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15-826: Multimedia Databases
and Data Mining

Lecture #29: Graph mining -
Generators & tools

Christos Faloutsos
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Must-read material (1 of 2)

Fully Automatic Cross-Associations,
by D. Chakrabarti, S. Papadimitriou, D.
Modha and C. Faloutsos, in KDD 2004
(pages 79-88), Washington, USA
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Must-read material (2 of 2)

J. Leskovec, D. Chakrabarti, J. Kleinberg, and
C. Faloutsos,
Realistic, Mathematically Tractable
Graph Generation and Evolution, Using
Kronecker Multiplication, in PKDD 2005,
Porto, Portugal
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Main outline

* Introduction
* Indexing
* Mining
— Graphs — patterns
m) - Graphs — generators and tools
— Association rules
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Detailed outline %74

» Graphs — generators
# — Erdos-Renyi
— Other generators

— Kronecker

* Graphs - tools

15-826 Copyright: C. Faloutsos (2016) 5
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Generators

* How to generate random, realistic graphs?
— Erdos-Renyi model: beautiful, but unrealistic
— degree-based generators
— process-based generators
— recursive/self-similar generators

15-826 Copyright: C. Faloutsos (2016) 6

% CMU SCS
Erdos-Renyi

* random graph — 100
nodes, avg degree = 2

+ Fascinating properties
(phase transition)

* But: unrealistic
(Poisson degree Y O
distribution != power
law) .

1
Y
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E-R model & Phase transition

* vary avg degree D

Pc

» watch Pc =
Prob( there is a giant

connected component) 99
* How do you expect it o

to be?
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E-R model & Phase transition

* vary avg degree D
ry avg deg Pc

e watch Pc =
Prob( there is a giant ‘

connected component) )
N->infty

* How do you expect it

—10A
to be? N=10"}
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Degree-based

 Figure out the degree distribution (eg.,
‘Zipf’)
» Assign degrees to nodes

 Put edges, so that they match the original
degree distribution

¥-¥ V¥ 4§ 4 ¢
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Process-based

» Barabasi; Barabasi-Albert: Preferential
attachment -> power-law tails!
— ‘rich get richer’

* [Kumar+]: preferential attachment +
mimick

— Create ‘communities’

15-826 Copyright: C. Faloutsos (2016) 11
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Process-based (cont’d)
¢ [Fabrikant+, ‘02]: H.O.T.: connect to

closest, high connectivity neighbor
* [Pennock+, ‘02]: Winner does NOT take all

15-826 Copyright: C. Faloutsos (2016) 12
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Detailed outline %74

» Graphs — generators
— Erdos-Renyi
— Other generators
m)  — Kronecker

* Graphs - tools
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Recursive generators

* (RMAT [Chakrabarti+,’04])
» Kronecker product

15-826 Copyright: C. Faloutsos (2016) 14

g CMU SCS
Wish list for a generator:

* Power-law-tail in- and out-degrees

* Power-law-tail scree plots

* shrinking/constant diameter

* Densification Power Law

* communities-within-communities

Q: how to achieve all of them?

A: Kronecker matrix product [Leskovec+05b]

15-826 Copyright: C. Faloutsos (2016) 15

% CMU SCS
Graph gen.: Problem dfn

* Given a growing graph with count of nodes N,,
N, ...
* Generate a realistic sequence of graphs that will
obey all the patterns )
— Static Patterns i \
S1 Power Law Degree Distribution | o |
S2 Power Law eigenvalue and eigenvector distribution -
Small Diameter
— Dynamic Patterns

T2 Growth Power Law (2x nodes; 3x edges)
T1 Shrinking/Stabilizing Diameters

15-826 Copyright: C. Faloutsos (2016) 16
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Graph Patterns

100000 100000
,,,,,,,,,,,, ] g e o0 Siemarsa

. wer i \ |
£ 100 g 100 g‘“’ \

100 oo e v o 00 fooo 10000
Outdsares. Indscres

Count vs Indegree  Count vs Outdegree  Eigenvalue vs Rank

pw to match all these properties (+ small diameters, etc)

15-826 Copyright: C. Faloutsos (2016) 17
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Kronecker Graphs

—_—
— | — | —

Gi

Adjacency matrix

g CMU SCS

Hint: self-similarity
* A: RMAT/Kronecker generators

— With self-similarity, we get all power-laws,
automatically,

— And small/shrinking diameter

— And "no good cuts’

