network Topologies through "Small-World" Models and Power Laws*. In TELFOR, Belgrade, Yugoslavia, November, 2001
- [Kumar+ '99] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Andrew Tomkins: *Extracting Large-Scale Knowledge Bases from the Web*. VLDB 1999: 639-650

15-826

Copyright: C. Faloutsos (2016)

37

References, cont'd

- [Leskovec+05b] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos *Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication* (ECML/PKDD 2005), Porto, Portugal, 2005.

15-826

Copyright: C. Faloutsos (2016)

38

References, cont'd

- [Leskovec+07] Jure Leskovec and Christos Faloutsos, [Scalable Modeling of Real Graphs using Kronecker Multiplication, ICML 2007.](#)

15-826

Copyright: C. Faloutsos (2016)

39

References, cont'd

- [Pennock+, '02] David M. Pennock, Gary William Flake, Steve Lawrence, Eric J. Glover, C. Lee Giles: *Winners don't take all: Characterizing the competition for links on the web* Proc. Natl. Acad. Sci. USA 99(8): 5207-5211 (2002)

15-826

Copyright: C. Faloutsos (2016)

40

CMU SCS

References, cont'd

- [Watts+ Strogatz, '98] D. J. Watts and S. H. Strogatz
Collective dynamics of 'small-world' networks,
Nature, 393:440-442 (1998)
- [Watts, '03] Duncan J. Watts *Six Degrees: The Science of a Connected Age* W.W. Norton & Company; (February 2003)

15-826 Copyright: C. Faloutsos (2016) 41

CMU SCS

Graph mining: tools

15-826 Copyright: C. Faloutsos (2016) #42

CMU SCS

Main outline

- Introduction
- Indexing
- Mining
 - Graphs – patterns
 - Graphs – generators and tools
 - Association rules
 - ...

→

15-826 Copyright: C. Faloutsos (2016) 43

CMU SCS

Detailed outline

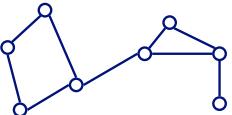
- Graphs – generators
- Graphs – tools
 - – Community detection / graph partitioning
 - Algo's
 - Observation: 'no good cuts'
 - Node proximity – personalized RWR
 - Influence/virus propagation & immunization
 - 'Belief Propagation' & fraud detection
 - Anomaly detection

15-826 Copyright: C. Faloutsos (2016) 44

CMU SCS

Problem

- Given a graph, and k
- Break it into k (disjoint) communities

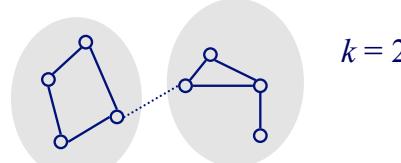


15-826 Copyright: C. Faloutsos (2016) -45

CMU SCS

Problem

- Given a graph, and k
- Break it into k (disjoint) communities

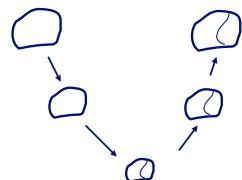


15-826 Copyright: C. Faloutsos (2016) -46

CMU SCS

Solution #1: METIS

- Arguably, the best algorithm
- Open source, at
 - <http://www.cs.umn.edu/~metis>
- and *many* related papers, at same url
- Main idea:
 - coarsen the graph;
 - partition;
 - un-coarsen



15-826 Copyright: C. Faloutsos (2016) -47

CMU SCS

Solution #1: METIS

- G. Karypis and V. Kumar. *METIS 4.0: Unstructured graph partitioning and sparse matrix ordering system*. TR, Dept. of CS, Univ. of Minnesota, 1998.
- <and many extensions>

15-826 Copyright: C. Faloutsos (2016) -48

Solution #2

(problem: hard clustering, k pieces)

Spectral partitioning:

- Consider the 2nd smallest eigenvector of the (normalized) Laplacian

15-826

Copyright: C. Faloutsos (2016)

-49

Solutions #3, ...

Many more ideas:

- Clustering on the A^2 (square of adjacency matrix) [Zhou, Woodruff, PODS'04]
- Minimum cut / maximum flow [Flake+, KDD'00]
- ...

