Faloutsos

15-826: Multimedia Databases and
Data Mining

Lecture #28: Graph mining - patterns

Christos Faloutsos

Must-read Material

* Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On
Power-Law Relationships of the Internet Topology, SIGCOMM
1999.

* R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World
Wide Web Nature, 401, 130-131 (1999).

* Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of
complex networks, Reviews of Modern Physics, 74, 47 (2002).

» Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over

Time: Densification Laws, Shrinking Diameters and Possible
Explanations, KDD 2005, Chicago, IL, USA
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Must-read Material

* [Graph minining textbook] Deepayan
Chakrabarti and Christos Faloutsos
Graph Mining: Laws, Tools and Case
Studies, Morgan Claypool, 2012
— Part I (patterns)
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Must-read Material (cont’ d)

* D. Chakrabarti and C. Faloutsos, Graph Mining: Laws,

38(1), 2006
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Generators and Algorithms, in ACM Computing Surveys,
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Main outline

* Introduction

* Indexing

* Mining
— Graphs — patterns
— Graphs — generators and tools
— Association rules
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Graphs - why should we care?

Linked (f}J.

Food Web
[Martinez " 91]

Friendship Network

Internet Map
[Moody " 01] [lumeta.com]
15-826 (c) C. Faloutsos, 2016 7
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Outline

=) . [ntroduction — Motivation

* Problem#1: Patterns in graphs
Problem#2: Scalability
» Conclusions

15-826 (c) C. Faloutsos, 2016 6

Graphs - why should we care?

* IR: bi-partite graphs (doc-terms) b

1

* web: hyper-text graph

... and more:

15-826 (c) C. Faloutsos, 2016 8
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Graphs - why should we care?
o ‘viral’ marketing
+ web-log ( ‘blog’ ) news propagation

« computer network security: email/IP traffic
and anomaly detection

15-826 (c) C. Faloutsos, 2016

Problem #1 - network and graph

mining

What does the Internet look like?
* What does FaceBook look like?

e Whatis ‘normal’/ ‘abnormal’ ?

» which patterns/laws hold?

15-826 (c) C. Faloutsos, 2016
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Outline

* Introduction — Motivation
=) . Problem#1: Patterns in graphs
— Static graphs
— Weighted graphs
— Time evolving graphs

* Problem#2: Scalability

* Conclusions

15-826 (c) C. Faloutsos, 2016 10

Problem #1 - network and graph

mining

What does the Internet look like?
‘What does FaceBook look like?

e Whatis ‘normal’/ ‘abnormal’ ?

» which patterns/laws hold?

— To spot anomalies (rarities), we have to
discover patterns

15-826 (c) C. Faloutsos, 2016 12
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Problem #1 - network and graph
mining

What does the Internet look like?
e What does FaceBook look like?

e Whatis ‘normal’/ ‘abnormal’ ?

» which patterns/laws hold?

— To spot anomalies (rarities), we have to
discover patterns

[ .
— Large datasets reveal patterns/anomalies
that may be invisible otherwise...
15-826 (c) C. Faloutsos, 2016 13

Graph mining

* Are real graphs random?

15-826 (c) C. Faloutsos, 2016 15
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Are real graphs random?

* random (Erdos-Renyi)
graph — 100 nodes, avg
degree =2

 before layout

« after layout

* No obvious patterns

(generated with: pajek

http://vlado.fmf.uni-lj.si/pub/networks/pajek/ )

15-826 (c) C. Faloutsos, 2016 14
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Laws and patterns

* Are real graphs random?

*« A: NO!
— Diameter ( ‘6 degrees’, ‘Kevin Bacon’)
— in- and out- degree distributions
— other (surprising) patterns

* So, let’ s look at the data

15-826 (c) C. Faloutsos, 2016 16
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Solution# S.1 Solution# S.1

» Power law in the degree distribution

* Power law in the degree distribution
[SIGCOMMI99] [SIGCOMMI99]
internet domains internet domains
.« _att.com .« _att.com
log(degree) /'. TR T e log(degree) msyragmeneepe sy -
ibm.com ibm.com 0.82
o Jog(rank) o Jog(rank)

(c) C. Faloutsos, 2016
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Solution# S.1

Solution# S.1
_ FOF)
* Q: So what? * Q: So what? friends of ff\e"‘dSK
« Al: # of two-step-away pairs:
internet domains internet domains
~ att.com .« att.com
log(degree) ”E}T‘ R T o

0410-INTERGE0410.Internet outdegrees 2" ~—
xp(5.63065; ) —
6o

) *x**({ -0.826118
1bm.con‘} _____ .82

log(degree) ”?

