

## 15-826: Multimedia Databases and Data Mining

Lecture #28: Graph mining - patterns

*Christos Faloutsos*

## Must-read Material

- [Graph minining textbook] Deepayan Chakrabarti and Christos Faloutsos [Graph Mining: Laws, Tools and Case Studies](#), Morgan Claypool, 2012
  - Part I (patterns)

15-826

(c) C. Faloutsos, 2016

2

## Must-read Material

- Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On Power-Law Relationships of the Internet Topology, SIGCOMM 1999.
- R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World Wide Web Nature, 401, 130-131 (1999).
- Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47 (2002).
- Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005, Chicago, IL, USA

15-826

(c) C. Faloutsos, 2016

3

## Must-read Material (cont' d)

- D. Chakrabarti and C. Faloutsos, Graph Mining: Laws, Generators and Algorithms, in ACM Computing Surveys, 38(1), 2006

15-826

(c) C. Faloutsos, 2016

4

Carnegie Mellon

## Main outline

- Introduction
- Indexing
- Mining
  - Graphs – patterns
  - Graphs – generators and tools
  - Association rules
  - ...

15-826 (c) C. Faloutsos, 2016 5



Carnegie Mellon

## Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
- Problem#2: Scalability
- Conclusions

15-826 (c) C. Faloutsos, 2016 6



Carnegie Mellon

## Graphs - why should we care?

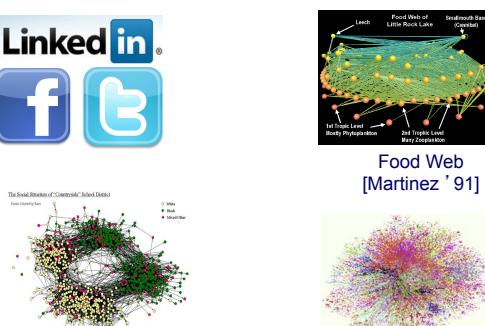
LinkedIn, Facebook, Twitter

Friendship Network [Moody '01]

Food Web of Little Rock Lake [Martinez '91]

Internet Map [lumeta.com]

15-826 (c) C. Faloutsos, 2016 7



Carnegie Mellon

## Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)
- web: hyper-text graph
- ... and more:

15-826 (c) C. Faloutsos, 2016 8

$D_1 \dots D_N$   $T_1 \dots T_M$



## Graphs - why should we care?

- ‘viral’ marketing
- web-log (‘blog’) news propagation
- computer network security: email/IP traffic and anomaly detection
- ....

15-826

(c) C. Faloutsos, 2016

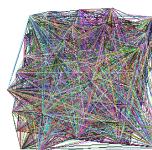
9

## Outline

- Introduction – Motivation
- ➡ • Problem#1: Patterns in graphs
  - Static graphs
  - Weighted graphs
  - Time evolving graphs
- Problem#2: Scalability
- Conclusions



## Problem #1 - network and graph mining



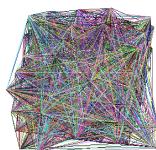
- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’ / ‘abnormal’ ?
- which patterns/laws hold?

15-826

(c) C. Faloutsos, 2016

11

## Problem #1 - network and graph mining



- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’ / ‘abnormal’ ?
- which patterns/laws hold?
  - To spot **anomalies** (rarities), we have to discover **patterns**

15-826

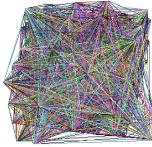
(c) C. Faloutsos, 2016

12

Carnegie Mellon

## Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’ / ‘abnormal’ ?
- which patterns/laws hold?
  - To spot **anomalies** (rarities), we have to discover **patterns**
  - **Large** datasets reveal patterns/anomalies that may be invisible otherwise...



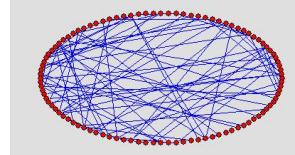
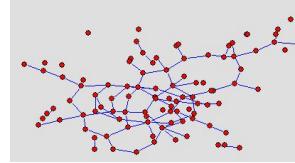

15-826 (c) C. Faloutsos, 2016 13

Carnegie Mellon

## Are real graphs random?

- random (Erdos-Renyi) graph – 100 nodes, avg degree = 2
- before layout
- after layout
- No obvious patterns

(generated with: pajek  
<http://vlado.fmf.uni-lj.si/pub/networks/pajek/>)

15-826 (c) C. Faloutsos, 2016 14

Carnegie Mellon

## Graph mining

- Are real graphs random?

15-826 (c) C. Faloutsos, 2016 15

Carnegie Mellon

## Laws and patterns

- Are real graphs random?
- A: NO!!
  - Diameter (‘6 degrees’, ‘Kevin Bacon’)
  - in- and out- degree distributions
  - other (surprising) patterns
- So, let’s look at the data



15-826 (c) C. Faloutsos, 2016 16

## Solution# S.1

- Power law in the degree distribution [SIGCOMM99]

internet domains



15-826

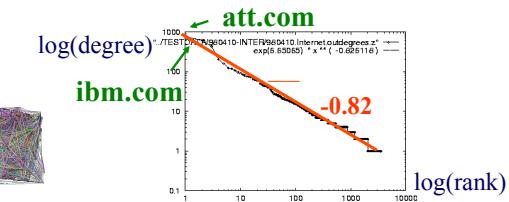
(c) C. Faloutsos, 2016

17

## Solution# S.1

- Power law in the degree distribution [SIGCOMM99]

internet domains



15-826

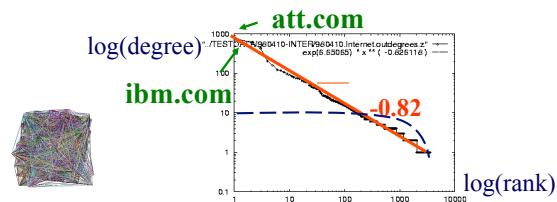
(c) C. Faloutsos, 2016

18

## Solution# S.1

- Q: So what?

internet domains



15-826

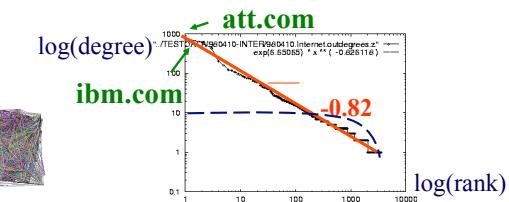
(c) C. Faloutsos, 2016

19

## Solution# S.1

- Q: So what? *= friends of friends (F.O.F.)*
- A1: # of two-step-away pairs:

internet domains



15-826

(c) C. Faloutsos, 2016

20

Carnegie Mellon

### Solution# S.1

- Q: So what?  $=$  friends of friends (F.O.F.)
- A1: # of two-step-away pairs:  $100^2 * N = 10$  Trillion internet domains

15-826 (c) C. Faloutsos, 2016 21

Carnegie Mellon

### Solution# S.1

- Q: So what?  $=$  friends of friends (F.O.F.)
- A1: # of two-step-away pairs:  $100^2 * N = 10$  Trillion internet domains

15-826 (c) C. Faloutsos, 2016 22

Carnegie Mellon

### Gaussian trap

### Solution# S.1

- Q: So what?  $=$  friends of friends (F.O.F.)
- A1: # of two-step-away pairs:  $O(d_{max}^2) \sim 10M^2$  internet domains

15-826 (c) C. Faloutsos, 2016 DCO @ CMU 23

Carnegie Mellon

### Gaussian trap

### Solution# S.1

- Q: So what?
- A1: # of two-step-away pairs:  $O(d_{max}^2) \sim 10M^2$  internet domains

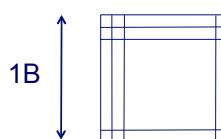
Such patterns  $\rightarrow$  New algorithms  $\rightarrow$   $\approx 10M^2$   $\downarrow$   $\approx 0.8PB \rightarrow$  a data center(!)

15-826 (c) C. Faloutsos, 2016 24

**Observation – big-data:**

- $O(N^2)$  algorithms are ~intractable -  $N=1B$
- $N^2$  seconds = 31B years ( $>2x$  age of universe)

1B      1B



(c) C. Faloutsos, 2016



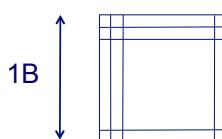
25

**Observation – big-data:**

- $O(N^2)$  algorithms are ~intractable -  $N=1B$
- $N^2$  seconds = 31B years
- 1,000 machines

31M

1B



15-826



(c) C. Faloutsos, 2016



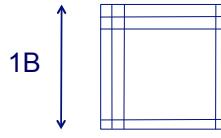
26

**Observation – big-data:**

- $O(N^2)$  algorithms are ~intractable -  $N=1B$
- $N^2$  seconds = 31B years
- 1M machines

31K

1B



15-826



(c) C. Faloutsos, 2016



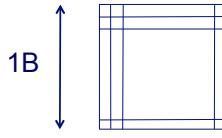
27

**Observation – big-data:**

- $O(N^2)$  algorithms are ~intractable -  $N=1B$
- $N^2$  seconds = 31B years
- 10B machines  $\sim \$10$ Trillion

3

1B



15-826




(c) C. Faloutsos, 2016

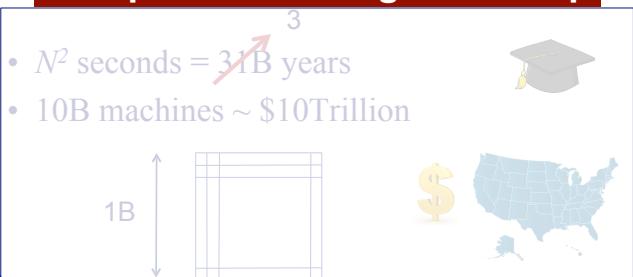
28

**Observation – big-data:**

- $O(N^2)$  algorithms are ~intractable -  $N=1B$

**And parallelism might not help**

- $N^2$  seconds = 31B years
- 10B machines  $\sim \$10$ Trillion



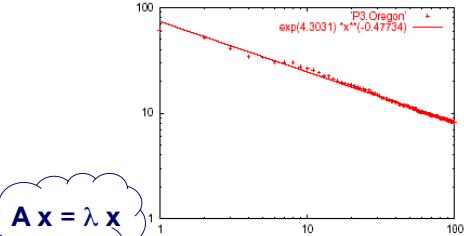
1B

(c) C. Faloutsos, 2016

29

**Solution# S.2: Eigen Exponent  $E$**

Eigenvalue



$\text{exp}(4.3031) \cdot x^{(-0.47734)}$

$\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

Exponent = slope

$E = -0.48$

May 2001

- A2: power law in the eigenvalues of the adjacency matrix

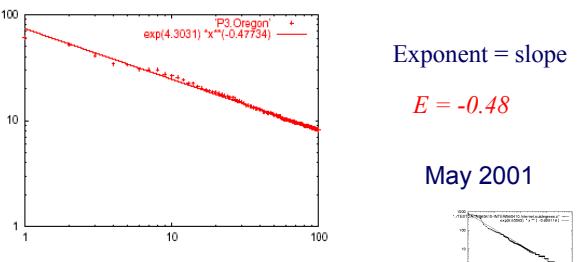
15-826

(c) C. Faloutsos, 2016

30

**Solution# S.2: Eigen Exponent  $E$**

Eigenvalue



$\text{exp}(4.3031) \cdot x^{(-0.47734)}$

Exponent = slope

$E = -0.48$

May 2001

Rank of decreasing eigenvalue

- [Mihail, Papadimitriou '02]: slope is  $\frac{1}{2}$  of rank exponent

15-826

(c) C. Faloutsos, 2016

31

**But:**

How about graphs from other domains?