15-826

Copyright: C. Faloutsos (2016)

-50

Detailed outline

- Motivation
- Hard clustering – k pieces
- ➡ • Hard co-clustering – (k, l) pieces
- Hard clustering – optimal # pieces
- Soft clustering – matrix decompositions
- Observations

15-826

Copyright: C. Faloutsos (2016)

-51

Problem definition

- Given a bi-partite graph, and k, l
- Divide it into k row groups and l row groups
- (Also applicable to uni-partite graph)

15-826

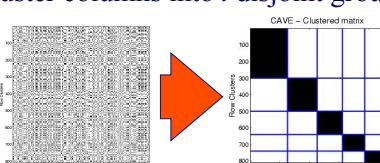
Copyright: C. Faloutsos (2016)

-52

CMU SCS

Co-clustering

- Given data matrix and the number of row and column groups k and l
- Simultaneously
 - Cluster rows into k disjoint groups
 - Cluster columns into l disjoint groups



CAVE – Clustered matrix

Copyright: C. Faloutsos (2016)

15-826

-53

CMU SCS

Co-clustering

- Let X and Y be discrete random variables
 - X and Y take values in $\{1, 2, \dots, m\}$ and $\{1, 2, \dots, n\}$
 - $p(X, Y)$ denotes the joint probability distribution—if not known, it is often estimated based on co-occurrence data
 - Application areas: text mining, market-basket analysis, analysis of browsing behavior, etc.
- Key Obstacles in Clustering Contingency Tables
 - High Dimensionality, Sparsity, Noise
 - Need for robust and scalable algorithms

Reference:

- Dhillon et al. Information-Theoretic Co-clustering, KDD'03

details

CMU SCS

m $\begin{bmatrix} .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & 0 & 0 & 0 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ .04 & .04 & 0 & .04 & .04 & .04 \\ .04 & .04 & .04 & 0 & .04 & .04 \end{bmatrix}$ eg, terms x documents

m $\begin{bmatrix} 5 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 5 \end{bmatrix}$ k $\begin{bmatrix} 3 & 0 \\ 0 & 3 \\ 2 & 2 \end{bmatrix}$ l $\begin{bmatrix} .36 & .36 & .28 & 0 & 0 & 0 \\ 0 & 0 & 0 & .28 & .36 & .36 \end{bmatrix}$

$$m \begin{bmatrix} .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & 0 & 0 & 0 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ .04 & .04 & 0 & .04 & .04 & .04 \\ .04 & .04 & .04 & 0 & .04 & .04 \end{bmatrix} k \begin{bmatrix} 3 & 0 \\ 0 & 3 \\ 2 & 2 \end{bmatrix} l \begin{bmatrix} .36 & .36 & .28 & 0 & 0 & 0 \\ 0 & 0 & 0 & .28 & .36 & .36 \end{bmatrix} = \begin{bmatrix} .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ .036 & .036 & .028 & .028 & .036 & .036 \\ .036 & .036 & .028 & .028 & .036 & .036 \end{bmatrix}$$

15-826

Copyright: C. Faloutsos (2016)

-55

CMU SCS

med. doc es doc

term group x doc. group

med. terms cs terms common terms

doc x doc group

term x term-group

Copyright: C. Faloutsos (2016)

-56

CMU SCS

Co-clustering

Observations

- uses KL divergence, instead of L2
- the middle matrix is **not** diagonal
 - Like in the Tucker tensor decomposition
- s/w at:
www.cs.utexas.edu/users/dml/Software/cocluster.html

15-826 Copyright: C. Faloutsos (2016) -57

CMU SCS

Detailed outline

- Motivation
- Hard clustering – k pieces
- Hard co-clustering – (k,l) pieces
- • Hard clustering – optimal # pieces
- Soft clustering – matrix decompositions
- Observations

15-826 Copyright: C. Faloutsos (2016) -58

CMU SCS

Problem with Information Theoretic Co-clustering

- Number of row and column groups must be specified

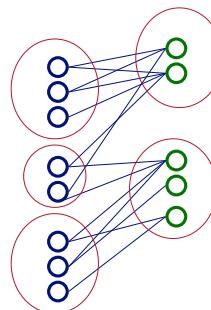
Desiderata:

- ✓ Simultaneously **discover** row and column groups
- ✗ Fully Automatic: No “magic numbers”
- ✓ Scalable to large graphs

15-826 Copyright: C. Faloutsos (2016) -59

CMU SCS

Graph partitioning



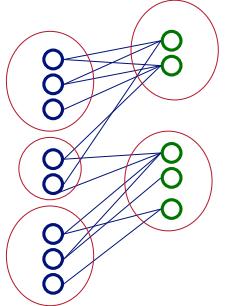
- Documents x terms
- Customers x products
- Users x web-sites

15-826 Copyright: C. Faloutsos (2016) #60

CMU SCS

Graph partitioning

- Documents x terms
- Customers x products
- Users x web-sites
- Q: HOW MANY PIECES?