1o

ibm.com
ol — — -_Q.§2

1

log(rank)

1

01
10 100 1000 1001

log(rank)

01
100 1000 1008
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Solution# S.1

* Q:So what"
* Al: # of two- step away pairs: 10072 * N= 10 Trillion

internet domains

.« _att.com
log(degree) ”Ej/*'. R o
ibm.com NN
_______ -0.82
~
N\
- log(rank)
—
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Solution# S.1

) F.O-F)
* Q:Sowhat? . s of friends {

« Al: # of two-step-away pairs: 100”4

internet domains

Carnegie Mellon

Gaussian trap —

Solution# S.1
FOF)
- Q:Sowhat? 4 of friends {
o Al: #of two- step away pairs: O(d_max "2) ~ 10M"2
internet domains @
_«_att.com ~0.8PB ->
log(degree) ”? R T o a data center(!)
ibm.com

DCO@CMU ,,

15-826 (c) C. Faloutsos, 2016

.« _att.com
log(degree) ™y nemeoaara ey —
1bm.c0n‘} _____ 0.82
9.
N\
o log(rank)
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Gaussian trap —
Solution# S.1

* Q: So what?
o Al:# oftwo—step aw

15-826 (c) C. Faloutsos, 2016

. (\‘5
inte- 6
\““\

7) ~ 10MA2

~0. 8PB ->

a data center(!)

24
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/ Observation — big-data: \

* O(N?) algorithms are ~intractable - N=1B

» N? seconds = 31B years (>2x age of
universe) 1B .

15-826 (c) C. Faloutsos, 2016 25
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/ Observation — big-data: \

* O(N?) algorithms are ~intractable - N=1B

31M
* N? seconds = }/Yg years

* 1,000 machines

1B

CarnegieMellon

/ Observation — big-data: \

¢ O(N?) algorithms are ~intractable - N=1B

/

\_

15-826 (c) C. Faloutsos, 2016 26

31K
* N? seconds = }fl’g years

* 1M machines

Carnegie Mellon

K Google 9!/

15-826 (c) C. Faloutsos, 2016 27

/ Observation — big-data: \

* O(N?) algorithms are ~intractable - N=1B

3
» N? seconds = }(ﬁ years ,

* 10B machines ~ $10Trillion

U

1B !

\_

15-826 (c) C. Faloutsos, 2016 28
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/ Observation — big-data: \

* O(N?) algorithms are ~intractable - N=1B

And parallelism might not help

15-826 (c) C. Faloutsos, 2016 29

Solution# S.2: Eigen Exponent £

Eigenvalue
100

'P3.0regon’  +
exp(4.3031) *x*(-0.47734)

Exponent = slope

E=-048

May 2001

Rank of decreasing eigenvalue A

exponent
15-826 (c) C. Faloutsos, 2016 31

e S |

1 10 100 "l \ |
| o

« [Mihail, Papadimitriou " 02]: slope is % of rank

CarnegieMellon

Solution# S.2: Eigen Exponent E

Eigenvalue
100

‘P3.0ragon’  +
exp(4.3031) *x*(-0.47734)

Exponent = slope

E=-048

May 2001

Ax=AX "

1 10 100

Rank of decreasing eigenvalue

* A2: power law in the eigenvalues of the adjacency

matrix
15-826 (c) C. Faloutsos, 2016 30

But:

How about graphs from other domains?

15-826 (c) C. Faloutsos, 2016 32
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More power laws: epinions.com

» web hit counts [w/ A. Montgomery] * who-trusts-whom
count [Richardson +

° Qlpaaran Domingos, KDD

~ Web Site Traffic o E 2001]

Count F !
(log scale) |-, . o “
. , o ’ - - trusts-2000-people user
84 users ) " 10 100 1000 10000
sites Ourdesree

e edaen (iegree (log scale) (out) degree

15-826 (c) C. Faloutsos, 2016 33 15-826 (c) C. Faloutsos, 2016 34
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And numerous more Outline
* # of sexual contacts * Introduction — Motivation
« Income [Pareto] — 80-20 distribution’ * Problem#1: Patterns in graphs
* Duration of downloads [Bestavros+] — Static graphs
* Duration of UNIX jobs ( ‘mice and " degree, diameter, eigen,
# * Triangles

elephants’
P ) — Weighted graphs

* Size of files of a user - T el s

‘Black swans’

15-826 (c) C. Faloutsos, 2016 35 15-826 (c) C. Faloutsos, 2016 36
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Solution# S.3: Triangle ‘Laws’

<

» Real social networks have a lot of triangles

15-826

(c) C. Faloutsos, 2016 37
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Triangle Law: #S.3
[Tsourakakis ICDM 2008]

HEP-TH %

Epinionf’ X-axis: # of participating
triangles
Y: count (~ pdf)
15-826 1©

10° tsos, 2016 39
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Solution# S.3: Triangle ‘Laws’

<

+ Real social networks have a lot of triangles
— Friends of friends are friends
* Any patterns?