R-MAT: A Recursive Model for Graph Mining,

by D. Chakrabarti, Y. Zhan and C. Faloutsos,

SDM 2004. Orlando. Florida. USA

Realistic, Mathematically Tractable Graph Generation
and Evolution, Using Kronecker Multiplication,

by J. Leskovec, D. Chakrabarti, J. Kleinberg,

% CMU SCS

—_—
—t [ —t | —
p—

Adjacency matrix
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Kronecker Graphs
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Adjacency matrix

% CMU SCS

Kronecker product

k-

N N*N  N**4

15-826 Copyright: C. Faloutsos (2016) 22

Kronecker Graphs

» Continuing multiplying with G, we obtain G,and
soon... -

G, adjacency matrix
15-826 Copyright: C. Faloutsos (2016)
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Kronecker Graphs

» Continuing multiplying with G, we obtain G,and
soon... :

G, adjacency matrix
15-826 Copyright: C. Faloutsos (2016) 24
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Kronecker Graphs

+ Continuing multiplying with G, we obtain G,and
soon ... S

G, adjacency matrix
15-826 Copyright: C. Faloutsos (2016) 25

g MU SCS
Kronecker Graphs

 Continuing multip
soon ...

o

Holes within holes; i
Communities |y
vithin communities

G, adjacency matrix
15-826 Copyright: C. Faloutsos (2016) 26
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Self-similarity -> power

laws
Properties:

* We can PROVE that
— Degree distribution is multinomial ~ power law
new — Diameter: constant
— Eigenvalue distribution: multinomial

— First eigenvector: multinomial

15-826 Copyright: C. Faloutsos (2016) 27
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Problem Definition

+ Given a growing graph with nodes N,, N,, ...
* Generate a realistic sequence of graphs that will obey all
the patterns
— Static Patterns
v/ Power Law Degree Distribution
v Power Law eigenvalue and eigenvector distribution
v/ Small Diameter
— Dynamic Patterns
+ Growth Power Law
v Shrinking/Stabilizing Diameters

* First generator for which we can prove all these
properties

15-826 Copyright: C. Faloutsos (2016) 28
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Impact: Graph500

Based on RMAT (= 2x2 Kronecker)
 Standard for graph benchmarks

* http://www.eraph500.org/

« Competitions 2x year, with all major
entities: LLNL, Argonne, ITC-U. Tokyo,

Riken, ORNL, Sandia, PSC, ...
To iterate is human, to recurse is devine

R-MAT: A Recursive Model for Graph Mining,

by D. Chakrabarti, Y. Zhan and C. Faloutsos,

OINAAYNNA N1 1 T1__>1_ T TC A

g CMU SCS

Conclusions - Generators

Erdos-Renyi: phase transition

Preferential attachment (Barabasi)
— Power-law-tail in degree distribution

Variations
* Recursion — Kronecker graphs

— Numerous power-laws, + small diameters

15-826 Copyright: C. Faloutsos (2016) 30
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Resources

Generators:

* Kronecker (christos@cs.cmu.edu)

* BRITE http://www.cs.bu.edu/brite/

« INET: http://topology.eecs.umich.edu/inet

15-826 Copyright: C. Faloutsos (2016)
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Other resources

Visualization - graph algo’s:

* Graphviz: http://www.graphviz.org/

* pajek: http://vlado.fmf.uni-lj.si/pub/
networks/pajek/

Kevin Bacon web site: http://
www.cs.virginia.edu/oracle/

15-826 Copyright: C. Faloutsos (2016) 32
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Main outline Y74

* Introduction
* Indexing
* Mining
— Graphs — patterns
— Graphs — generators and tools

— Association rules
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Graph mining:
tools

15-826 Copyright: C. Faloutsos (2016) #42

o
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Detailed outline %74

* Graphs — generators
* Graphs — tools

— Community detection / graph partitioning
« Algo’s
* Observation: ‘no good cuts’
— Node proximity — personalized RWR
— Influence/virus propagation & immunization
— ‘Belief Propagation’ & fraud detection

— Anomaly detection
15-826 Copyright: C. Faloutsos (2016) 44
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Problem

* Given a graph, and k
* Break it into & (disjoint) communities

15-826 Copyright: C. Faloutsos (2016)
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Problem

* Given a graph, and k
* Break it into & (disjoint) communities

e

15-826 Copyright: C. Faloutsos (2016) -46
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Solution #1: METIS

* Arguably, the best algorithm

* Open source, at
— http://www.cs.umn.edu/~metis

* and *many* related papers, at same url

— partition;
N/

— un-coarsen CD

15-826 Copyright: C. Faloutsos (2016)

» Main idea: O CZ_)

— coarsen the graph; \ !