15-826

(c) C. Faloutsos, 2016

32

Carnegie Mellon

## More power laws:

- web hit counts [w/ A. Montgomery]

15-826 (c) C. Faloutsos, 2016 33

Carnegie Mellon

## epinions.com

- who-trusts-whom [Richardson + Domingos, KDD 2001]

15-826 (c) C. Faloutsos, 2016 34

Carnegie Mellon

## And numerous more

- # of sexual contacts
- Income [Pareto] – '80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- ...
- 'Black swans'

15-826 (c) C. Faloutsos, 2016 35

Carnegie Mellon

## Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
  - Static graphs
    - degree, diameter, eigen,
    - Triangles
  - Weighted graphs
    - Time evolving graphs

15-826 (c) C. Faloutsos, 2016 36

### Solution# S.3: Triangle 'Laws'



- Real social networks have a lot of triangles

15-826

(c) C. Faloutsos, 2016

37

### Solution# S.3: Triangle 'Laws'



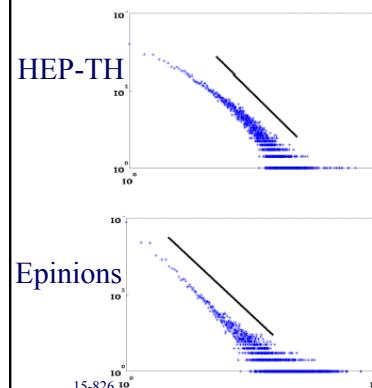
- Real social networks have a lot of triangles
  - Friends of friends are friends
- Any patterns?

15-826

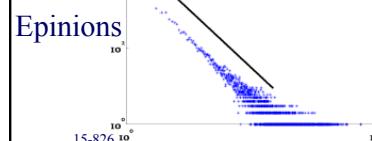
(c) C. Faloutsos, 2016

38

### Triangle Law: #S.3 [Tsourakakis ICDM 2008]



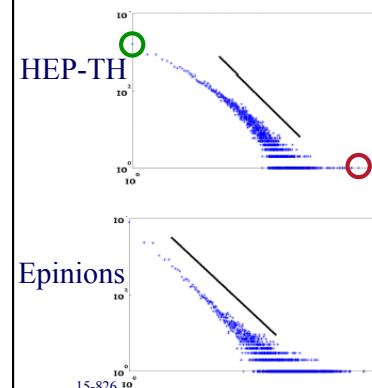
ASN



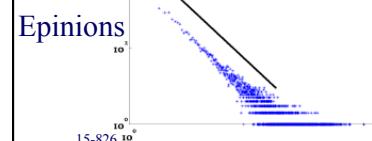
X-axis: # of participating triangles  
Y: count (~ pdf)

39

### Triangle Law: #S.3 [Tsourakakis ICDM 2008]

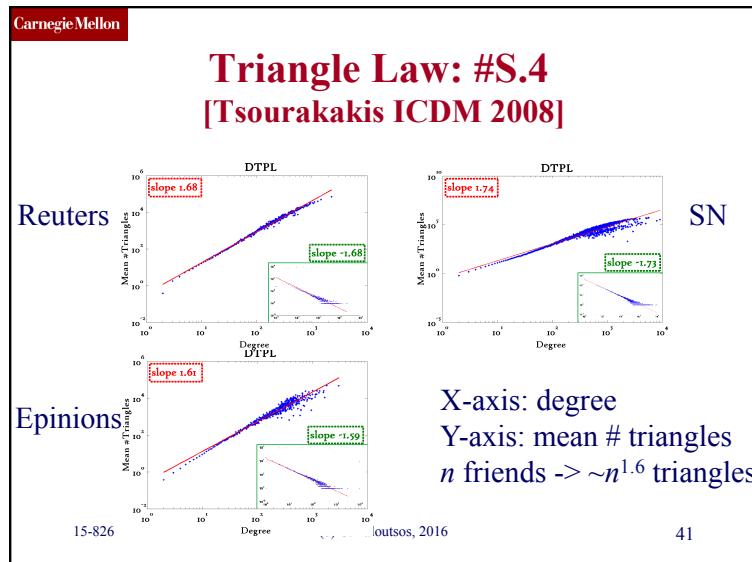
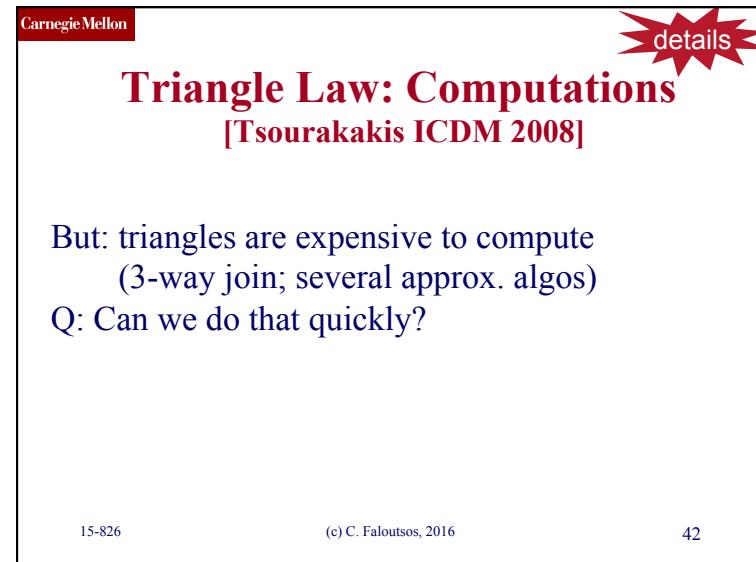
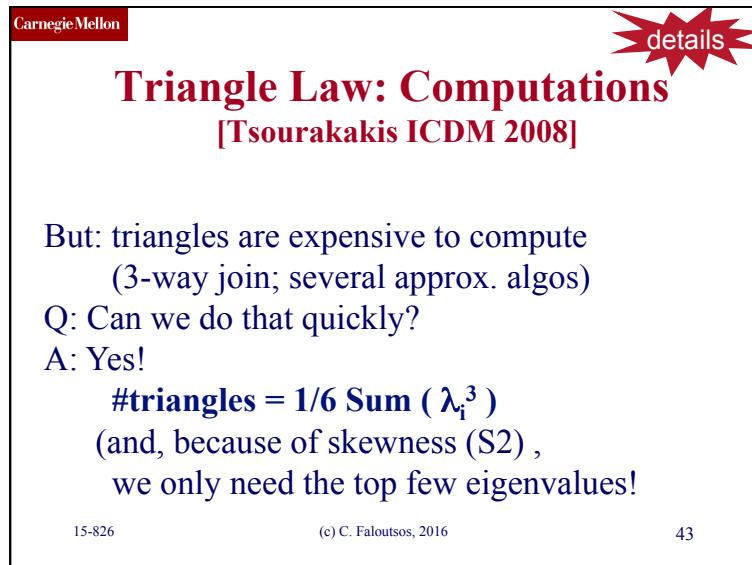
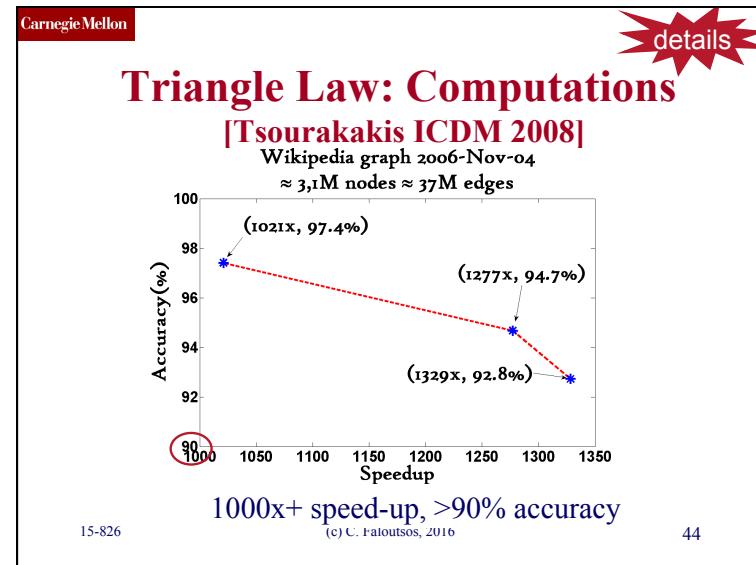