15-826

(c) C. Faloutsos, 2016 38
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Triangle Law: #S.3
[Tsourakakis ICDM 2008]

Epinioni X-axis: # of participating
triangles
Y: count (~ pdf)
15-826 1©

10 (505, 2016 40
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Triangle Law: #S.4
[Tsourakakis ICDM 2008]

DTPL . DTPL

Reuters s~
£

§
= 10

X-axis: degree
Y-axis: mean # triangles
n friends -> ~n' ¢ triangles

Epinions?

T T

15-826 Degree «~, ~ - ~loutsos, 2016 41
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Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?
A: Yes!
#triangles = 1/6 Sum (A )
(and, because of skewness (S2) ,
we only need the top few eigenvalues!

15-826 (c) C. Faloutsos, 2016 43
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Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?

15-826 (c) C. Faloutsos, 2016 42
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Triangle Law: Computations
[Tsourakakis ICDM 2008]

Wikipedia graph 2006-Nov-o4
~ 3,IM nodes = 37M edges

100
/(mzlx, 97.4%)

9 |
~ L S
e (1277x, 94.7%)
~ ap T i
> 9%6- e / R
T /
- *.
g o4
S .
< (1329%, 92.800) 3y

92

@ 1050 1100 1150 1200 1250 1300 1350
Speedup

1000x+ speed-up, >90% accuracy

15-826 (c) C. Faloutsos, 2016 44
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Triangle counting for large graphs?

108

Number of Triangle

7 ‘l !‘
Degree

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
()

15-826 (c) C. Faloutsos, 2016 45
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Triangle counting for large graphs?

108
107
[=2]
&
= 10°
k]
310°
5
Z 10t
Hillar: .
103 ‘cum_oyn Twitter  + 1
10* 10° 108 107 " ‘

Degree

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

15-826 (c) C. Faloutsos, 2016 47

CarnegieMellon

Triangle counting for large graphs?

Number of Triangle

|

Degree

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

15-826 (c) C. Faloutsos, 2016 46
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Triangle counting for large graphs?

108

Number of Triangle

R |

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

15-826 (c) C. Faloutsos, 2016 48
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15-826

8

10
i
M Charlty-@" X
%107 AduTn Water 3?;30'(
ama
5106 Advertiser ®,(
E I‘\JII?:I(]:gin
@ 10° | Sarah
€ Palin
b
2 10*
Rt A
10* 10° 108 10

Degree

(c) C. Faloutsos, 2016

7

Triangle counting for large graphs?

=

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

49
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Yes!

15-826
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Yes!

15-826

Any other ‘laws’

(c) C. Faloutsos, 2016

* Small diameter (~ constant!) —
— six degrees of separation / ‘Kevin Bacon’
— small worlds [Watts and Strogatz]

(’

51

Any other ‘laws’ ?

(c) C. Faloutsos, 2016 50
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15-826

Any other ‘laws’ ?

+ Bow-tie, for the web [Kumar+ ‘99]
« IN, SCC, OUT, ‘tendrils’
* disconnected components

(c) C. Faloutsos, 2016 52
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Any other ‘laws’ ? Any other ‘laws’ ?

* power-laws in communities (bi-partite cores) « “Jellyfish” for Internet [Tauro+ " 01]

[Kumar+, "99] e core: ~clique
Log(count) * ~5 concentric layers

* * many 1-degree nodes
\NQ 2:3 core
(m:n core)
Log(m)
15-826 (c) C. Faloutsos, 2016 53 15-826 (c) C. Faloutsos, 2016

EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin
Sridharan, Sridhar Machiraju and Christos
Faloutsos: EigenSpokes: Surprising
Patterns and Scalable Community Chipping A=UxyT
in Large Graphs, PAKDD 2010,
Hyderabad, India, 21-24 June 2010.