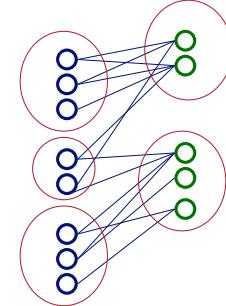


15-826 Copyright: C. Faloutsos (2016) #61

CMU SCS

Graph partitioning

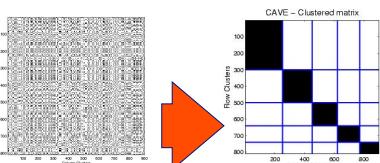
- Documents x terms
- Customers x products
- Users x web-sites
- Q: HOW MANY PIECES?
- A: MDL/ compression



15-826 Copyright: C. Faloutsos (2016) #62

CMU SCS

Cross-association



Desiderata:

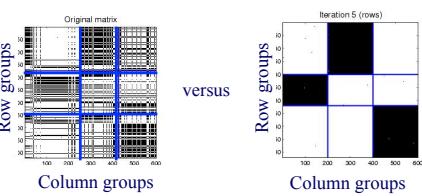
- ✓ Simultaneously discover row and column groups
- ✓ Fully Automatic: No “magic numbers”
- ✓ Scalable to large matrices

Reference:

1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD’04

CMU SCS

What makes a cross-association “good”?



Original matrix

Iteration 5 (rows)

Row groups

Column groups

Why is this better?

15-826 Copyright: C. Faloutsos (2016) -64

CMU SCS

What makes a cross-association “good”?

Original matrix

Iteration 5 (rows)

Row groups

Column groups

versus

Row groups

Column groups

Why is this better?

simpler; easier to describe
easier to compress!

15-826

Copyright: C. Faloutsos (2016)

-65

CMU SCS

What makes a cross-association “good”?

Original matrix

Iteration 5 (rows)

Row Groups

Column Groups

Why is this better?

Problem definition: given an encoding scheme

- decide on the # of col. and row groups k and l
- and reorder rows and columns,
- to achieve best compression

15-826

Copyright: C. Faloutsos (2016)

-66

CMU SCS

Main Idea

Good Compression \rightarrow Better Clustering

details

Total Encoding Cost = $\sum_i \text{size}_i * H(x_i) + \text{Cost of describing cross-associations}$

Code Cost Description Cost

Minimize the total cost (# bits)
for lossless compression

15-826

Copyright: C. Faloutsos (2016)