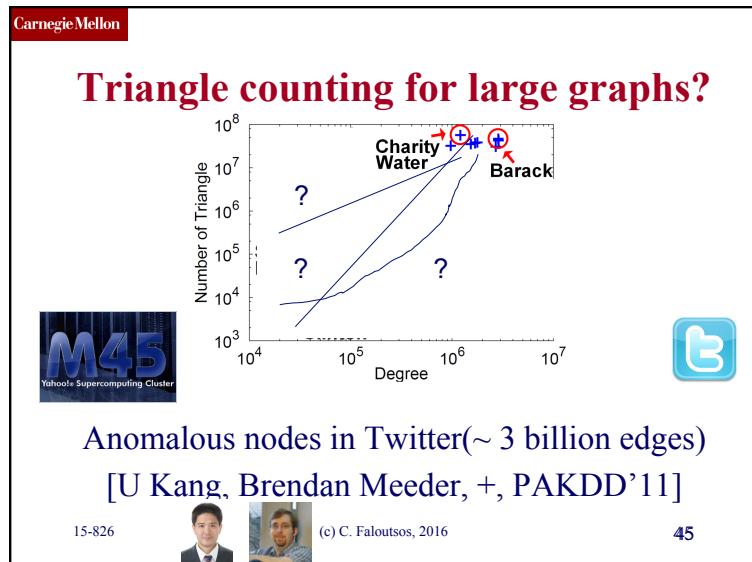
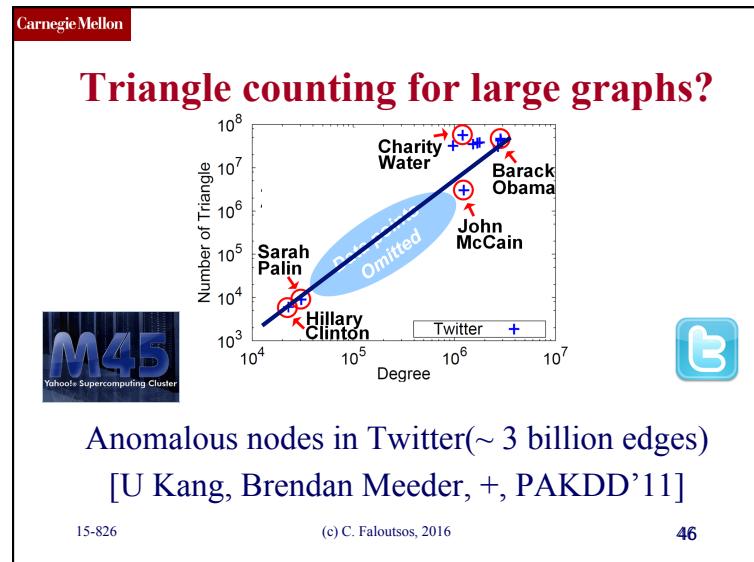
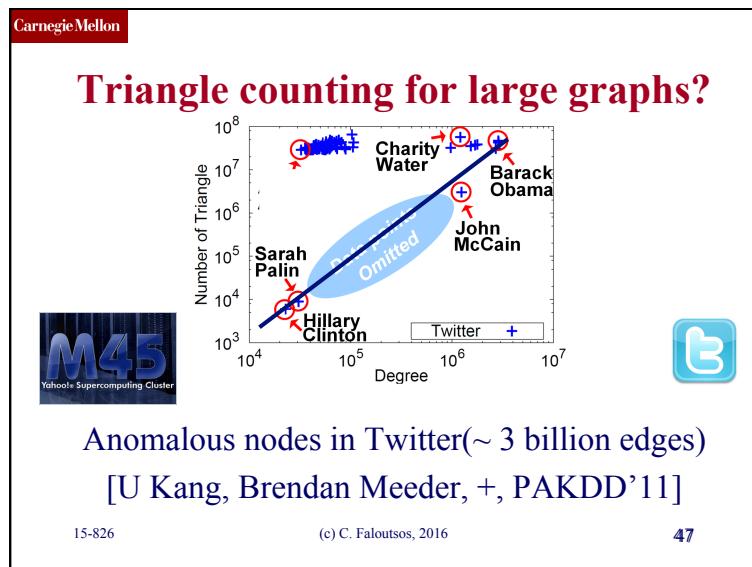
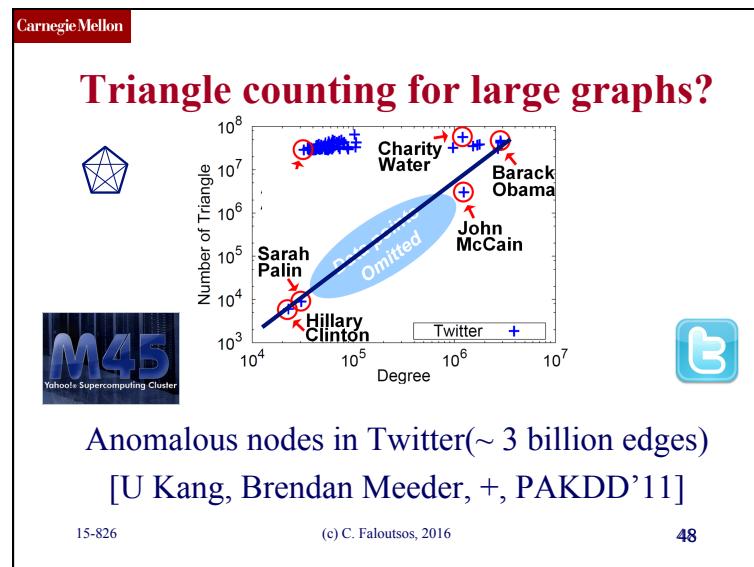
ASN

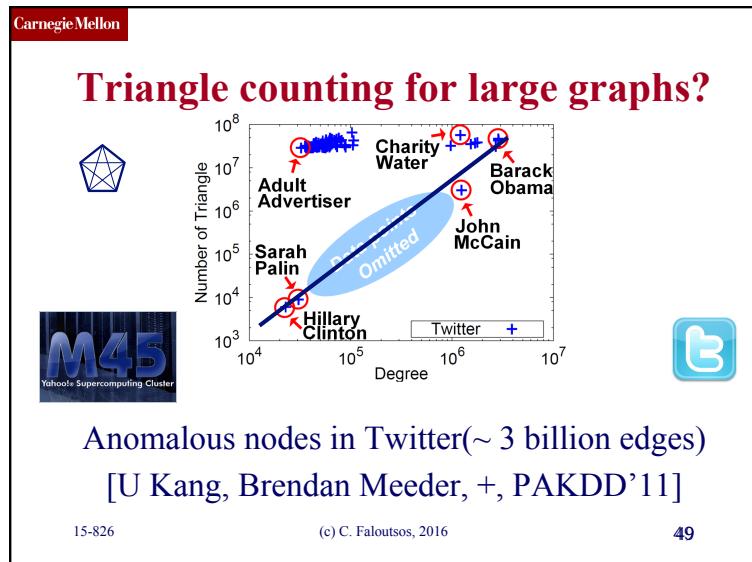
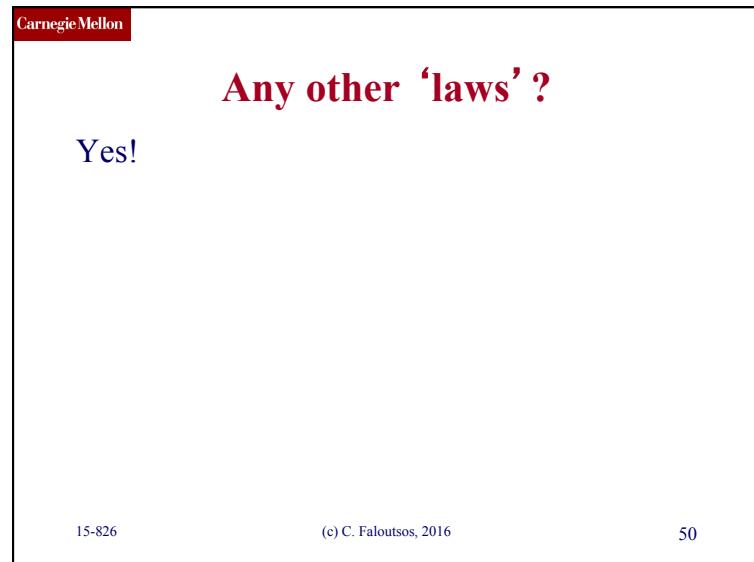
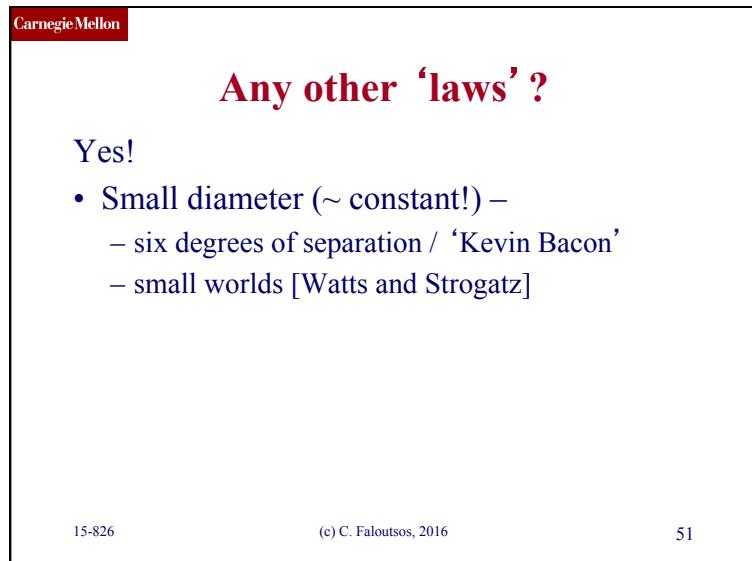
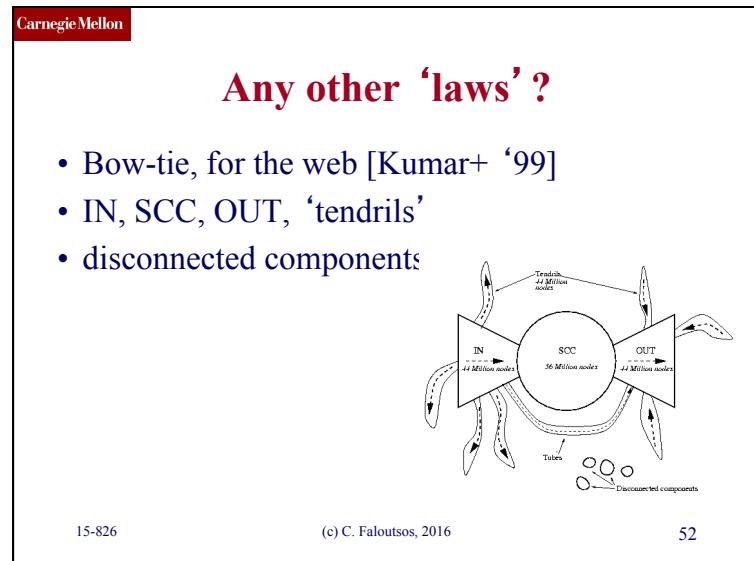


X-axis: # of participating triangles  
Y: count (~ pdf)

40







Carnegie Mellon

## Any other ‘laws’ ?

- power-laws in communities (bi-partite cores) [Kumar+, ‘99]

Log(count)

15-826 (c) C. Faloutsos, 2016 53

Carnegie Mellon

## Any other ‘laws’ ?

- “Jellyfish” for Internet [Tauro+ ’01]
- core: ~clique
- ~5 concentric layers
- many 1-degree nodes

15-826 (c) C. Faloutsos, 2016 54

Carnegie Mellon

## EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: *EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs*, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

Useful for fraud detection!