EigenSpokes

¢ Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

OoCcC— ]

yseful 1o r

15-826 (c) C. Faloutsos, 2016 55 15-826 (c) C. Faloutsos, 2016
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EigenSpokes

¢ Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

NE

A=UxUT
I
N
Uy Uy
15-826 (c) C. Faloutsos, 2016 57
=it
EigenSpokes

¢ Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UxU"
N
o
OC 1 °
N
Uy U
15-826 (c) C. Faloutsos, 2016

o
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o
o
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EigenSpokes

¢ Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UxU"T

NE

oC—— |.°

N
Uy U
15-826 (c) C. Faloutsos, 2016 58
e
EigenSpokes

¢ Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UXUT

iy U

15-826 (c) C. Faloutsos, 2016
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EigenSpokes
Dt
« EE plot: 2" Principal
component
e Scatter plot of u2 .
scores of ul vs u2 * e
* One would expect %
— Many points @
origin
— A few scattered
ul
~randomly
1st Principal
component
15-826 (c) C. Faloutsos, 2016 61
EigenSpokes - pervasiveness
¢ Present in mobile social graph
= across time and space
> r B ) - > L

e Patent citation graph ~ “ v * i e

i i
5 - i 2 S L
2 ., '_ o2
° 42 62 8
v, \ Vi
3 02|
> - > - 5
ST T
0 a2 ')
Vi Vi Ve
15-826 (c) C. Faloutsos, 2016 63
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EigenSpokes

* EE plot:

* Scatter plot of u2
scores of ul vs u2

90°

ofc ©ococo

o ogo of

* One would expect

— Many points @
origin
- A ered
ul
~T

15-826 (c) C. Faloutsos, 2016 62
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EigenSpokes - explanation

Near-cliques, or near- -
bipartite-cores, loosely
connected

N

15-826 (c) C. Faloutsos, 2016 64
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EigenSpokes - explanation

Near-cliques, or near- =P
bipartite-cores, loosely
connected

15-826 (c) C. Faloutsos, 2016

65

CarnegieMellon

EigenSpokes - explanation

=D

Near-cliques, or near-
bipartite-cores, loosely
connected

So what?

» Extract nodes with high
scores

* high connectivity

* Good “communities”

15-826

7
(c) C. Faloutsos, 2016

CarnegieMellon
EigenSpokes - explanation
Near-cliques, or near- "“:—D
bipartite-cores, loosely
connected
N
15-826 (c) C. Faloutsos, 2016 66
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Bipartite Communities!

1]
patents from { "
same inventor(s)

‘cut-and-paste’

bibliography!
magnified bipartite community
jon
 fra ud detect
yseful ©©
15-826 (c) C. Faloutsos, 2016 68
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Bipartite Communities!

IP — port scanners { " | |

victims
- on“

for frau
Usefu\
15-826 (c) C. Faloutsos, 2016 69
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Observations on weighted
graphs?

* A:yes-evenmore ‘laws !

|

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected

Components: Patterns and a Generator.
SIG-KDD 2008

15-826 (c) C. Faloutsos, 2016 71
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Outline

* Introduction — Motivation
* Problem#1: Patterns in graphs
— Static graphs
* degree, diameter, eigen,
* Triangles
— Weighted graphs
- — Time evolving graphs
* Problem#2: Scalability
+ Conclusions

15-826 (c) C. Faloutsos, 2016 70
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Observation W.1: Fortification

Q: How do the weights

of nodes relate to degree?

15-826 (c) C. Faloutsos, 2016 72
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Observation W.1: Fortification

More donors,
more $ ?

$10 Reagan

5 (o]
5 Clinton
o o

15-826 (c) C. Faloutsos, 2016 73
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Observation W.1: fortification:

Snapshot Power Law
* Weight: super-linear on in-degree
* exponent ‘iw’: 1.01 <iw < 1.26

More donors, . Orgs-Candidates

‘: === o John Keny,
even more $ . oo $10M received,
$10 In-weights i ’ " from 1K donors
o (%) ) !
$5 o m:v‘ o 0 w = “;‘- — :n‘
o o Edges (# donors)
15-826 (c) C. Faloutsos, 2016 74

Outline

Introduction — Motivation
Problem#1: Patterns in graphs
— Static graphs

— Weighted graphs
m)  — Time evolving graphs
Problem#2: Scalability

* Conclusions

15-826 (c) C. Faloutsos, 2016 75

Problem: Time evolution

* with Jure Leskovec (CMU ->
Stanford)

» and Jon Kleinberg (Cornell —
sabb. @ CMU)

15-826 (c) C. Faloutsos, 2016 76
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T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