-67

CMU SCS

Algorithm

$l = 5$ col groups

$k = 5$ row groups

Original matrix

Search - Iteration 1

Search - Iteration 2

Search - Iteration 3

Search - Iteration 4

Search - Iteration 5

Search - Iteration 6

Search - Iteration 7

$k=1, l=2$

$k=2, l=2$

$k=2, l=3$

$k=3, l=3$

$k=3, l=4$

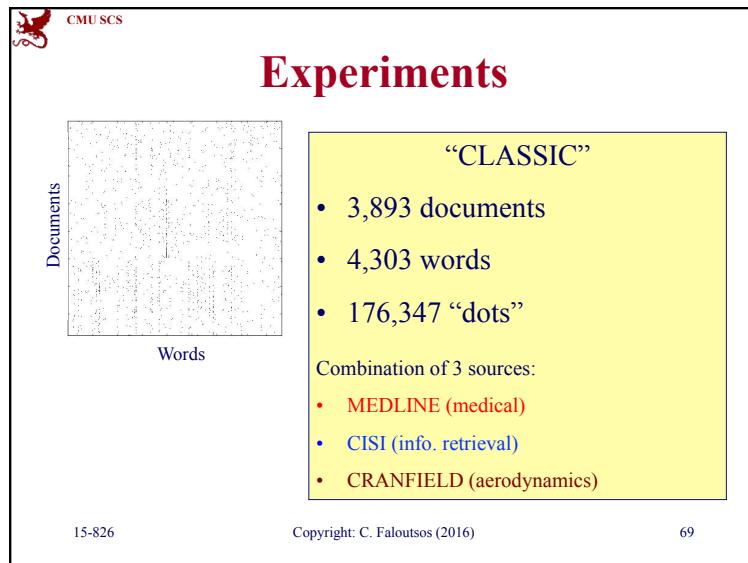
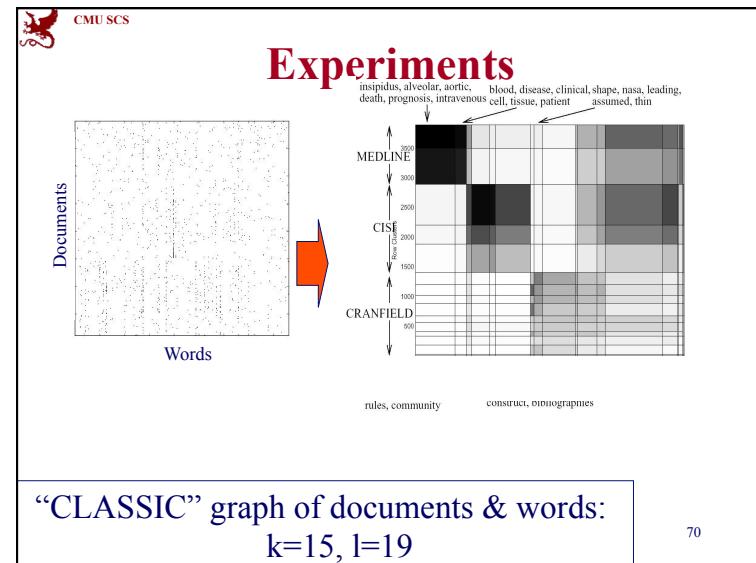
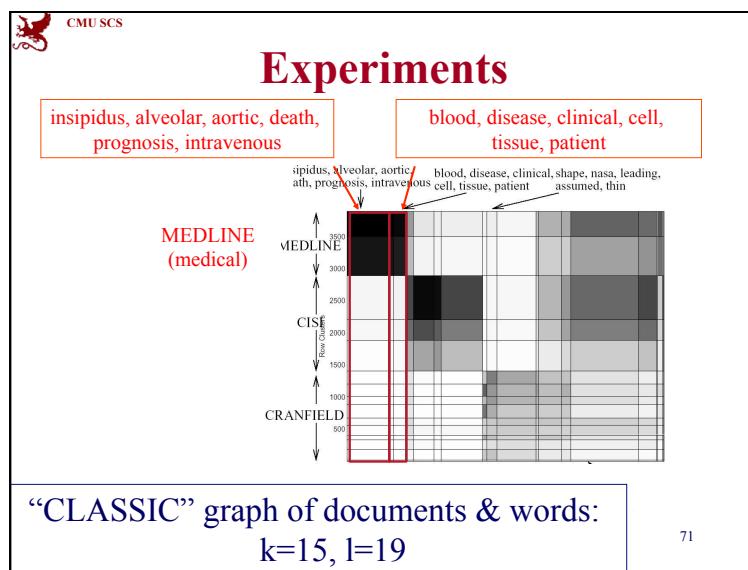
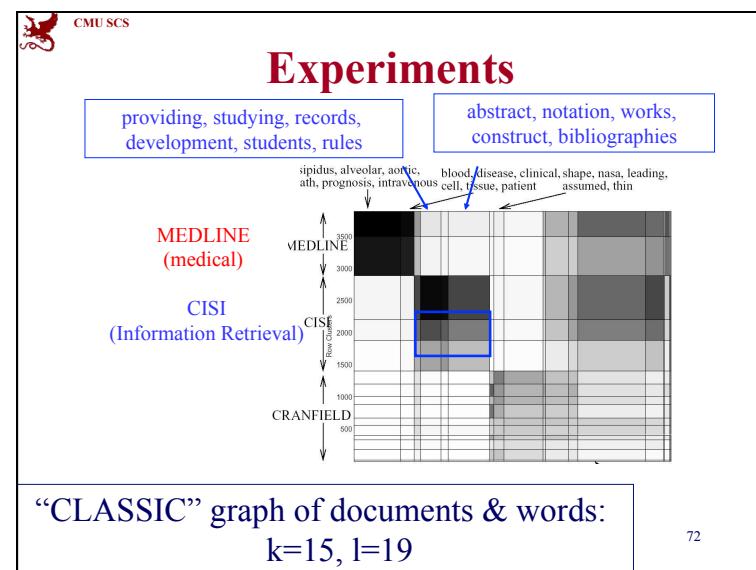
$k=4, l=4$