15-826 (c) C. Faloutsos, 2016 55

Carnegie Mellon

## EigenSpokes

- Eigenvectors of adjacency matrix
  - equivalent to singular vectors (symmetric, undirected graph)

$$A = U\Sigma U^T$$

15-826 (c) C. Faloutsos, 2016 56

Carnegie Mellon

## EigenSpokes

details

- Eigenvectors of adjacency matrix
  - equivalent to singular vectors (symmetric, undirected graph)

$$A = U \Sigma U^T$$

15-826

(c) C. Faloutsos, 2016

57

Carnegie Mellon

## EigenSpokes

details

- Eigenvectors of adjacency matrix
  - equivalent to singular vectors (symmetric, undirected graph)

$$A = U \Sigma U^T$$

15-826

(c) C. Faloutsos, 2016

58

Carnegie Mellon

## EigenSpokes

details

- Eigenvectors of adjacency matrix
  - equivalent to singular vectors (symmetric, undirected graph)

$$A = U \Sigma U^T$$

15-826

(c) C. Faloutsos, 2016

59

Carnegie Mellon

## EigenSpokes

details

- Eigenvectors of adjacency matrix
  - equivalent to singular vectors (symmetric, undirected graph)

$$A = U \Sigma U^T$$

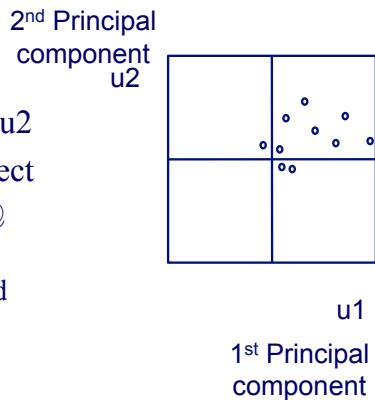
15-826

(c) C. Faloutsos, 2016

60

## EigenSpokes

- EE plot:
- Scatter plot of scores of  $u_1$  vs  $u_2$
- One would expect
  - Many points @ origin
  - A few scattered ~randomly



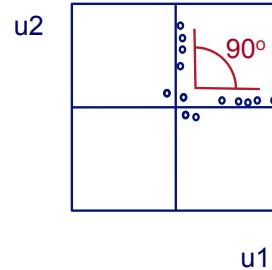
15-826

(c) C. Faloutsos, 2016

61

## EigenSpokes

- EE plot:
- Scatter plot of scores of  $u_1$  vs  $u_2$
- One would expect
  - Many points @ origin
  - A few scattered ~randomly



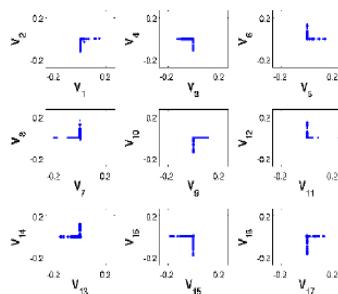
15-826

(c) C. Faloutsos, 2016

62

## EigenSpokes - pervasiveness

- Present in mobile social graph
  - across time and space



- Patent citation graph

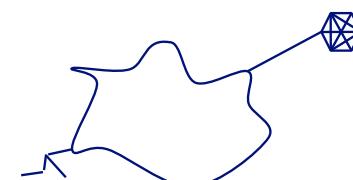
15-826

(c) C. Faloutsos, 2016

63

## EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected



15-826

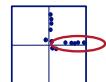
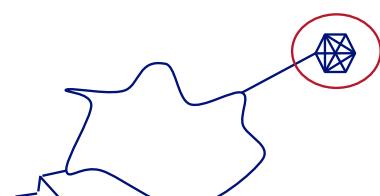
(c) C. Faloutsos, 2016

64

Carnegie Mellon

## EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

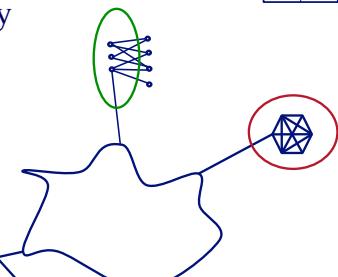
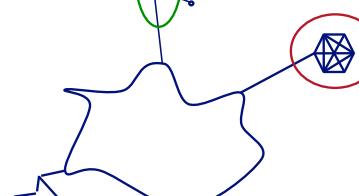



15-826 (c) C. Faloutsos, 2016 65

Carnegie Mellon

## EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

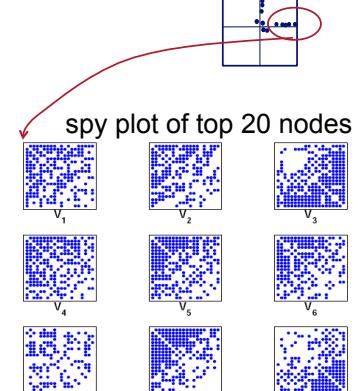



15-826 (c) C. Faloutsos, 2016 66

Carnegie Mellon

## EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

spy plot of top 20 nodes

So what?

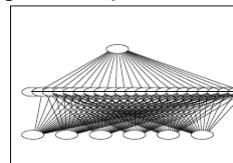
- Extract nodes with high *scores*
- high connectivity
- Good “communities”

15-826 (c) C. Faloutsos, 2016 67

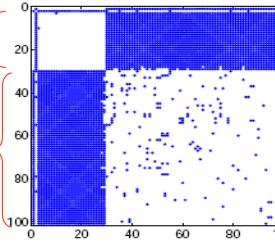
Carnegie Mellon

## Bipartite Communities!

patents from same inventor(s)  
‘cut-and-paste’ bibliography!



magnified bipartite community



Useful for fraud detection!

15-826 (c) C. Faloutsos, 2016 68

Carnegie Mellon

## Bipartite Communities!

IP – port scanners

victims

Useful for fraud detection!

15-826 (c) C. Faloutsos, 2016 69

Carnegie Mellon

## Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
  - Static graphs
    - degree, diameter, eigen,
    - Triangles
  - Weighted graphs
    - Time evolving graphs
- Problem#2: Scalability
- Conclusions

15-826 (c) C. Faloutsos, 2016 70

Carnegie Mellon

## Observations on weighted graphs?

- A: yes - even more ‘laws’ !

M. McGlohon, L. Akoglu, and C. Faloutsos  
*Weighted Graphs and Disconnected Components: Patterns and a Generator*,  
*SIG-KDD 2008*

15-826 (c) C. Faloutsos, 2016 71

Carnegie Mellon

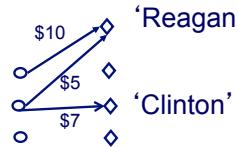
## Observation W.1: Fortification

*Q: How do the weights of nodes relate to degree?*

15-826 (c) C. Faloutsos, 2016 72

## Observation W.1: Fortification

More donors,  
more \$ ?



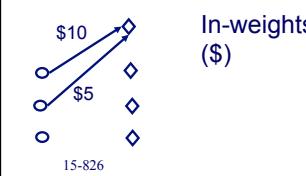
(c) C. Faloutsos, 2016

73

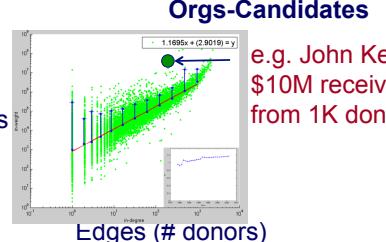
## Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw' :  $1.01 < iw < 1.26$

More donors,  
even more \$



In-weights (\$)



(c) C. Faloutsos, 2016

74

## Outline



- Introduction – Motivation
- Problem#1: Patterns in graphs
  - Static graphs
  - Weighted graphs
  - Time evolving graphs
- Problem#2: Scalability
- Conclusions

15-826

(c) C. Faloutsos, 2016

75

## Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)
- and Jon Kleinberg (Cornell – sabb. @ CMU)



15-826

(c) C. Faloutsos, 2016

76

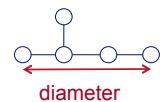
## T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:

- [diameter  $\sim O(N^{1/3})$ ]
- diameter  $\sim O(\log N)$
- diameter  $\sim O(\log \log N)$



- What is happening in real data?



15-826

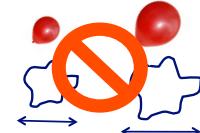
(c) C. Faloutsos, 2016

77

## T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:

- [diameter  $\sim O(N^{1/3})$ ]
- diameter  $\sim O(\log N)$
- diameter  $\sim O(\log \log N)$



- What is happening in real data?

- Diameter **shrinks** over time

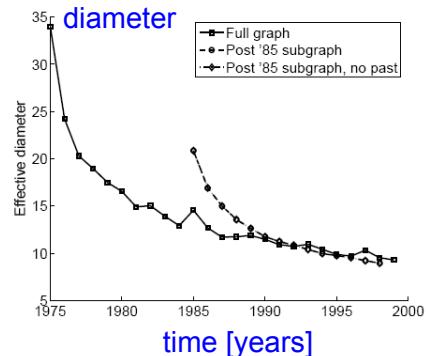
15-826

(c) C. Faloutsos, 2016

78

## T.1 Diameter – “Patents”

- Patent citation network
- 25 years of data
- @1999
  - 2.9 M nodes
  - 16.5 M edges



15-826

(c) C. Faloutsos, 2016

79

## T.2 Temporal Evolution of the Graphs

- $N(t)$  ... nodes at time  $t$
- $E(t)$  ... edges at time  $t$
- Suppose that  

$$N(t+1) = 2 * N(t)$$
- Q: what is your guess for  

$$E(t+1) = ? 2 * E(t)$$

15-826

(c) C. Faloutsos, 2016

80

## T.2 Temporal Evolution of the Graphs

- $N(t)$  ... nodes at time  $t$
- $E(t)$  ... edges at time  $t$
- Suppose that  

$$N(t+1) = 2 * N(t)$$
- Q: what is your guess for  

$$E(t+1) = ? \cdot E(t)$$
- A: over-doubled!  
– But obeying the ‘‘Densification Power Law’’

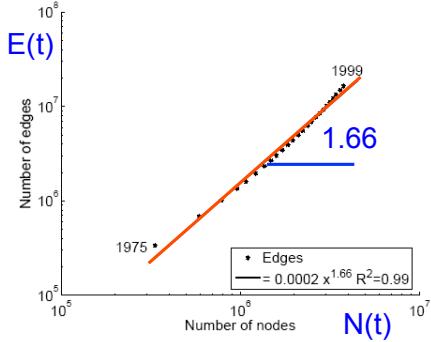
15-826

(c) C. Faloutsos, 2016

81

## T.2 Densification – Patent Citations

- Citations among patents granted
- @1999
  - 2.9 M nodes
  - 16.5 M edges
- Each year is a datapoint



15-826

(c) C. Faloutsos, 2016

82

## Outline



- Introduction – Motivation
- Problem#1: Patterns in graphs
  - Static graphs
  - Weighted graphs
  - Time evolving graphs
- Problem#2: Scalability
- Conclusions

15-826

(c) C. Faloutsos, 2016

83

## More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos  
*Weighted Graphs and Disconnected Components: Patterns and a Generator*.  
SIG-KDD 2008

15-826

(c) C. Faloutsos, 2016

84

Carnegie Mellon

## [ Gelling Point ]

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.