— [diameter ~ O( N'3)] [ ] ,
— diameter ~ O(log N) S:.\Ij gj
— diameter ~ O(log log N) —

* What is happening in real data?

oy

—>
diameter

15-826 (c) C. Faloutsos, 2016 77
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T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

— [diameter ~ 13)] [ )
— diameter ~
— diameter ~ O og N) —
* What is happening in real data?
* Diameter shrinks over time
15-826 (c) C. Faloutsos, 2016 78
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T.1 Diameter — “Patents”

oL x5 diameter
* Patent citation oo bgraph
network 301 =-Post "85 subgraph, no past
S 251
* 25 years of data £
S 20
* @1999 g
@ § 15}
— 2.9 M nodes
—16.5 M edges o
1%75 1 9‘80 1 9‘85 1 9‘90 1 9l95 20’00
time [years]
15-826 (c) C. Faloutsos, 2016 79

T.2 Temporal Evolution of the

Graphs

N(t) ... nodes at time t
E(t) ... edges at time t
Suppose that
N(t+1) = 2 * N(t)
Q: what is your guess for
E(t+1) =2 2 * E(t)

15-826 (c) C. Faloutsos, 2016 80
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T.2 Temporal Evolution of the
Graphs

N(t) ... nodes at time t
E(t) ... edges at time t
Suppose that
N(t+1) =2 * N(t)
* Q: what is your guess for
Ee+1) ) E)
* A: over-doubled!

— But obeying the " Densification Power Law’™’
15-826 (c) C. Faloutsos, 2016 81
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T.2 Densification — Patent

Citations
« Citations among '
patents granted E(t) -
s @1999 810
— 2.9 M nodes § 1.66
—16.5 M edges :gms
* Each yearisa I _—
datapoint ol
® Numberornoges  N(t) "
15826 (©)C. Falousos, 2016 82

Outline

* Introduction — Motivation
* Problem#1: Patterns in graphs
— Static graphs
— Weighted graphs
=) — Time evolving graphs
Problem#2: Scalability

* Conclusions

15-826 (c) C. Faloutsos, 2016 83

Carnegie Mellon

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected
Components: Patterns and a Generator.
SIG-KDD 2008

15-826 (c) C. Faloutsos, 2016 84
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| Gelling Point |

* Most real graphs display a gelling point
 After gelling point, they exhibit typical behavior. This is
marked by a spike in diameter.

Diameter

|

Time

15-826 (c) C. Faloutsos, 2016 85
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Observation T.3: NLCC behavior

O: How do NLCC's emerge and join with
the GCC?

("NLCC’’ = non-largest conn. components)
—Do they continue to grow in size?
— or do they shrink?

— or stabilize? O O
o
)

15-826 (c) C. Faloutsos, 2016 86

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with
the GCC?

("NLCC’’ = non-largest conn. components)
—Do they continue to grow in size?
— or do they shrink?

— or stabilize? /ob
%o

15-826 (c) C. Faloutsos, 2016 87

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with
the GCC?

("NLCC’’ = non-largest conn. components)
YES —Do they continue to grow in size?
YES — or do they shrink?
YES — or stabilize?

15-826 (c) C. Faloutsos, 2016 88
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Observation T.3: NLCC behavior

* After the gelling point, the GCC takes off, but
NLCC’ s remain ~constant (actually, oscillate).

CC size

me

Time-stamp
15-826 (c) C. Faloutsos, 2016 89
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T.4 : popularity over time

#in links \
|

1 2 3 lag: days after post

Post popularity drops-off — exponentially? @t O

@)
@t + lag ./

15-826 (c) C. Faloutsos, 2016 91
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Timing for Blogs
» with Mary McGlohon (CMU->Google)
¢ Jure Leskovec (CMU->Stanford)
* Natalie Glance (now at Google)

* Mat Hurst (now at MSR)
[SDM’ 07]

15-826 (c) C. Faloutsos, 2016 90

T.4 : popularity over time
#inlinks "

(log) \
10" 4o° N

10° 10 Y

%,

!—j days after post
| — = 541905.74 8 R2=1 09
101‘ o 10' 10 (Iog)
Post popularity drops-off — expor@ally?
POWER LAW!
Exponent?
15-826 (c) C. Faloutsos, 2016 92
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T.4 : popularity over time

6
107 408,

#in links
(log)  “*
o
= days after post
e N ()

Post popularity drops-off — expor@ally?
POWER LAW!