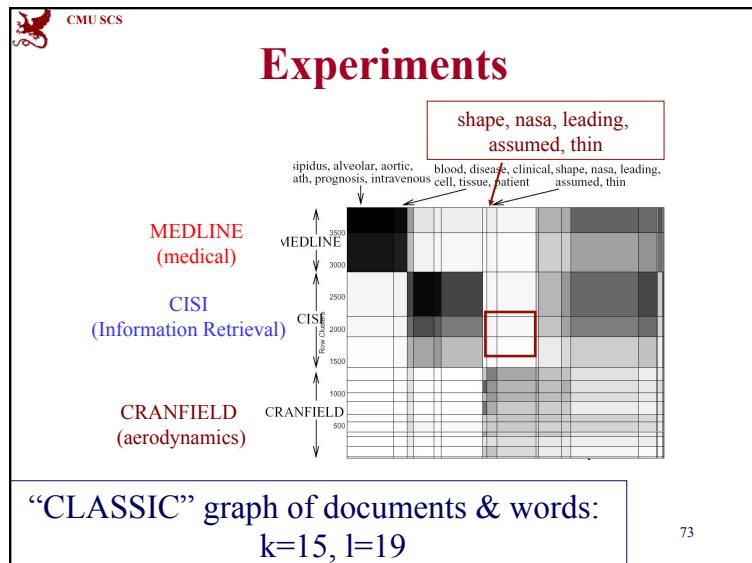
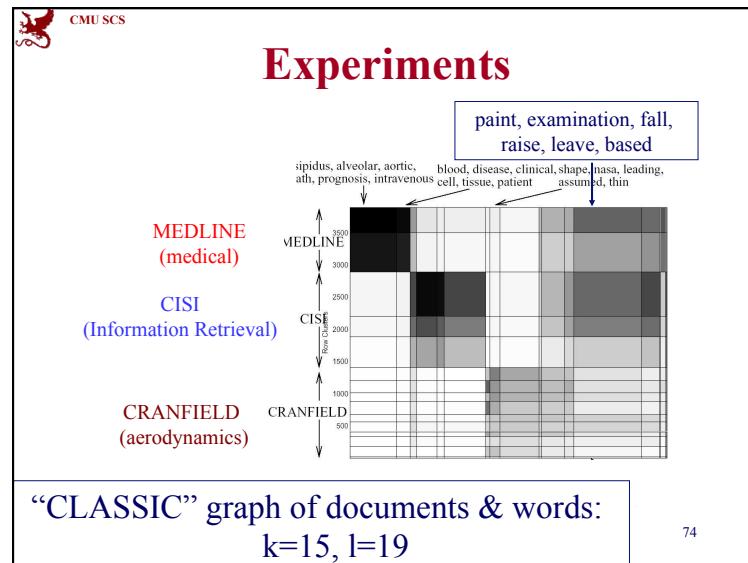
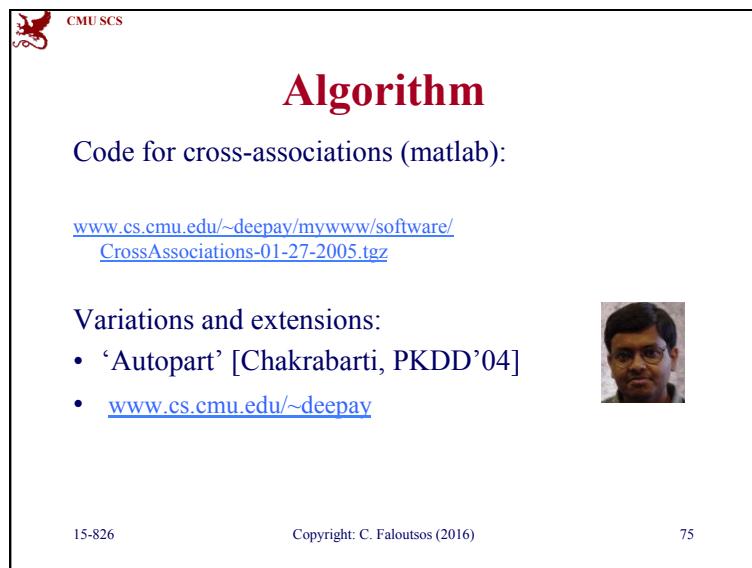
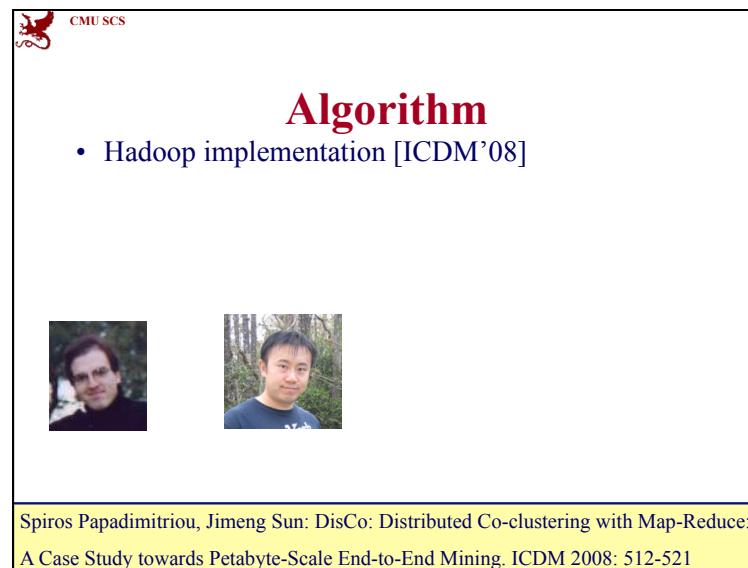
$k=4, l=5$