IMDB

15-826 (c) C. Faloutsos, 2016 85

Carnegie Mellon

## Observation T.3: NLCC behavior

*Q: How do NLCC's emerge and join with the GCC?*

(`NLCC' = non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

15-826 (c) C. Faloutsos, 2016 86

Carnegie Mellon

## Observation T.3: NLCC behavior

*Q: How do NLCC's emerge and join with the GCC?*

(`NLCC' = non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

15-826 (c) C. Faloutsos, 2016 87

Carnegie Mellon

## Observation T.3: NLCC behavior

*Q: How do NLCC's emerge and join with the GCC?*

(`NLCC' = non-largest conn. components)

**YES** – Do they continue to grow in size?

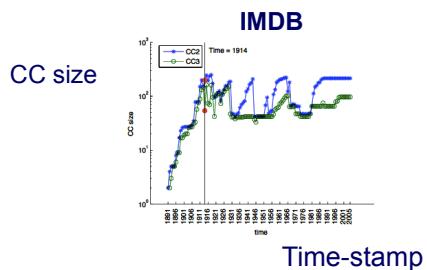
**YES** – or do they shrink?

**YES** – or stabilize?

15-826 (c) C. Faloutsos, 2016 88

### Observation T.3: NLCC behavior

- After the gelling point, the GCC takes off, but NLCC's remain ~constant (actually, **oscillate**).



15-826

(c) C. Faloutsos, 2016

89

### Timing for Blogs

- with Mary McGlohon (CMU->Google)
- Jure Leskovec (CMU->Stanford)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)

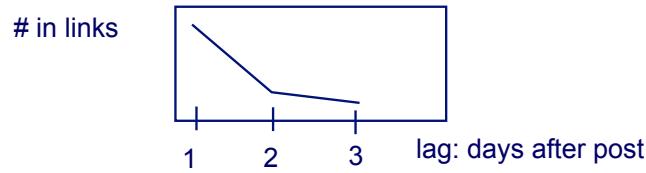
[SDM' 07]

15-826

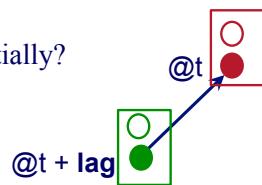
(c) C. Faloutsos, 2016

90

### T.4 : popularity over time



Post popularity drops-off – exponentially?

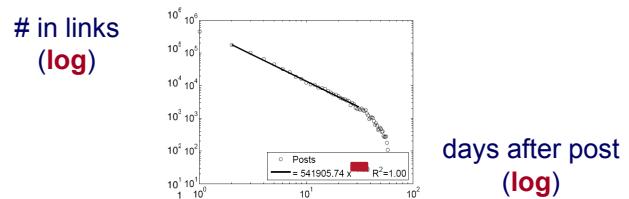


15-826

(c) C. Faloutsos, 2016

91

### T.4 : popularity over time

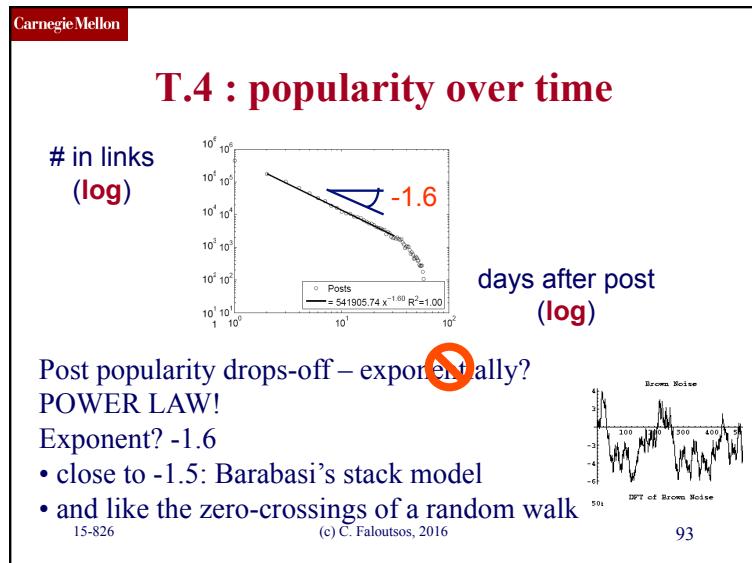
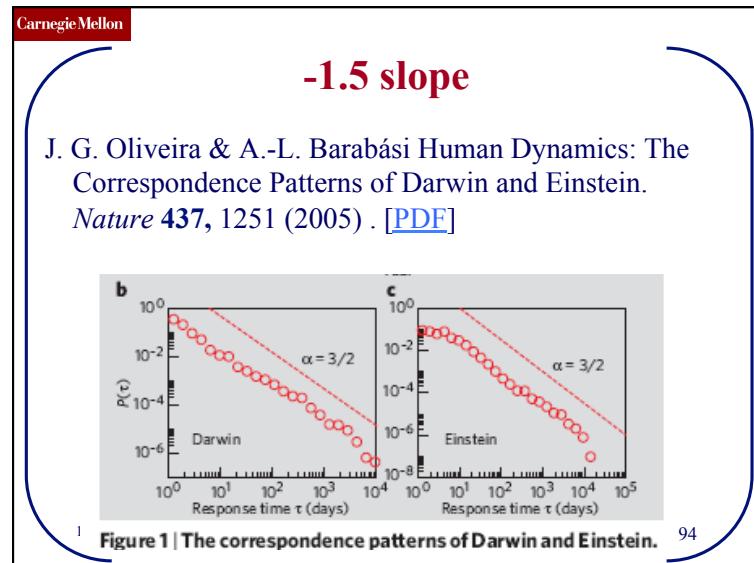
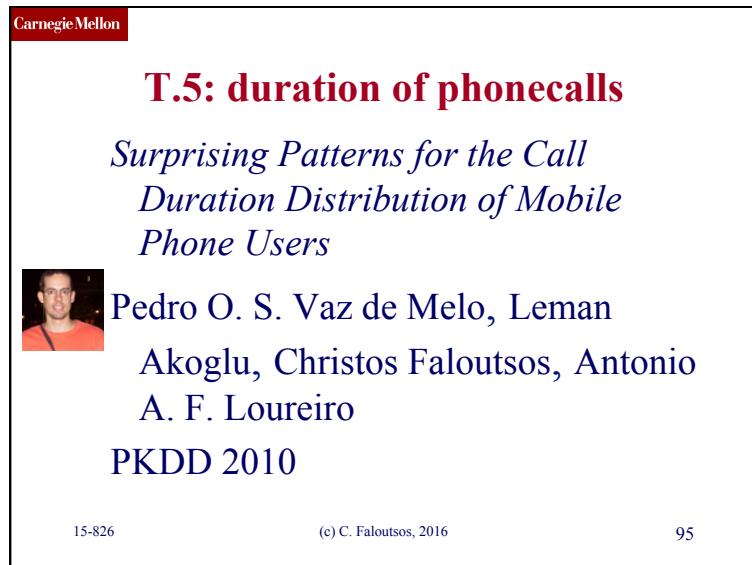
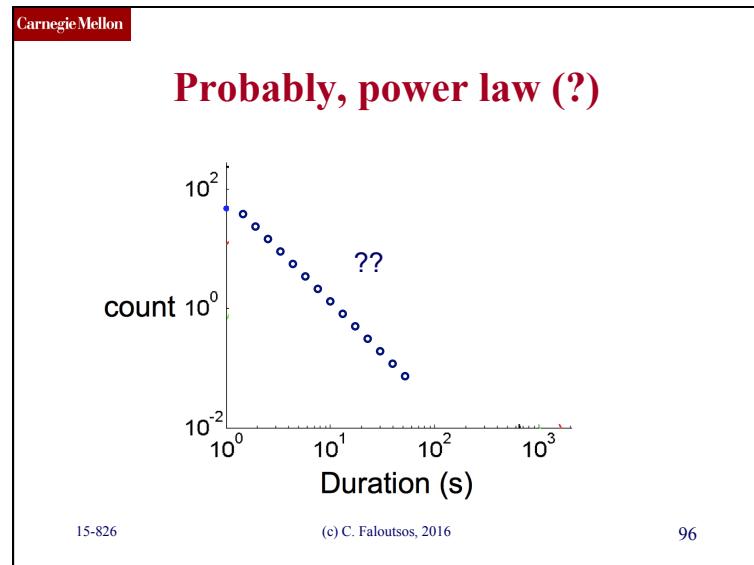


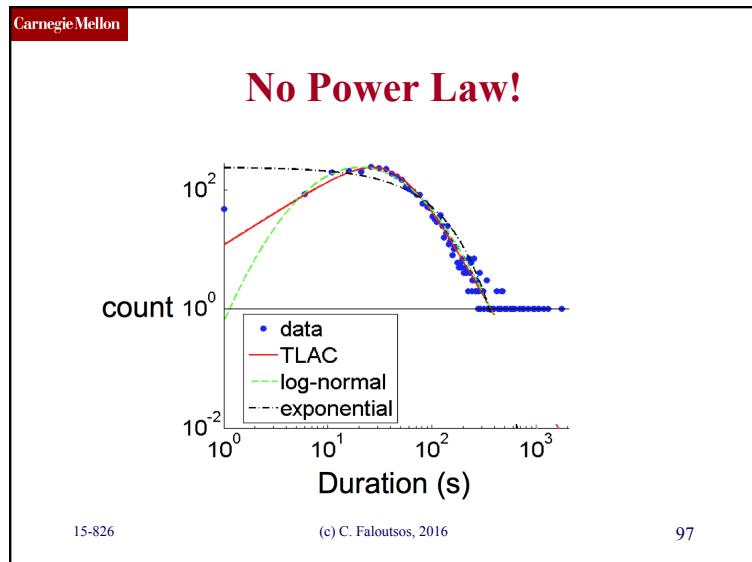
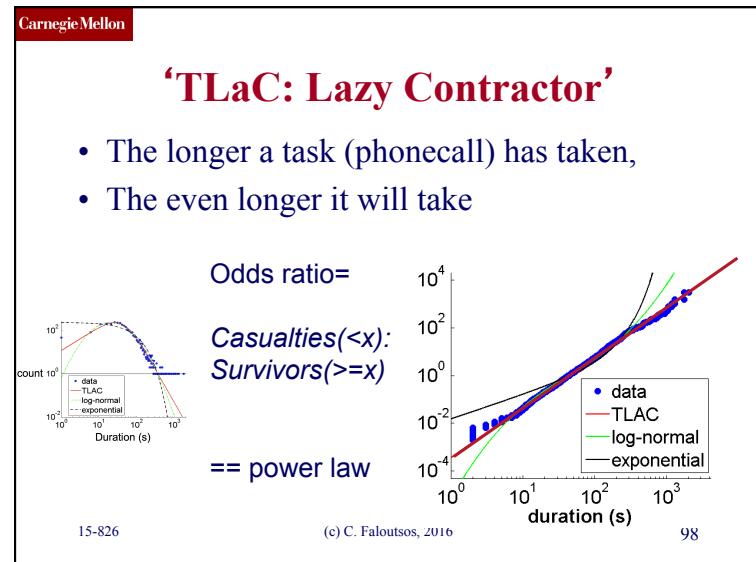
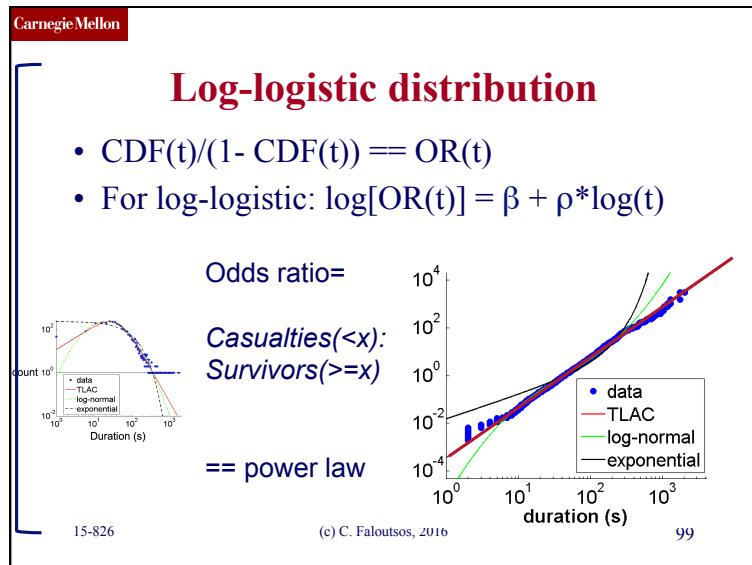
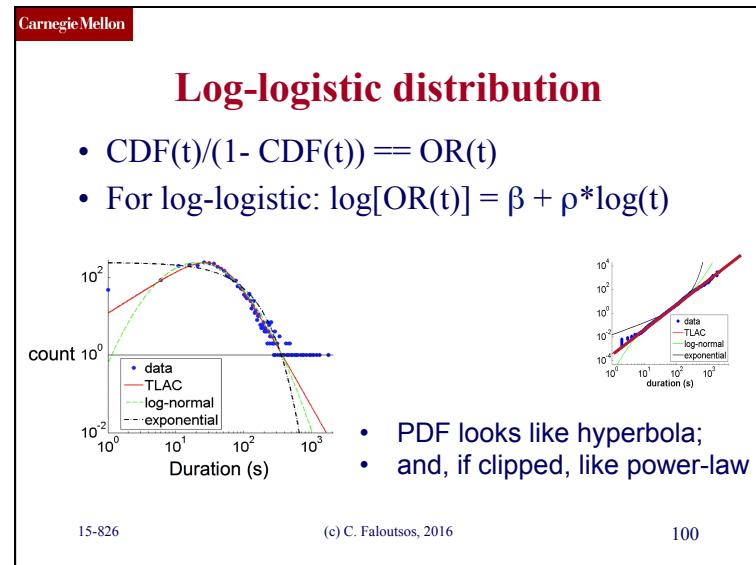
Post popularity drops-off – exponentially?  
POWER LAW!  
Exponent?