Exponent? -1.6

* close to -1.5: Barabasi’s stack model

« and like the zero-crossings of a random walk ™
15-826 (c) C. Faloutsos, 2016 93
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T.S: duration of phonecalls

Surprising Patterns for the Call
Duration Distribution of Mobile
Phone Users

" { Pedro O. S. Vaz de Melo, Leman

Akoglu, Christos Faloutsos, Antonio
A. F. Loureiro

PKDD 2010

15-826 (c) C. Faloutsos, 2016 95
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/ -1.5 slope \

J. G. Oliveira & A.-L. Barabasi Human Dynamics: The
Correspondence Patterns of Darwin and Einstein.
Nature 437, 1251 (2005) . [PDF]

b -

L1l o 10° -

P B

wiE -tnco- e w=3/2 "} e a=3m
I Togo | -t::'u
[ g =8 e oot

u-]q_‘h" B -0 .
19—6; Darwin n [ O°F Einstein QJL A
T C "
vowd 1 vvwd 1 .r-:t aE N

P I voed 302 E vwed v vwd v o el s
w w v v ot w® w w? w o wt v
Response time © (days) Response time © (days)
! Figure 1| The correspondence patterns of Darwin and Einstein. 94
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Probably, power law (?)
10°
°°o° ??
count 10° °°o°
107 :
10° 10" 10° 10°
Duration (s)
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No Power Law!

10

count 10°
» data

TLAC
log-normal

| |[~—-exponential

10 5 1 2 3
10 10 10 10
Duration (s)
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Log-logistic distribution
* CDEF(t)/(1- CDFE(t)) == OR(t)
* For log-logistic: log[OR(t)] = B + p*log(t)
Odds ratio= 10*

Casualties(<x):
Survivors(>=x) 1¢°

¢ data
G 10‘2 —TLAC
Duration (5) g —log-normal
== power law 10 / —exponential
10° 10" 10° 10
duration (s)
15-826 (c) C. Faloutsos, 2016 99
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‘TLaC: Lazy Contractor’

* The longer a task (phonecall) has taken,
* The even longer it will take

Odds ratio= 10
: .10
Casualties(<x):
a1 Survivors(>=x) 1¢°
107
/ ~—log-normal
== power law 10 // —exponential

10° 10" 10°  1d°
duration (s)
15-826 (c) C. Faloutsos, 2016 98

Log-logistic distribution

» CDEF(t)/(1- CDFE(t)) == OR(t)
* For log-logistic: log[OR(t)] =B + p*log(t)

count 10°

* data 10 100 10 10
—TLAC duration (s)
log-normal
| |-—-exponential Y . )
0 e e PDF ]ool_<s like hyperbola,
Duration (s) * and, if clipped, like power-law
15-826 (c) C. Faloutsos, 2016 100
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Log-logistic distribution

* Logistic distribution: + LOG-Logistic

CDF -> sigmoid distribution:
x->In(x)
/1
g
CDF(x) = 1/(1+exp(-x)) CDF(x) = 1/(1+1/x )
15-826 (c) C. Faloutsos, 2016 101
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Data Description

» Data from a private mobile operator of a large
city
= 4 months of data
= 3.1 million users
= more than 1 billion phone records

= Over 96% of ‘talkative’ users obeyed a TLAC
distribution (‘talkative’: >30 calls)

15-826 (c) C. Faloutsos, 2016 103
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CDF -> sigmoid

Log-logistic distribution ]

 Logistic distribution: + LOG-Logistic

distribution:

Al

15-826

CDF(x) = 1/(1+exp(-(x-m)/s)) CDF(x) = 1/(1+exp(-(In(x)-m)/s)

(c) C. Faloutsos, 2016 102
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15-826

QOutliers:

call duration (5 secs)

(c) C. Faloutsos, 2016 104
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Outline

A7

* Introduction — Motivation
* Problem#1: Patterns in graphs

m) + Problem#2: Scalability -PEGASUS
» Conclusions

15-826 (c) C. Faloutsos, 2016 105

Outline — Algorithms & results

Centralized Hadoop/
PEGASUS

Degree Distr. old old
Pagerank old old

= | Diameter/ANF old HERE
Conn. Comp old HERE
Triangles done HERE
Visualization started

15-826 (c) C. Faloutsos, 2016 107
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Scalability '

* Google: > 450,000 processors in clusters of ~2000

processors each [Barroso, Dean, Holzle, “Web Search for
a Planet: The Google Cluster Architecture” IEEE Micro
2003]

* Yahoo: 5Pb of data [Fayyad, KDD’ 07]
* Problem: machine failures, on a daily basis
* How to parallelize data mining tasks, then?

