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15-826: Multimedia Databases and 
Data Mining  

 
Lecture #28: Graph mining - patterns 

Christos Faloutsos 

CMU SCS 

Must-read Material 
•  [Graph minining textbook] Deepayan 

Chakrabarti and Christos Faloutsos 
Graph Mining: Laws, Tools and Case 
Studies, Morgan Claypool, 2012 
– Part I (patterns) 
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Must-read Material 
•  Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On 

Power-Law Relationships of the Internet Topology, SIGCOMM 
1999.  

•  R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World 
Wide Web Nature, 401, 130-131 (1999).  

•  Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of 
complex networks, Reviews of Modern Physics, 74, 47 (2002).   

•  Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over 
Time: Densification Laws, Shrinking Diameters and Possible 
Explanations, KDD 2005, Chicago, IL, USA 
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Must-read Material (cont’d) 

•  D. Chakrabarti and C. Faloutsos, Graph Mining: Laws, 
Generators and Algorithms, in ACM Computing Surveys, 
38(1), 2006 

4 15-826 (c) C. Faloutsos, 2016 



Faloutsos 

2 

CMU SCS 

Main outline 
•  Introduction 
•  Indexing 
•  Mining 

– Graphs – patterns 
– Graphs – generators and tools 
– Association rules 
– … 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Scalability 
•  Conclusions 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Friendship Network 
[Moody ’01] 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

 
•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

15-826 
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Graphs - why should we care? 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 

15-826 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Scalability 
•  Conclusions 

15-826 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

15-826 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

15-826 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

15-826 
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Are real graphs random? 

•  random (Erdos-Renyi) 
graph – 100 nodes, avg 
degree = 2 

•  before layout 
•  after layout 
•  No obvious patterns 
 
(generated with: pajek 
http://vlado.fmf.uni-lj.si/pub/networks/pajek/ ) 
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Graph mining 
•  Are real graphs random? 

15-826 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter (‘6 degrees’, ‘Kevin Bacon’) 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

15-826 
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Solution# S.1 

•  Power law in the degree distribution 
[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

15-826 
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Solution# S.1 

•  Power law in the degree distribution 
[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 
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Solution# S.1 

•  Q: So what? 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 
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Solution# S.1 

•  Q: So what? 
•  A1: # of two-step-away pairs: 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 

= friends of friends (F.O.F.) 
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Solution# S.1 

•  Q: So what? 
•  A1: # of two-step-away pairs: 100^2 * N= 10 Trillion 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 

= friends of friends (F.O.F.) 
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Solution# S.1 

•  Q: So what? 
•  A1: # of two-step-away pairs: 100^2 * N= 10 Trillion 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 

= friends of friends (F.O.F.) 
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Solution# S.1 

•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 

~0.8PB -> 
a data center(!) 

DCO @ CMU 

Gaussian trap 

= friends of friends (F.O.F.) 
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Solution# S.1 

•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 

~0.8PB -> 
a data center(!) 

Such patterns -> 

New algorith
ms 

Gaussian trap 
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Observation – big-data: 
•  O(N2) algorithms are ~intractable  - N=1B 

 
 

•  N2 seconds = 31B years (>2x age of 
universe) 
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1B 
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Observation – big-data: 
•  O(N2) algorithms are ~intractable  - N=1B 

 
 

•  N2 seconds = 31B years 
•  1,000 machines 
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1B 

31M 
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Observation – big-data: 
•  O(N2) algorithms are ~intractable  - N=1B 

 
 

•  N2 seconds = 31B years 
•  1M machines 
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1B 

31K 

CMU SCS 

Observation – big-data: 
•  O(N2) algorithms are ~intractable  - N=1B 

 
 

•  N2 seconds = 31B years 
•  10B machines ~ $10Trillion 

15-826 (c) C. Faloutsos, 2016 28 
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Observation – big-data: 
•  O(N2) algorithms are ~intractable  - N=1B 

 
 

•  N2 seconds = 31B years 
•  10B machines ~ $10Trillion 
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1B 

3 
And parallelism might not help 

CMU SCS 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

15-826 

A x = λ x 

CMU SCS 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

15-826 
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But: 
How about graphs from other domains? 

15-826 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

15-826 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

15-826 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
15-826 (c) C. Faloutsos, 2016 35 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  Triangles 

– Weighted graphs 
– Time evolving graphs 

15-826 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

15-826 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of  participating 
triangles 
Y: count (~ pdf) 

15-826 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions 

15-826 

X-axis: # of  participating 
triangles 
Y: count (~ pdf) 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

15-826 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
 

details 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues! 