15-826

(c) C. Faloutsos, 2016

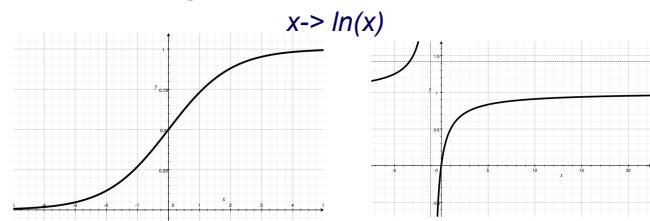
92





## Log-logistic distribution

- Logistic distribution: CDF  $\rightarrow$  sigmoid
- **LOG**-Logistic distribution:



$$CDF(x) = 1/(1+exp(-x))$$

15-826

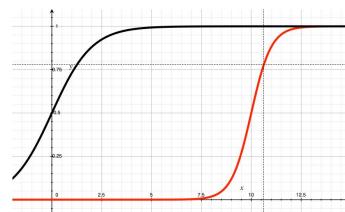
(c) C. Faloutsos, 2016

$$CDF(x) = 1/(1+1/x)$$

101

## Log-logistic distribution

- Logistic distribution: CDF  $\rightarrow$  sigmoid
- **LOG**-Logistic distribution:



$$CDF(x) = 1/(1+exp(-(x-m)/s))$$

15-826

(c) C. Faloutsos, 2016

102

## Data Description

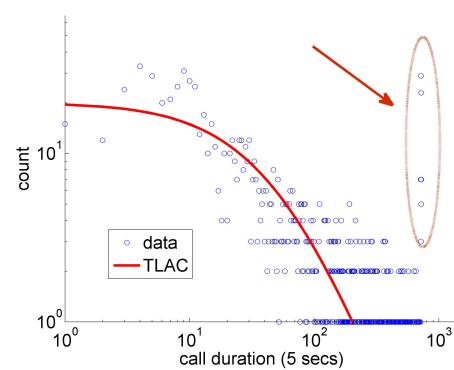
- Data from a private mobile operator of a large city
  - 4 months of data
  - 3.1 million users
  - more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC distribution ('talkative':  $>30$  calls)

15-826

(c) C. Faloutsos, 2016

103

## Outliers:



15-826

(c) C. Faloutsos, 2016

104

**Outline**

- Introduction – Motivation
- Problem#1: Patterns in graphs
- ➡ • Problem#2: Scalability -PEGASUS
- Conclusions

15-826 (c) C. Faloutsos, 2016 105

**Scalability**

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, *"Web Search for a Planet: The Google Cluster Architecture"* IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD' 07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce – hadoop (open-source clone) <http://hadoop.apache.org/>

15-826 (c) C. Faloutsos, 2016 106

**Outline – Algorithms & results**

|               | Centralized    | Hadoop/<br>PEGASUS |
|---------------|----------------|--------------------|
| Degree Distr. | old            | old                |
| Pagerank      | old            | old                |
| Diameter/ANF  | old            | <b>HERE</b>        |
| Conn. Comp    | old            | <b>HERE</b>        |
| Triangles     | <b>done</b>    | <b>HERE</b>        |
| Visualization | <b>started</b> |                    |

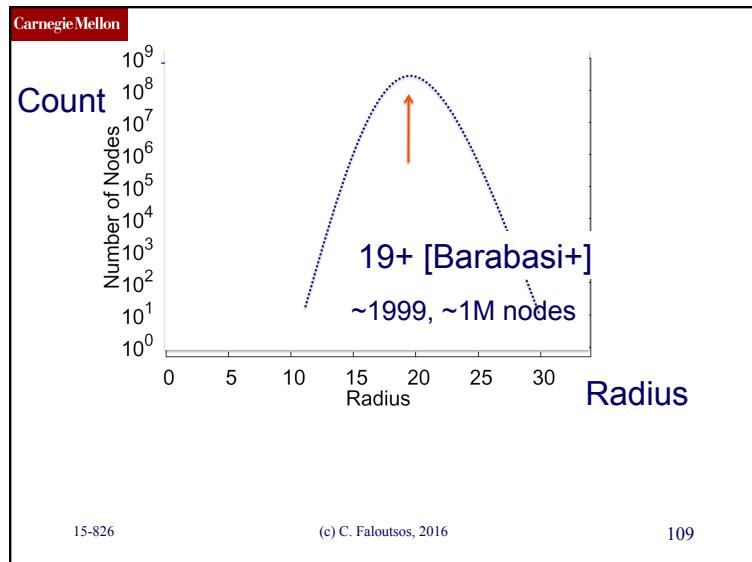
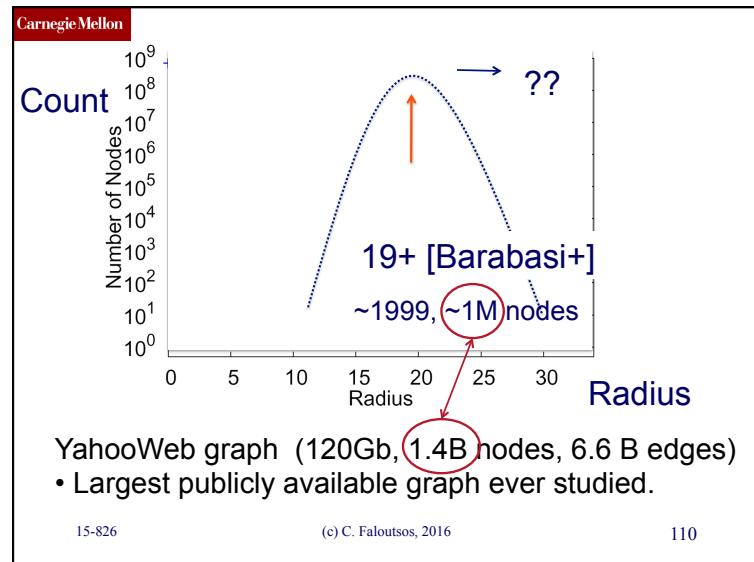
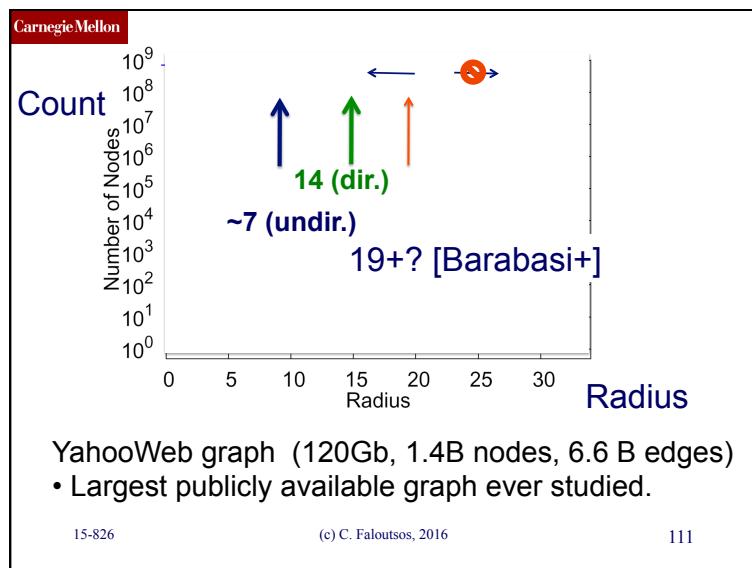
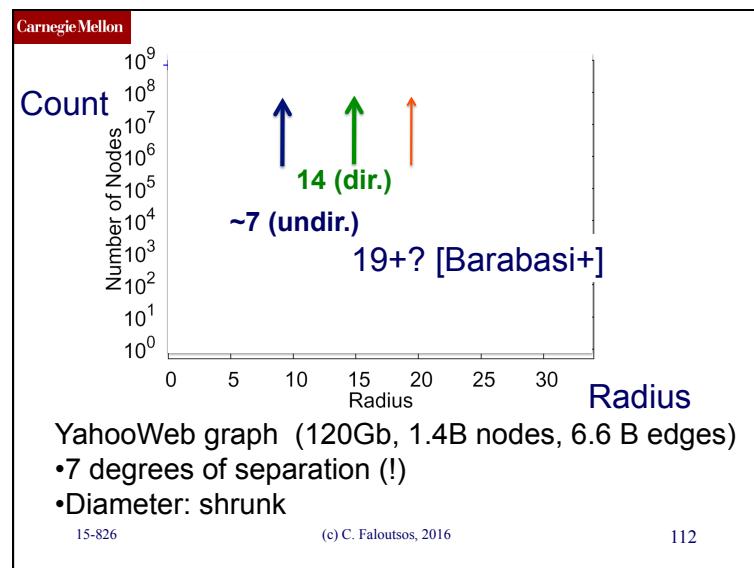
15-826 (c) C. Faloutsos, 2016 107