* A: map/reduce — hadoop (open-source clone)
http://hadoop.apache.org/

CilErbEp

15-826 (c) C. Faloutsos, 2016 106

HADI for diameter estimation P.®

* Radius Plots for Mining Tera-byte Scale
Graphs U Kang, Charalampos Tsourakakis,
Ana Paula Appel, Christos Faloutsos, Jure
Leskovec, SDM’10

* Naively: diameter needs O(N**2) space and
up to O(N*#*3) time — prohibitive (N~1B)

* Our HADI: linear on E (~10B)
— Near-linear scalability wrt # machines
— Several optimizations -> 5x faster

15-826 (c) C. Faloutsos, 2016 108
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19+ [Barabasi+]
~1999. ~1M nodes

CarnegieMellon

19+ [Barabasi]

~1999,@n6‘des
10° . , ‘ ‘ ‘ .

0 5 10 15 20 /25 30 )
Radius Radius

YahooWeb graph (120Gb, odes, 6.6 B edges)
* Largest publicly available graph ever studied.
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10° ‘ , , ‘ ‘
0 5 10 15 20 25 30 .
Radius Radius
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9
by — &
Count .
»10
Q
g10° .
2,08 14 (dir.)
o
gm4 ~7 (undir.)
3 .
E10 19+7? [Barabasi+]
Z10?
10’
10°

© 00 Bad P Rads
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
* Largest publicly available graph ever studied.
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10°.
8
Count '° ]
»10
§10° :
2108 14 (dir.)
%104 ~7 (undir.)
E10° 19+7? [Barabasi+]
Z10?
10’
10° . : ‘ : ‘ :
10 15 20 25 30 .
¢ 0 Radius Radius
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
7 degrees of separation (!)
*Diameter: shrunk
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10° .

;
Count %) / T
»10
3108
510
510 [ ~7 (undir)
g10° |
=} \
Z10° |
10 ‘
100, ‘ , , ‘ ‘
0 5 10 15 20 25 30 .
Radius Radius
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

Q: Shape?
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10° 4
108
w107
8108 |
%105 L
210 |

" [ _YahooWeb —+— |

4— Multi-Modal -

N\

Effective

Q. 3| '
E10 Diameter = 7.62
2102 L

101 L
100 L

0 5 10 15 20 25 30

Radius
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
« effective diameter: surprisingly small.

* Multi-modality (?!)
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10°
108 t
$107 L
6
S10° ¢
%105 ,
NPl
g10
£10° t
2, 2
Z10° |
1L le.com
10 c 9oog
10° t —
o * * * * *
0 5 10 15 20 25 30
Radius
Radius Plot of GCC of Yahoo\Web.
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" [_YahooWeb ——
4— Multi-Modal

Effective
Diameter = 7.62

0 5 10 15 20 25 30
Radius

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
« effective diameter: surprisingly small.
* Multi-modality: probably mixture of cores .

15-826 (c) C. Faloutsos, 2016 116
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g . . . . 1 .

o =) Conjecture:
0 = Multi-Modal DE
8108
30 EN
Z10°
S10°
8 Effective
2102 Diameter = 7.62
210

0 5 10 15 20 25 30
Radius

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
» effective diameter: surprisingly small.
* Multi-modality: probably mixture of cores .
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E

5 HADI-pIain —
HADI-BSE 2
g 4 Za.g)t(er HADI-BL ez
° T HADI-OPT
c3r 3.8x
o :
é oL 5_1X 3__2X ]
> H H
1y H F
[n e 0D ]

KR-2B KR-1.1B ER-2B ER-1.1B
Data

Running time - Kronecker and Erdos-Renyi
Graphs with billions edges.
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N

Effective
Diameter = 7.62

: "\yéhooWéb —

4— Multi-Modal

Radius

15-826

0 5 10 15 20 25 30

(c) C. Faloutsos, 2016

Conjecture:

A\

%3

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
« effective diameter: surprisingly small.
» Multi-modality: probably mixture of cores .
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Outline — Algorithms & results

Centralized Hadoop/
PEGASUS

Degree Distr. old old

Pagerank old old

Diameter/ANF old HERE
= | Conn. Comp old HERE

Triangles HERE

Visualization started

15-826 (¢) C. Faloutsos, 2016
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o Generalized Iterated Matrix
Vector Multiplication (GIMYV)

PEGASUS: A Peta-Scale Graph Mining

U Kang, Charalampos E. Tsourakakis,
and Christos Faloutsos.