15-826

Copyright: C. Faloutsos (2016)

-68





CMU SCS

Detailed outline

- Motivation
- Hard clustering – k pieces
- Hard co-clustering – (k, l) pieces
- Hard clustering – optimal # pieces
- • (Soft clustering – matrix decompositions
 - PCA, ICA, non-negative matrix factorization, ...)
- Observations

15-826 Copyright: C. Faloutsos (2016) 77

CMU SCS

Detailed outline

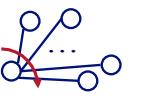
- Motivation
- Hard clustering – k pieces
- Hard co-clustering – (k, l) pieces
- Hard clustering – optimal # pieces
- (Soft clustering)
- • Observations

15-826 Copyright: C. Faloutsos (2016) 78

CMU SCS

Observation #1

- Skewed degree distributions – there are nodes with huge degree ($> O(10^4)$, in facebook/linkedin popularity contests!)
- TRAP: ‘find all pairs of nodes, within 2 steps from each other’



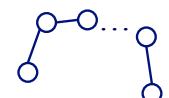
Gaussian trap

1M
15-826 Copyright: C. Faloutsos (2016) 79

CMU SCS

Observation #2

- TRAP: *shortest-path between two nodes*
- (cheat: look for 2, at most 3-step paths)
- Why:
 - If they are close (within 2-3 steps): solved
 - If not, after ~ 6 steps, you’ll have \sim the whole graph, and the path won’t be very meaningful, anyway.