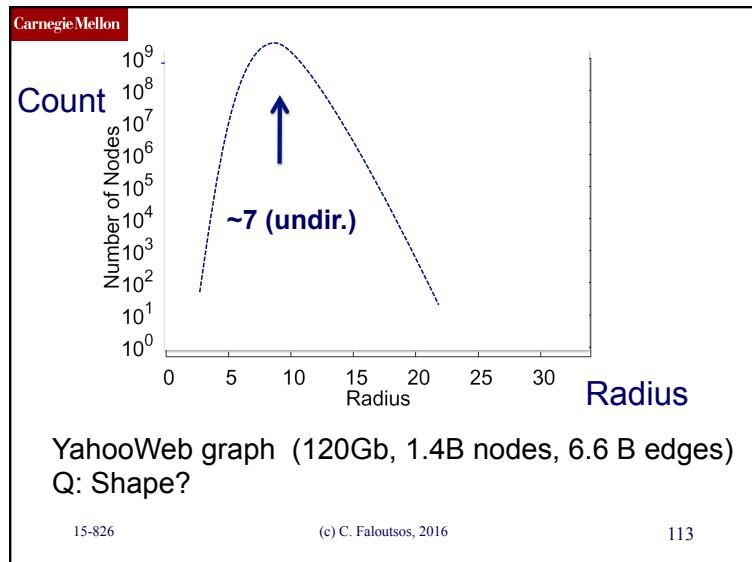
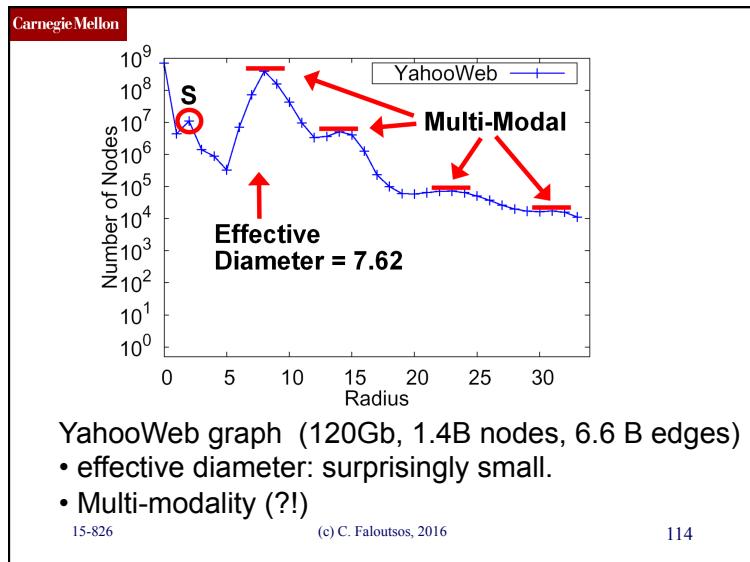
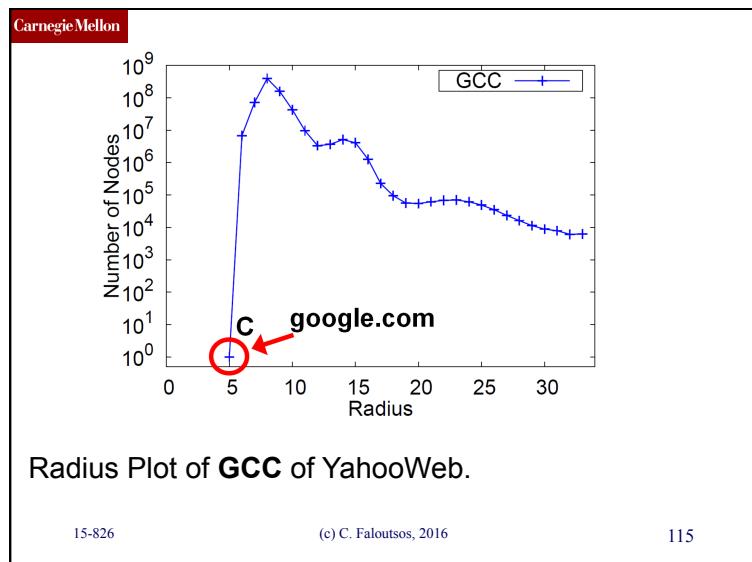
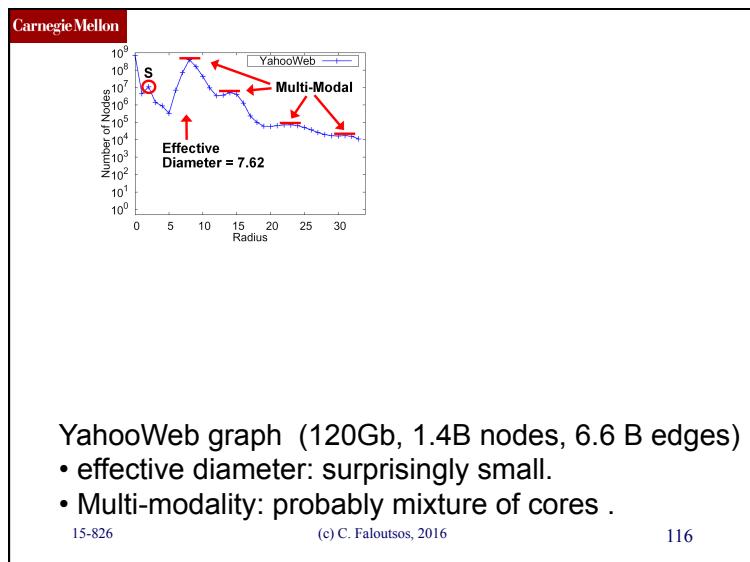
**HADI for diameter estimation**

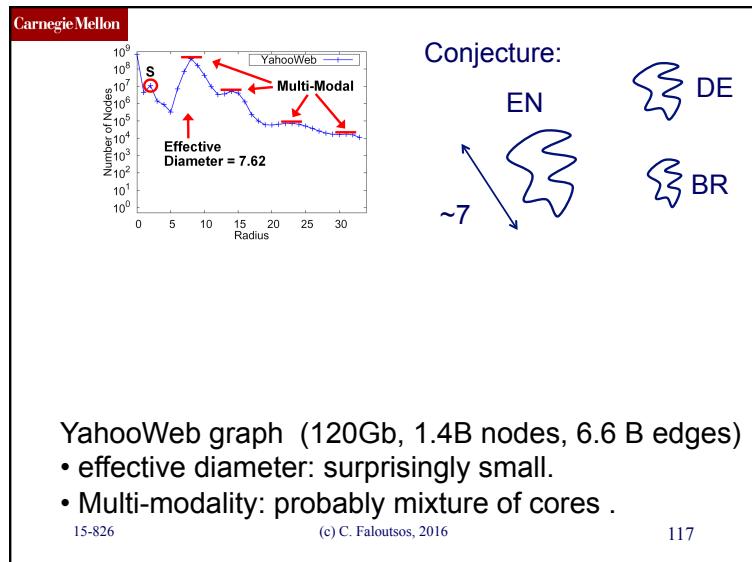
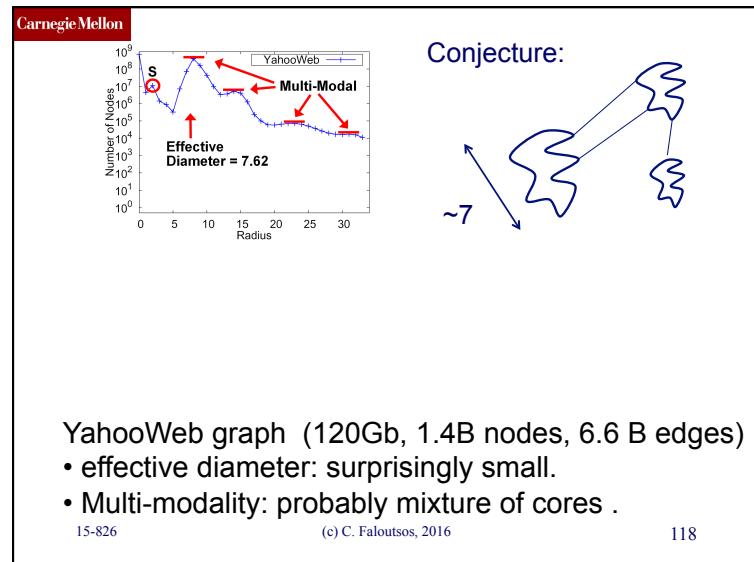
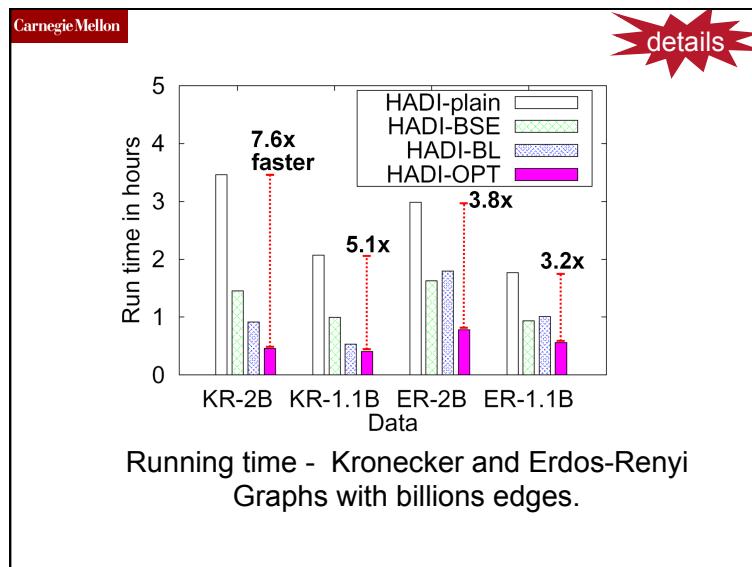


- *Radius Plots for Mining Tera-byte Scale Graphs* **U Kang**, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs  $O(N^{**2})$  space and up to  $O(N^{**3})$  time – **prohibitive** ( $N \sim 1B$ )
- Our HADI: linear on  $E$  ( $\sim 10B$ )
  - Near-linear scalability wrt # machines
  - Several optimizations -> 5x faster

15-826 (c) C. Faloutsos, 2016 108







**Carnegie Mellon**

### Outline – Algorithms & results

|               | Centralized    | Hadoop/<br>PEGASUS |
|---------------|----------------|--------------------|
| Degree Distr. | old            | old                |
| Pagerank      | old            | old                |
| Diameter/ANF  | old            | <b>HERE</b>        |
| Conn. Comp    | old            | <b>HERE</b>        |
| Triangles     |                | <b>HERE</b>        |
| Visualization | <b>started</b> |                    |

15-826 (c) C. Faloutsos, 2016 120

## Generalized Iterated Matrix Vector Multiplication (GIMV)

[PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations.](#)

U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.  
([ICDM](#)) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).