- @
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Solution #1: METIS

* G. Karypis and V. Kumar. METIS 4.0:
Unstructured graph partitioning and sparse
matrix ordering system. TR, Dept. of CS,
Univ. of Minnesota, 1998.

» <and many extensions>

15-826 Copyright: C. Faloutsos (2016) -48
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Solution #2

(problem: hard clustering, k pieces)

Spectral partitioning:

« Consider the 2" smallest eigenvector of the
(normalized) Laplacian

15-826 Copyright: C. Faloutsos (2016) -49
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Solutions #3, ...

Many more ideas:

* Clustering on the A? (square of adjacency
matrix) [Zhou, Woodruff, PODS’04]

* Minimum cut / maximum flow [Flake+,
KDD’00]

15-826 Copyright: C. Faloutsos (2016) -50
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Detailed outline | 7/

* Motivation
» Hard clustering — k& pieces
ﬂ * Hard co-clustering — (k,/) pieces
* Hard clustering — optimal # pieces
* Soft clustering — matrix decompositions
* Observations

15-826 Copyright: C. Faloutsos (2016) -51

g CMU SCS

Problem definition
* Given a bi-partite graph, and £, /

* Divide it into k row groups and / row groups
* (Also applicable to uni-partite graph)

15-826 Copyright: C. Faloutsos (2016) -52

15-826

13



C. Faloutsos

% CMU SCS

Co-clustering

» Given data matrix and the number of row
and column groups k and /

+ Simultaneously
— Cluster rows into k disjoint groups

— Cluster columns into / disjoint groups

CAVE - Clustered matrix

|
Column Clusters

15-826 Copyright: C. Faloutsos (2016) -53

X s

Co-clustering

* Let Xand Y be discrete random variables
— X and Y take valuesin {1, 2, ..., m} and {1, 2, ..., n}

— p(X, Y) denotes the joint probability distribution—if
not known, it is often estimated based on co-occurrence
data

— Application areas: text mining, market-basket analysis,
analysis of browsing behavior, etc.
» Key Obstacles in Clustering Contingency Tables
— High Dimensionality, Sparsity, Noise
— Need for robust and scalable algorithms

Reference:
1. Dhillon et al. Information-Theoretic Co-clustering, KDD’03

% CMU SCS

050505 0 0 0 |

05 05050 0 0 eg, terms x documents
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med. doc
—~csdoc
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term-group

| common terms

15-826
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Co-clustering

Observations
 uses KL divergence, instead of L2
* the middle matrix is not diagonal

— Like in the Tucker tensor decomposition

e s/w at:
www.cs.utexas.edu/users/dml/Software/cocluster.html

15-826 Copyright: C. Faloutsos (2016) -57
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Detailed outline Wi

* Motivation
» Hard clustering — k pieces
* Hard co-clustering — (k,1) pieces
#- Hard clustering — optimal # pieces
* Soft clustering — matrix decompositions
* Observations

15-826 Copyright: C. Faloutsos (2016) -58
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Problem with Information
Theoretic Co-clustering

* Number of row and column groups must be
specified

Desiderata:
v’ Simultaneously discover row and column groups

X Fully Automatic: No “magic numbers”

v' Scalable to large graphs

15-826 Copyright: C. Faloutsos (2016) -59
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Graph partitioning

¢ Documents X terms
* Customers x products
» Users x web-sites

15-826 Copyright: C. Faloutsos (2016) #60
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Graph partitioning

* Documents x terms
» Customers x products

» Users x web-sites

Q: HOW MANY
PIECES?

15-826 Copyright: C. Faloutsos (2016)
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Graph partitioning

* Documents x terms
» Customers x products

» Users x web-sites

Q: HOW MANY
PIECES?

A: MDL/ compression

15-826 Copyright: C. Faloutsos (2016) #62
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Cross-association

CAVE - Clustered matrix

Row Clusters

™ @ w0
Column Clusters.

Desiderata:
v’ Simultaneously discover row and column groups

v" Fully Automatic: No “magic numbers”

v’ Scalable to large matrices

Reference:
1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD’04

g CMU SCS

What makes a cross-association

113 b2
good”?
Iteration 5 (rows) . .
Why is this
L |
§ = / better?
& versus 507
z z 0
) S
I~ =

W a0 00 w0 6w

Column groups

Column groups

15-826 Copyright: C. Faloutsos (2016) -64
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Row groups

15-826

What makes a cross-association
“gOOd”?