(ICDM) 2009, Miami, Florida, USA.
Best Application Paper (runner-up).
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System - Implementation and Observations.

Example: GIM-V At Work

» Connected Components — 4 observations:

Count 108 " YahooWeb —— |
107 t
108
10° |
10*
103 Giant
102 Connected
1o Component |
100 L — >

10° 10" 102 10% 10* 10° 10% 107 108 10°
Size
15-826 (c) C. Faloutsos, 2016
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Generalized Iterated Matriym
Vector Multiplication (GIMYV)

* PageRank
* proximity (RWR) Matrix — vector
* Diameter Multiplication

» Connected components

* (eigenvectors,

» Belief Prop.

L —

15-826 (c) C. Faloutsos, 2016 122

(iterated)

Example: GIM-V At Work

» Connected Components

10° " YahooWeb —<—
Count 108 ahoowe |
107 |
108 |
10° |
10* 1 1) 10K x
10° Giant 1 larger
102 | Connected h
10! | Component| than next
100 — >
10° 10" 10% 10% 10* 10° 10% 107 10® 10°
Size
15-826 (c) C. Faloutsos, 2016 124
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Example: GIM-V At Work

* Connected Components

" YahooWeb —— |

1
Count 108

2)~0.7B 108 }
singleton 10° |
nodes 10

103 Giant
102 Connected
10! Component |
10° L — >
10° 10" 10% 10% 10* 10° 10% 107 108 10°
Size
15-826 (c) C. Faloutsos, 2016 125

Example: GIM-V At Work

» Connected Components

10° " YahooWeb —<—
Count 48 ahoovve ]
107 300-size
10 cmpt
108 | )\jviog'ﬂoo-size cmpt
10° Y©  Xes.
?
103 WhY? Giant
102 | Connected
1o Component |
4) Spikes! 10 b

10° 10" 102 10% 10* 10° 10% 107 108 10°
Size
15-826 () C. Faloutsos, 2016 127
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Example: GIM-V At Work

* Connected Components

10° "~ YahooWeb —<—

Count 108 ahoowe |
107 |
108 |
10° t

S O | 104 L
3) SLOPE! 440 | Giant
102 | Connected |
o' Component |
100 -, >
10° 10" 10% 10% 10* 10° 10° 107 10® 10°
Size
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Example: GIM-V At Work

» Connected Components

10° " YahooWeb —<—
Count 48 ahoovve ]
107 |
108 | suspicious
10° | financial-advice sites
104 t 1 (not existing now)
3 | .
10 1 Giant
102 | Connected
o' b Component |
100 . — >
10° 10" 102 10% 10* 10° 10° 107 108 10°
Size
15-826 () C. Faloutsos, 2016 128
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GIM-V At Work

» Connected Components over Time
* LinkedIn: 7.5M nodes and 58M edges

10° 10°

105 2003 —%— 10° 2004 —%—
4+ Unstable " Slope =
210 Slope 210 2.75
310 Giant 3 10° Giant
[SPP Connected | O 2 Connected
10 Component 10 Component
10’ 10’
10° ) i 10°
10° 10 1021953_104 10° 10° 107 10% 10" 1021083104105 105107
ize 1ze H
of I, Stable tail slope
2005 —%— 2006 —*— . .
107} Siope 107 Slope = after the gelling point
_ 10t -2.75 _ 10t -2.75 g agp
S 10° S 10°
310 4 Giant 310 4 Giant
©10? Connected { © 102 Connected
10! Compon;m 10! Comg N
10° o3 10° <)

{
10° 10" 102 10 10* 10° 105707 10° 10 10? 10° 10* 10° 10° 10’
Size Size
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OVERALL CONCLUSIONS -

low level:
» Several new patterns (fortification,

shrinking diameter, triangle-laws, conn.
components, etc)

* Log-logistic distribution: ubiquitus

* New tools:

— anomaly detection (OddBall), belief
propagation, immunization

* Scalability: PEGASUS / hadoop

15-826 (c) C. Faloutsos, 2016 131
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Outline

* Introduction — Motivation
* Problem#1: Patterns in graphs
DELETE
* Problem#2: Scalability
m) - Conclusions
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OVERALL CONCLUSIONS -

high level

* BIG DATA: Large datasets reveal patterns/
outliers that are invisible otherwise

10° :
108 V\YahooWeb ——
2107 4— Multi-Modal
3.6
810
Z10° T
o 4
510 .
8 3 Effective
5102 Diameter = 7.62
10
10'
10°
0 5 10 15 20 25 30
Radius
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