15-826

(c) C. Faloutsos, 2016

121

## Generalized Iterated Matrix Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ... )

details

Matrix – vector  
Multiplication  
(iterated)

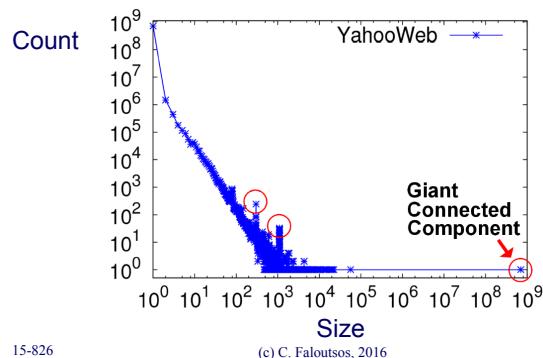
15-826

(c) C. Faloutsos, 2016

122

## Example: GIM-V At Work

- Connected Components – 4 observations:



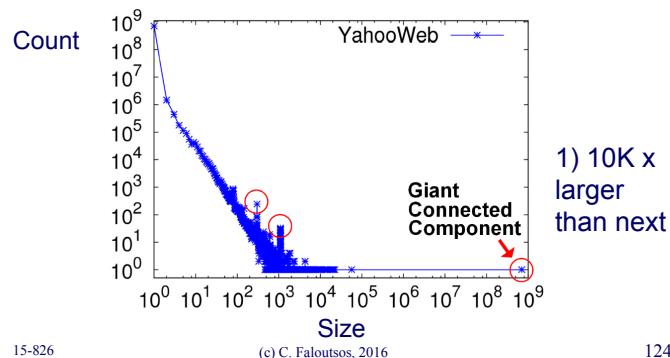
15-826

(c) C. Faloutsos, 2016

123

## Example: GIM-V At Work

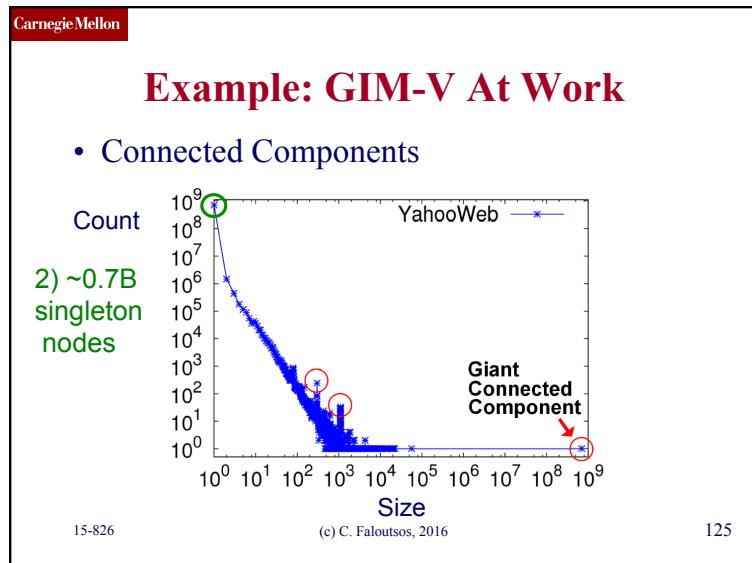
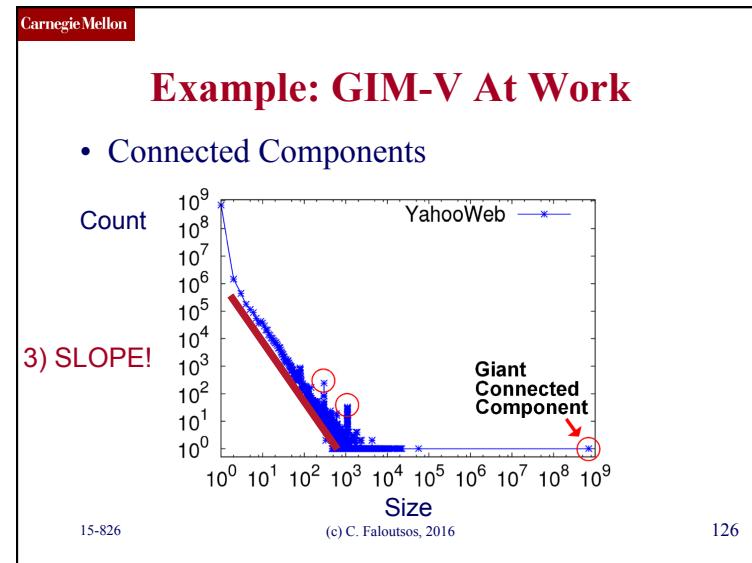
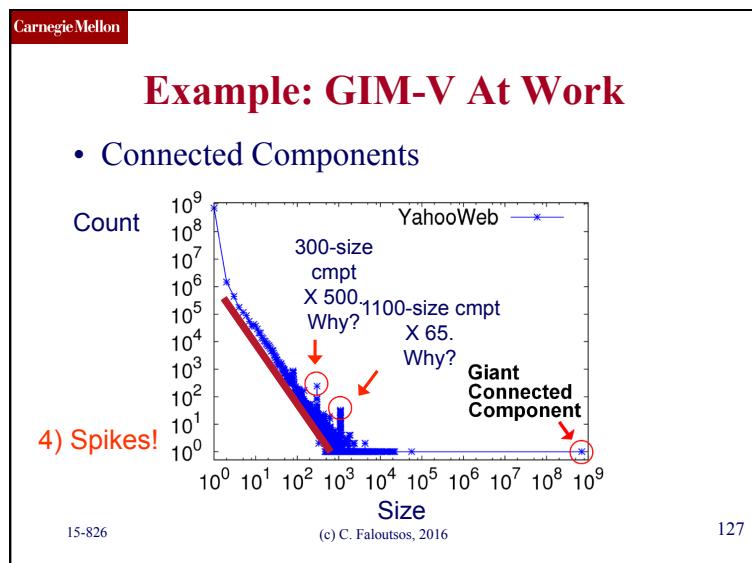
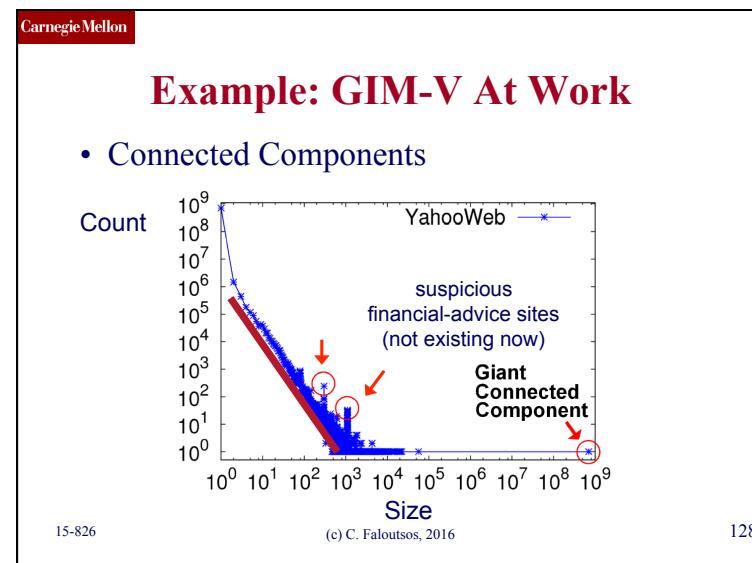
- Connected Components



15-826

(c) C. Faloutsos, 2016

124



**GIM-V At Work**

- Connected Components over Time
- **LinkedIn: 7.5M nodes and 58M edges**

15-826 (c) C. Faloutsos, 2016 129

**Outline**

- Introduction – Motivation
- Problem#1: Patterns in graphs
- DELETE
- Problem#2: Scalability
- Conclusions

15-826 (c) C. Faloutsos, 2016 130

**OVERALL CONCLUSIONS – low level:**

- Several new **patterns** (fortification, shrinking diameter, triangle-laws, conn. components, etc)
- Log-logistic distribution: ubiquitous
- **New tools:**
  - anomaly detection (OddBall), belief propagation, immunization
- **Scalability:** PEGASUS / hadoop

15-826 (c) C. Faloutsos, 2016 131

**OVERALL CONCLUSIONS – high level**

- **BIG DATA:** Large datasets reveal patterns/ outliers that are invisible otherwise

15-826 (c) C. Faloutsos, 2016 132

Carnegie Mellon

## References

- Leman Akoglu, Christos Faloutsos: *RTG: A Recursive Realistic Graph Generator Using Random Typing*. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: *Graph mining: Laws, generators, and algorithms*. ACM Comput. Surv. 38(1): (2006)

15-826

(c) C. Faloutsos, 2016

133

Carnegie Mellon

## References

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: *Epidemic thresholds in real networks*. ACM Trans. Inf. Syst. Secur. 10(4): (2008)

15-826

(c) C. Faloutsos, 2016

134

Carnegie Mellon

## References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos *Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations*, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: *Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication*. PKDD 2005: 133-145

15-826

(c) C. Faloutsos, 2016

135

Carnegie Mellon

## References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. *Less is More: Compact Matrix Decomposition for Large Sparse Graphs*, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, *GraphScope: Parameter-free Mining of Large Time-evolving Graphs* ACM SIGKDD Conference, San Jose, CA, August 2007

15-826

(c) C. Faloutsos, 2016

136

## References

- Jimeng Sun, Dacheng Tao, Christos Faloutsos: *Beyond streams and graphs: dynamic tensor analysis*. KDD 2006: 374-383

15-826

(c) C. Faloutsos, 2016

137

## References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, *Fast Random Walk with Restart and Its Applications*, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, *Center-Piece Subgraphs: Problem Definition and Fast Solutions*, KDD 2006, Philadelphia, PA

15-826

(c) C. Faloutsos, 2016

138

## References

- Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

15-826

(c) C. Faloutsos, 2016

139

## (Project info)

[www.cs.cmu.edu/~pegasus](http://www.cs.cmu.edu/~pegasus)



Chau,  
Polo



Koutra,  
Danae



Prakash,  
Aditya



Akoglu,  
Leman



Kang, U



McGlohon,  
Mary



Tong,  
Hanghang



15-826

(c) C. Faloutsos, 2016

140