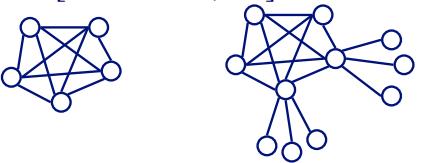


15-826 Copyright: C. Faloutsos (2016) 80

CMU SCS

Observation #3

- Maybe there are no good cuts: ``jellyfish'' shape [Tauro+'01], [Siganos+', '06], strange behavior of cuts [Chakrabarti+', '04], [Leskovec+', '08]



15-826

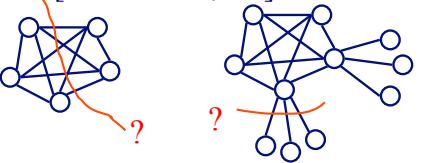
Copyright: C. Faloutsos (2016)

81

CMU SCS

Observation #3

- Maybe there are no good cuts: ``jellyfish'' shape [Tauro+'01], [Siganos+', '06], strange behavior of cuts [Chakrabarti+', '04], [Leskovec+', '08]



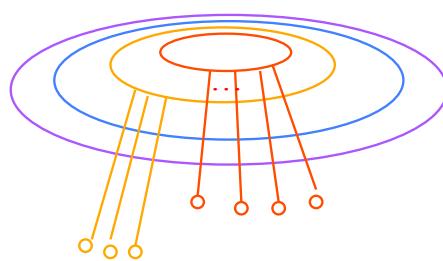
15-826

Copyright: C. Faloutsos (2016)

82

CMU SCS

Jellyfish model [Tauro+]



A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept. 2006.

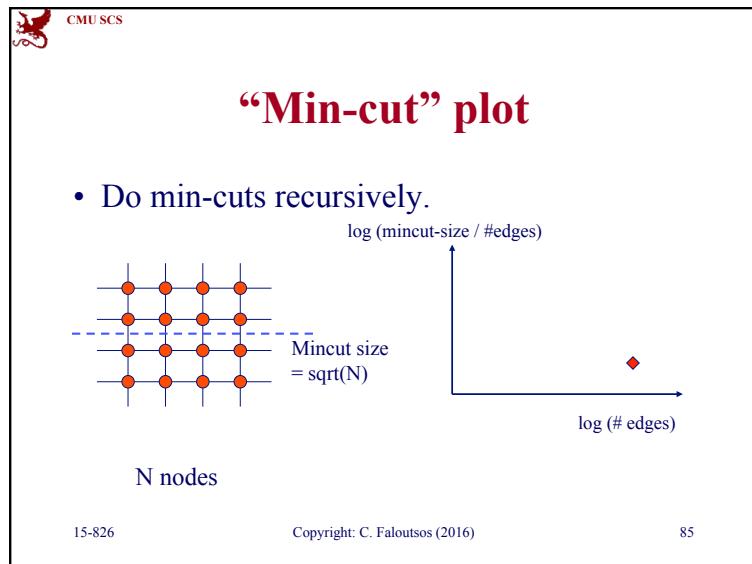
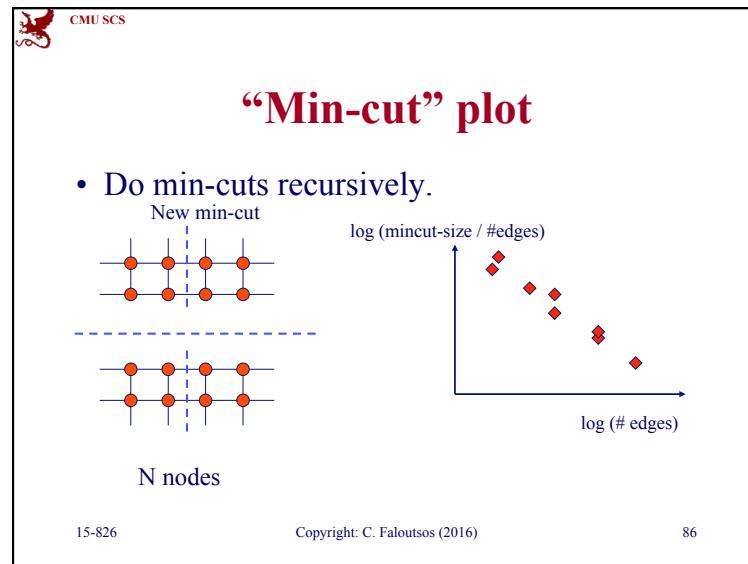
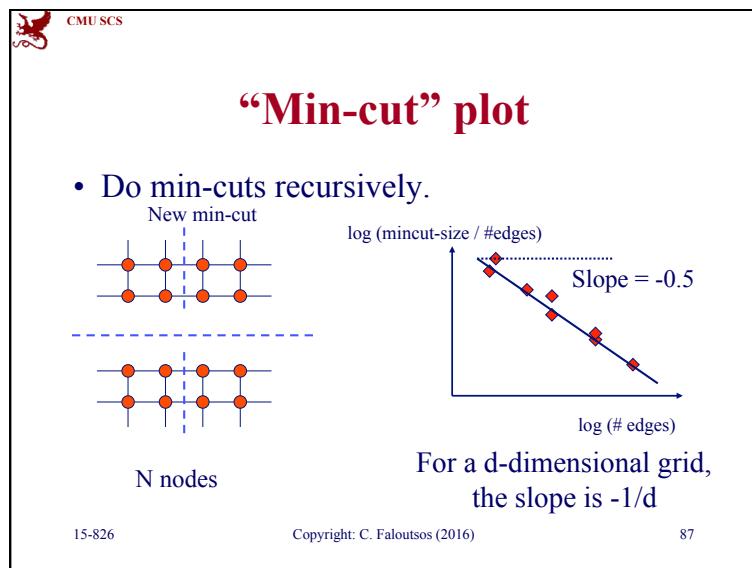
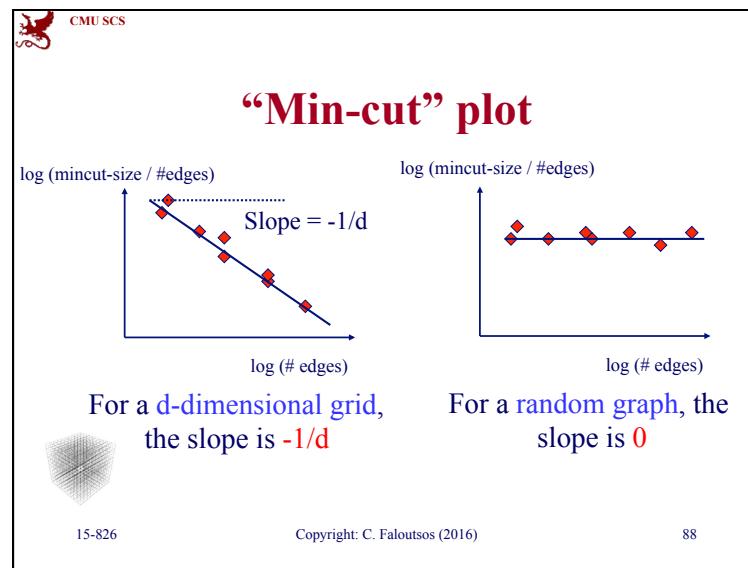
CMU SCS