 

details 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

15-826 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
45 15-826 45 (c) C. Faloutsos, 2016 
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Anomalous nodes in Twitter(~ 3 billion edges) 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 
 
 
 
 
 
 
Anomalous nodes in Twitter(~ 3 billion edges) 

[U Kang, Brendan Meeder, +, PAKDD’11] 
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Any other ‘laws’? 
Yes! 

15-826 (c) C. Faloutsos, 2016 
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Any other ‘laws’? 
Yes! 
•  Small diameter (~ constant!) – 

–  six degrees of separation / ‘Kevin Bacon’ 
–  small worlds [Watts and Strogatz] 

15-826 (c) C. Faloutsos, 2016 
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Any other ‘laws’? 

•  Bow-tie, for the web [Kumar+ ‘99] 
•  IN, SCC, OUT, ‘tendrils’ 
•  disconnected components 

 

15-826 (c) C. Faloutsos, 2016 
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Any other ‘laws’? 

•  power-laws in communities (bi-partite cores) 
[Kumar+, ‘99] 

 

2:3 core 
(m:n core) 

Log(m) 

Log(count) 

n:1 

n:2 n:3 
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Any other ‘laws’? 

•  “Jellyfish” for Internet [Tauro+ ’01] 
•  core: ~clique 
•  ~5 concentric layers 
•  many 1-degree nodes 

15-826 (c) C. Faloutsos, 2016 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 

(c) C. Faloutsos, 2016 55 15-826 

Useful for fraud detection! 

CMU SCS 

EigenSpokes 
• Eigenvectors of adjacency matrix  

!  equivalent to singular vectors 
(symmetric, undirected graph) 

 
 

A = U�UT

56 (c) C. Faloutsos, 2016 15-826 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

!  equivalent to singular vectors 
(symmetric, undirected graph) 

 
 

A = U�UT

�u1 �ui
57 (c) C. Faloutsos, 2016 15-826 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

!  equivalent to singular vectors 
(symmetric, undirected graph) 

 
 

A = U�UT

�u1 �ui
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EigenSpokes 
• Eigenvectors of adjacency matrix  

!  equivalent to singular vectors 
(symmetric, undirected graph) 

 
 

A = U�UT

�u1 �ui
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N 

N 

details 
CMU SCS 

EigenSpokes 
• Eigenvectors of adjacency matrix  

!  equivalent to singular vectors 
(symmetric, undirected graph) 

 
 

A = U�UT

�u1 �ui
60 (c) C. Faloutsos, 2016 15-826 

N 

N 

details 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

(c) C. Faloutsos, 2016 61 

u1 

u2 

15-826 

1st Principal  
component 

2nd Principal  
component 

CMU SCS 

EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 
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u1 

u2 
90o 

15-826 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

! across time and space 
 
• Patent citation graph 

63 (c) C. Faloutsos, 2016 15-826 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

 
 
 

64 (c) C. Faloutsos, 2016 15-826 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

 
So what? 

! Extract nodes with high 
scores  

!  high connectivity 
! Good “communities” 

 

spy plot of top 20 nodes 

67 (c) C. Faloutsos, 2016 15-826 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

`cut-and-paste’ 
bibliography! 

68 (c) C. Faloutsos, 2016 15-826 

Useful for fraud detection! 



Faloutsos 

18 

CMU SCS 

Bipartite Communities! 

IP – port scanners 

victims 

69 (c) C. Faloutsos, 2016 

Useful for fraud detection! 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  Triangles 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Scalability 
•  Conclusions 
15-826 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

15-826 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

15-826 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

15-826 

‘Reagan’ 

‘Clinton’ 
$7 

CMU SCS 

Edges (# donors) 

In-weights 
($) 

(c) C. Faloutsos, 2016 74 

Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Scalability 
•  Conclusions 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

15-826 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  [diameter ~ O( N1/3)] 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

15-826 

diameter 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  [diameter ~ O( N1/3)] 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

15-826 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

15-826 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

15-826 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

•  A: over-doubled! 
– But obeying the ``Densification Power Law’’ 

15-826 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

15-826 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Scalability 
•  Conclusions 

15-826 
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More on Time-evolving graphs 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

15-826 
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[ Gelling Point ] 

•  Most real graphs display a gelling point 
•  After gelling point, they exhibit typical behavior.  This is 

marked by a spike in diameter. 

Time 

Diameter 

IMDB 
t=1914 

15-826 (c) C. Faloutsos, 2016 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 
 
(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

15-826 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 
 
(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 
 
(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

15-826 
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Observation T.3: NLCC behavior 
•  After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate). 