Iteration 5 (rows)

Why is this

/ better?

versus

Row groups

W a0 w0 w0 6o

Column groups

Column groups

simpler; easier to describe
easier to compress!

Copyright: C. Faloutsos (2016) -65

% CMU SCS

What makes a cross-association
“gOOd”?

Problem definition: given an encoding scheme
¢ decide on the # of col. and row groups k and /
* and reorder rows and columns,

* to achieve best compression

15-826 Copyright: C. Faloutsos (2016)
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A

Main Idea

Good Better
Compression Clustering

Total Encoding Cost =

15-826

Cost of describing

e %
. size, * H(x,) + iati
Zl i () cross-associations

7

Code Cost DeSCrlptlon

Cost
Minimize the total cost (# bits)

for lossless compression

Copyright: C. Faloutsos (2016) -67
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Algorithm

1=5 col groups
Soarcn - oraon s

Row Clusters

g 48888588

om0 e

15-826 Copyright: C. Faloutsos (2016)
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-68
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Experiments

“CLASSIC”
fLa * 3,893 documents
] 4,303 words
« 176,347 “dots”

Documents

Words ..
Combination of 3 sources:

¢  MEDLINE (medical)
»  CISI (info. retrieval)
¢ CRANFIELD (aerodynamics)

% CMU SCS

Experiments

insipidus, alveolar, aortic,  plood, disease, clinical, shape, nasa, leading.
death, prognosis, intravenous cel], tissue, patient  assumed, thin

[

sa00)
MEDLINE

3000)

Documents

CRANFIELD

Words

rules, community CONSITUCT, DIDIIOIApIIES

15-826 Copyright: C. Faloutsos (2016) 69

“CLASSIC” graph of documents & words:

Experiments

insipidus, alveolar, aortic, death, blood, disease, clinical, cell,

prognosis, intravenous tissue, patient
sipidus, ylveolar, aortic/  plood, disease, clinical, shape, nasa, leading,
ath, progi swj, intravelous cel], tissue, pau%assumed, thin
MEDITINE MEDLINE' ‘
(medical) 0
250
CISE
2 0o
|
-
[l
CRANFIELD
w0

“CLASSIC” graph of documents & words:
k=15, 1=19 b
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% CMU SCS
.
Experiments
providing, studying, records, abstract, not?tign, Works,
development, students, rules construct, bibliographies
?5.‘fﬂﬁf&'g“"foifiTf}.ﬁ%Wifﬁ“ﬁihﬁg?ic“]‘Zl'f.ﬂ’lf{e'lﬂs{?{iff e
| —
MEDLINE \/IEDITIN%”
(medical) oo
I
(Information Retrieval) \LC 00
CRANFIELD
“CLASSIC” graph of documents & words:
7
k=15, 1=19

15-826
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Experiments

shape, nasa, leading,
assumed, thin

sipidus, alveolar, aortic, plood, diseage, clinical, shape, nasa, leading,
ath, prognosis, intravenous ce||, tissue, patient assumed, thin
MEDLINE T 3300
X MEDLINE
(medical) oo
250
CISI

2
-3
H
3

. . CISE
(Information Retrieval) l 00

1500 |

CRANFIELD  CRANFIELD

(aerodynamics)

“CLASSIC” graph of documents & words:

k=15, 1=19
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Experiments

paint, examination, fall,
raise, leave, based

sipidus, alveolar, aortic,  blood, disease, clinical. shape|
ath, prognosis, intravenous cel|, tissue, patient assum|
-
MEDLINE MEDLINE
(medical) o0
200
CISI . T

1500

(Information Retrieval) UIE 10

nasa, leading,
d, thin

CRANFIELD  CRANFIELD

(aerodynamics)

“CLASSIC” graph of documents & words:

k=15, 1=19
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Algorithm

Code for cross-associations (matlab):

www.cs.cmu.edu/~deepay/mywww/software/
CrossAssociations-01-27-2005.tgz

Variations and extensions:
* ‘Autopart’ [Chakrabarti, PKDD’04]

e  www.cs.cmu.edu/~deepay

15-826 Copyright: C. Faloutsos (2016)
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Algorithm

* Hadoop implementation [ICDM’08]

Spiros Papadimitriou, Jimeng Sun: DisCo: Distributed Co-clustering with Map-Reduce:

A Case Study towards Petabyte-Scale End-to-End Mining. ICDM 2008: 512-521

15-826
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Detailed outline

* Motivation

» Hard clustering — k pieces

* Hard co-clustering — (k,/) pieces

* Hard clustering — optimal # pieces

ﬂ * (Soft clustering — matrix decompositions
— PCA, ICA, non-negative matrix factorization,
)

* Observations
15-826

Copyright: C. Faloutsos (2016)

77

% CMU SCS

Detailed outline

* Motivation
» Hard clustering — k pieces
* Hard co-clustering — (k,/) pieces

* Hard clustering — optimal # pieces

(Soft clustering)
ﬂ * Observations

15-826 Copyright: C. Faloutsos (2016) 78
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Observation #1

» Skewed degree distributions — there are
nodes with huge degree (>O(10™4), in
facebook/linkedIn popularity contests!)

* TRAP: ‘find all pairs of nodes, within 2
steps from each other’

i\

§ 2 Gauss!

IM

15-826 Copyright: C. Faloutsos (2016)
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Observation #2 Cé 1

» TRAP: shortest-path between two nodes
* (cheat: look for 2, at most 3-step paths)
* Why:

— If they are close (within 2-3 steps): solved

— If not, after ~6 steps, you’ll have ~ the whole
graph, and the path won’t be very meaningful,
anyway.

15-826 Copyright: C. Faloutsos (2016) 80
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Observation #3
* Maybe there are no good cuts: "jellyfish”’
shape [Tauro+’01], [Siganos+,’06], strange

behavior of cuts [Chakrabarti+’04],
[Leskovec+,’08]

15-826 Copyright: C. Faloutsos (2016) 81

Observation #3
* Maybe there are no good cuts: "jellyfish’
shape [Tauro+’01], [Siganos+,’06], strange

behavior of cuts [Chakrabarti+,’04],
[Leskovec+,’08]
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Jellyfish model [Tauro+]

% CMU SCS

Strange behavior of min cuts

* ‘negative dimensionality’ (!)

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos,

M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L Tauro.

M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept.
2006.

>

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004
Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information

Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.
WWW 2008.
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g CMU SCs
“Min-cut” plot

* Do min-cuts recursively.

log (mincut-size / #edges)

Mincut size

= sqrt(N) ¢

log (# edges)

N nodes
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% CMU SCS
“Min-cut” plot

* Do min-cuts recursively.

New min-cut
1 log (mincut-size / #edges)

1
s
® e

L 4
_________________ $

; ; ; ; *
1
| log (# edges)
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% CMU SCS
“Min-cut” plot

* Do min-cuts recursively.
New min-cut
! log (mincut-size / #edges)

! ..’. ..........................
. Slope =-0.5

: log (# edges)

For a d-dimensional grid,
the slope is -1/d
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N nodes

g CMU SCS
“Min-cut” plot

log (mincut-size / #edges) log (mincut-size / #edges)

(@

o Slope = -1/d IS o o N
log (# edges) log (# edges)
For a d-dimensional grid, For a random graph, the
the slope is -1/d slope is 0
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g CMU SCs
“Min-cut” plot

* What does it look like for a real-world
graph?

log (mincut-size / #edges)

~ -

g CMU SCS

Experiments
* Datasets:

— Google Web Graph: 916,428 nodes and
5,105,039 edges

— Lucent Router Graph: Undirected graph of
network routers from
www.isi.edu/scan/mercator/maps.html; 112,969
nodes and 181,639 edges

— User = Website Clickstream Graph: 222,704
nodes and 952,580 edges

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004
Workshop on Link Analysis, Counter-terrorism and Privacy

log (# edges)
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. é : \

Experiment

» Used the METIS algorithm [Karypis, Kumar,

1995]
N~ gl(:p; 0.4 » Google Web graph

* Values along the y-axis
are averaged

/ * We observe a “lip” for
large edges

« Slope of -0.4,

log (mincut-size / #edges)

log (# edges)
corresponds to a 2.5-
dimensional grid!
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g CMU SCS

Experiments
» Used the METIS algorithm [Karypis, Kumar,
1995]
g -0.57; -0.45 + Similarly, for
E * Lucent routers
é * clickstream
g
log (# edges) gj' % Q' AN
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% CMU SCS

Conclusions — Practitioner’s guide

Hard clustering — k pieces METIS
* Hard co-clustering — (k,/) pieces Co-clustering
b Hard clustering — optimal # pieces Cross-associations

* Observations ‘jellyfish’:
Maybe, there ar
%ﬁ" no good cuts
?
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