Strange behavior of min cuts

- ‘negative dimensionality’ (!)

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney, WWW 2008.



CMU SCS

“Min-cut” plot

- What does it look like for a real-world graph?

$\log(\text{mincut-size} / \# \text{edges})$

log (# edges)

15-826 Copyright: C. Faloutsos (2016) 89

CMU SCS

Experiments

- Datasets:
 - Google Web Graph: 916,428 nodes and 5,105,039 edges
 - Lucent Router Graph: Undirected graph of network routers from www.isi.edu/scan/mercator/maps.html; 112,969 nodes and 181,639 edges
 - User → Website Clickstream Graph: 222,704 nodes and 952,580 edges

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

CMU SCS

Experiments

- Used the METIS algorithm [Karypis, Kumar, 1995]

$\log(\text{mincut-size} / \# \text{edges})$

Slope ~ -0.4

log (# edges)

- Google Web graph
- Values along the y-axis are averaged
- We observe a “lip” for large edges
- Slope of -0.4, corresponds to a 2.5-dimensional grid!

15-826 Copyright: C. Faloutsos (2016) 91

CMU SCS

Experiments

- Used the METIS algorithm [Karypis, Kumar, 1995]

$\log(\text{mincut-size} / \# \text{edges})$

-0.57; -0.45

log (# edges)

- Similarly, for
 - Lucent routers
 - clickstream

15-826 Copyright: C. Faloutsos (2016) 92

Conclusions – Practitioner’s guide

- Hard clustering – k pieces **METIS**
- Hard co-clustering – (k, l) pieces **Co-clustering**
- Hard clustering – optimal # pieces **Cross-associations**
- Observations

‘jellyfish’:
Maybe, there are
no good cuts