IMDB 

CC size 

Time-stamp 
15-826 
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Timing for Blogs 

•  with Mary McGlohon (CMU->Google) 
•  Jure Leskovec (CMU->Stanford) 
•  Natalie Glance (now at Google) 
•  Mat Hurst (now at MSR) 
[SDM’07] 

15-826 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

15-826 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

days after post 
(log) 

15-826 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) -1.6 

days after post 
(log) 

15-826 
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-1.5 slope 

J. G. Oliveira & A.-L. Barabási Human Dynamics: The 
Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  

CMU SCS 

T.5: duration of phonecalls 
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users 

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro 

PKDD 2010 
 

15-826 (c) C. Faloutsos, 2016 95 
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Probably, power law (?) 

15-826 (c) C. Faloutsos, 2016 96 

?? 
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No Power Law! 
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‘TLaC: Lazy Contractor’ 
•  The longer a task (phonecall) has taken, 
•  The even longer it will take 

15-826 (c) C. Faloutsos, 2016 98 

Odds ratio= 
 
Casualties(<x): 
Survivors(>=x) 
 
 
== power law 

CMU SCS 

Log-logistic distribution 
•  CDF(t)/(1- CDF(t)) == OR(t) 
•  For log-logistic: log[OR(t)] = β + ρ*log(t) 

15-826 (c) C. Faloutsos, 2016 99 

Odds ratio= 
 
Casualties(<x): 
Survivors(>=x) 
 
 
== power law 

CMU SCS 

Log-logistic distribution 
•  CDF(t)/(1- CDF(t)) == OR(t) 
•  For log-logistic: log[OR(t)] = β + ρ*log(t) 

15-826 (c) C. Faloutsos, 2016 100 

•  PDF looks like hyperbola; 
•  and, if clipped, like power-law 
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Log-logistic distribution 
•  Logistic distribution: 

CDF -> sigmoid 

15-826 (c) C. Faloutsos, 2016 101 

CDF(x) = 1/(1+exp(-x)) 

•  LOG-Logistic 
distribution: 

CDF(x) = 1/(1+1/x ) 

x-> ln(x) 

CMU SCS 

Log-logistic distribution 
•  Logistic distribution: 

CDF -> sigmoid 
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CDF(x) = 1/(1+exp(-(x-m)/s)) 

•  LOG-Logistic 
distribution: 

CDF(x) = 1/(1+exp(-(ln(x)-m)/s)) 

CMU SCS 

103 

Data Description 

"  Data from a private mobile operator of a large 
city 
"  4 months of data 
"  3.1 million users 
"  more than 1 billion phone records 

"  Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls) 

15-826 (c) C. Faloutsos, 2016 

CMU SCS 

Outliers: 

15-826 (c) C. Faloutsos, 2016 104 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Scalability -PEGASUS 
•  Conclusions 

15-826 

CMU SCS 

15-826 (c) C. Faloutsos, 2016 106 

Scalability 
•   Google: > 450,000 processors in clusters of ~2000 

processors each [Barroso, Dean, Hölzle, “Web Search for 
a Planet: The Google Cluster Architecture” IEEE Micro 
2003] 

•  Yahoo: 5Pb of data [Fayyad, KDD’07] 
•  Problem: machine failures, on a daily basis 
•  How to parallelize data mining tasks, then? 
•  A: map/reduce – hadoop (open-source clone)  

http://hadoop.apache.org/ 

CMU SCS 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles done HERE 

Visualization started  
 

Outline – Algorithms & results 

15-826 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 

(c) C. Faloutsos, 2016 108 15-826 
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???? 

19+ [Barabasi+] 

109 (c) C. Faloutsos, 2016 

Radius 

Count 

15-826 

~1999, ~1M nodes 

CMU SCS 

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 
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Radius 

Count 

15-826 

?? 

~1999, ~1M nodes  
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 
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Radius 

Count 

15-826 

14 (dir.) 
~7 (undir.) 

CMU SCS 

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
• 7 degrees of separation (!) 
• Diameter: shrunk 

???? 

19+? [Barabasi+] 

112 (c) C. Faloutsos, 2016 

Radius 

Count 

15-826 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
Q: Shape? 

???? 

113 (c) C. Faloutsos, 2016 

Radius 

Count 

15-826 

~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality (?!) 

15-826 

CMU SCS 

Radius Plot of GCC of YahooWeb. 

115 (c) C. Faloutsos, 2016 15-826 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

15-826 



Faloutsos 

30 

CMU SCS 

117 (c) C. Faloutsos, 2016 

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

15-826 

EN 

~7 

Conjecture: 
DE 

BR 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

15-826 

~7 

Conjecture: 

CMU SCS 

Running time -  Kronecker and Erdos-Renyi  
Graphs with billions edges. 

details 
CMU SCS 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles HERE 

Visualization started  
 

Outline – Algorithms & results 

15-826 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

(c) C. Faloutsos, 2016 121 

PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

15-826 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

(c) C. Faloutsos, 2016 122 

•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

15-826 

details 
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Example: GIM-V At Work 
•  Connected Components – 4 observations: 

Size 

Count 

(c) C. Faloutsos, 2016 15-826 

CMU SCS 

124 

Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

(c) C. Faloutsos, 2016 15-826 

1) 10K x  
larger 
than next 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

(c) C. Faloutsos, 2016 15-826 

2) ~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

(c) C. Faloutsos, 2016 15-826 

3) SLOPE! 

CMU SCS 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

(c) C. Faloutsos, 2016 15-826 

4) Spikes! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

(c) C. Faloutsos, 2016 15-826 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

(c) C. Faloutsos, 2016 15-826 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  DELETE 
•  Problem#2: Scalability 
•  Conclusions 

15-826 
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OVERALL CONCLUSIONS – 
low level: 

•  Several new patterns (fortification, 
shrinking diameter, triangle-laws, conn. 
components, etc) 

•  Log-logistic distribution: ubiquitus 

•  New tools: 
–  anomaly detection (OddBall), belief 

propagation, immunization 

•  Scalability: PEGASUS / hadoop 
15-826 
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OVERALL CONCLUSIONS – 
high level 

•  BIG DATA: Large datasets reveal patterns/
outliers that are invisible otherwise 

15-826 



Faloutsos 

34 

CMU SCS 

(c) C. Faloutsos, 2016 133 

References 
•  Leman Akoglu, Christos Faloutsos: RTG: A Recursive 

Realistic Graph Generator Using Random Typing. 
ECML/PKDD (1) 2009: 13-28 

•  Deepayan Chakrabarti, Christos Faloutsos: Graph 
mining: Laws, generators, and algorithms. ACM 
Comput. Surv. 38(1): (2006) 

15-826 

CMU SCS 

(c) C. Faloutsos, 2016 134 

References 
•  Deepayan Chakrabarti, Yang Wang, Chenxi Wang, 

Jure Leskovec, Christos Faloutsos: Epidemic 
thresholds in real networks. ACM Trans. Inf. Syst. 
Secur. 10(4): (2008) 

15-826 

CMU SCS 

(c) C. Faloutsos, 2016 135 

References 
•  Jure Leskovec, Jon Kleinberg and Christos Faloutsos 

Graphs over Time: Densification Laws, Shrinking 
Diameters and Possible Explanations, KDD 2005 
(Best Research paper award). 

•  Jure Leskovec, Deepayan Chakrabarti, Jon M. 
Kleinberg, Christos Faloutsos: Realistic, 
Mathematically Tractable Graph Generation and 
Evolution, Using Kronecker Multiplication. PKDD 
2005: 133-145 

 
 

15-826 

CMU SCS 

(c) C. Faloutsos, 2016 136 

References 
•  Jimeng Sun, Yinglian Xie, Hui Zhang, Christos 

Faloutsos. Less is More: Compact Matrix 
Decomposition for Large Sparse Graphs, SDM, 
Minneapolis, Minnesota, Apr 2007.  

•  Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, 
and Christos Faloutsos, GraphScope: Parameter-
free Mining of Large Time-evolving Graphs ACM 
SIGKDD Conference, San Jose, CA, August 2007  

15-826 



Faloutsos 

35 

CMU SCS 

References 
•  Jimeng Sun, Dacheng Tao, Christos 

Faloutsos: Beyond streams and graphs: 
dynamic tensor analysis. KDD 2006: 
374-383 

 

15-826 (c) C. Faloutsos, 2016 137 

CMU SCS 

(c) C. Faloutsos, 2016 138 

References 
•  Hanghang Tong, Christos Faloutsos, and 

Jia-Yu Pan, Fast Random Walk with 
Restart and Its Applications, ICDM 2006, 
Hong Kong. 

•  Hanghang Tong, Christos Faloutsos, 
Center-Piece Subgraphs: Problem 
Definition and Fast Solutions, KDD 2006, 
Philadelphia, PA 

15-826 

CMU SCS 

(c) C. Faloutsos, 2016 139 

References 
•  Hanghang Tong, Christos Faloutsos, Brian 

Gallagher, Tina Eliassi-Rad: Fast best-effort 
pattern matching in large attributed graphs. 
KDD 2007: 737-746 

15-826 

CMU SCS 

(c) C. Faloutsos, 2016 140 

(Project info) 

Akoglu,  
Leman 

Chau,  
Polo 

Kang, U McGlohon,  
Mary 

Tong,  
Hanghang 

Prakash, 
Aditya 

15-826 

www.cs.cmu.edu/~pegasus 

Koutra, 
Danae 


