Carnegie Mellon University
 Department of Computer Science
 15-826 Multimedia Databases and Data Mining
 C. Faloutsos, Fall 2019
 Due: hard copy, in class, at 1:30pm, on 11/13/2019
 No tarball.

VERY IMPORTANT:

- For each question, we expect only the hard copy of answers and code.

1. Separate your answers, on different page(s) for each question
2. Type the full info on each page: your name, Andrew ID, course\#, Homework\#, Question\# on each of the pages.

Reminders:

- Plagiarism: Homework is to be completed individually.
- Typeset your answers. Illegible handwriting may get zero points.
- Late homeworks: follow usual procedure: please email it
- to all TAs and graders
- with the subject line exactly 15-826 Homework Submission (HW 4)
- and the count of slip-days you are using.

For your information:

- Graded out of $\mathbf{1 0 0}$ points; $\mathbf{3}$ questions total
- Rough time estimate: 12-18 hours (\approx 4-6 hours per question)

Revision: 2019/12/03 23:00

Question	Points	Score
Eigen values power method	35	
SVD - Visualization	30	
	Fourier and wavelets	
Total:	100	

Code packaging info:

As before, for your convenience, we provide a tar-file package, at http://www.cs.cmu.edu/ ~christos/courses/826.F19/HOMEWORKS/HW4/hw4.tar.gz. We will refer to it as the tarfile package from now on. It has 3 directories /Q1, /Q2, /Q3.

Question 1: Eigen values power method
 [35 points]

On separate page, with '[course-id] [hw\#] [question\#] [andrew-id] [your-name]'

Motivation: As we have seen in class SVD has many practical applications. A common method of computing SVD for a given matrix A is by computing the eigen values of $A^{T} A$ and $A A^{T}$.

If we want only the first (= dominant) eigenvalue and eigenvector, then we can use the power iteration method: we can multiply a random vector \vec{r} with the matrix, multiple, consecutive times, and the resulting vector will be very close to the corresponding eigenvector \vec{u}_{1} (times a large scalar).

Problem Description: Implement the power iteration method to compute the dominant eigen value and vector for a given matrix A.
(a) [25 points] Give the code for the power_iteration in ./Q1/power_iteration.py

Solution:

(b) [10 points] Compute the dominant eigen value λ_{1} and the corresponding eigenvector \vec{u}_{1} for the following matrices.

$$
A=\left[\begin{array}{ccc}
3 & 6 & -8 \\
0 & 0 & 6 \\
0 & 0 & 2
\end{array}\right] \quad B=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Solution: A: $3,(1,0,0)$, B: $4,(1,0,0,0)$

What to turn in:

- Answers: Hard copy of the code ./Q1/power_iteration.py and the answers for part (b).

Question 2: SVD - Visualization.

On separate page, with '[course-id] [hw\#] [question\#] [andrew-id] [your-name]'

Motivation: Very often in our career as a data analyst, we are given a cloud of N points in M dimensions, and we have to find patterns, clusters, anomalies. If the dimensionality M is high, it is hard to plot and visualize the dataset. Here we see how to reduce the dimensionality, and how to find patterns and anomalies.

Problem Description: In this problem, we will use the Singular Value Decomposition (SVD) to explore such a cloud of points.
Consider the 6-dimensional mystery dataset ./Q2/mystery.dat in tar-file package. The N data points lie in a lower dimensionality hyper-plane of dimensionality k - you have to guess k and project the points into a k-dimensional (hyper-)plane, using SVD. Specifically, we are told that the i-th mystery data point $\mathbf{x}_{i}=\left(x_{i, 1}, \cdots, x_{i, 6}\right)$ was generated by the equations:

$$
\begin{aligned}
& x_{i, 1}=a_{1} * y_{i, 1}+a_{2} * y_{i, 2}+\cdots+a_{k} * y_{i, k}+\epsilon_{i, 1}, \\
& x_{i, 2}=b_{1} * y_{i, 1}+b_{2} * y_{i, 2}+\cdots+b_{k} * y_{i, k}+\epsilon_{i, 2}, \\
& \quad \ldots \\
& x_{i, 6}=f_{1} * y_{i, 1}+f_{2} * y_{i, 2}+\cdots+f_{k} * y_{i, k}+\epsilon_{i, 6},
\end{aligned}
$$

where $\mathbf{y}_{i}=\left(y_{i, 1}, \ldots, y_{i, k}\right)$ is the i-th point on the k-dimensional hyper-plane $(k \leq 6)$. The coefficients $a_{1}, \cdots, a_{k}, b_{1}, \cdots, f_{k}$ are constant for all the N points in the dataset, and $\epsilon_{i, j}$ indicates a small amount of noise.
Answer the following questions using SVD. We recommend MatLab.
(a) [6 points] Guess: What is the dimensionality k of the mystery dataset? (Do NOT use the fractal dimension - it is not the right tool to guess k.)

Solution: $k=2$.

(b) [2 points] Give the singular values $\left(\lambda_{1}, \ldots\right)$ of the matrix $X=\left(x_{i, j}\right)$

Solution: $\lambda_{1}=7294.96, \lambda_{2}=556.37, \lambda_{3}=48.25, \lambda_{4}=31.72, \lambda_{5}=31.37, \lambda_{6}=$ 31.20
(c) [2 points] Briefly justify your answer for your guess for k.

Solution: It is the effective rank of the $N x 6$ matrix $X=\left(x_{i, j}\right)(i=1, \ldots N$, $j=1, \ldots, 6$.)
Additionally, the first two terms dominate most of the energy causing us to guess degree 2.
(d) [10 points] If $k \leq 2$, give the scatter-plot (of first, vs second, principal components). If $k>2$, give all the pair-plots, that is, the scatter-plots of all the k-choose- 2 possibilities.

Solution:

(e) There are two outliers in the dataset. Find those two outliers by manually looking at your scatter-plot(s).
i. [4 points] Mark them and hand in the resulting plots

Solution:

ii. [6 points] report the (6-dimensional) coordinates of the two outliers.

Solution: $(6.10,9.84,-10.6514 .18,16.25,101.16)$,
(-4.50, -7.89, 9.97, -12.42, -14.75, -90.26)

What to turn in:

- Answers: Submit hard copy for the answers.

Question 3: Fourier and wavelets........................ [35 points]

On separate page, with '[course-id] [hw\#] [question\#] [andrew-id] [your-name]'

Motivation: Digital Signal Processing (DSP) and specifically the Discrete Fourier (DFT) and Discrete Wavelet (DWT) transforms, are powerful tools for de-noising, anomaly detection and feature extraction in time sequences. Here we demostrate

- how they help us spot outliers, by extracting valuable features (frequencies, amplitudes), from periodic time sequences like natural sounds (flying insects), and
- how they can help us discover signals buried inside noise, like a phone conversation in a noisy street.

Problem Description: You will analyze the signal./Q3/signal_with_noise.mat using DFT (also called FFT) and wavelets to detect a high frequency injection which occurs for a short duration. The signal is a 1-d time series of 2500 samples that were sampled at a frequency of 4000 Hz , and it is a mixture of sine/cosine functions, plus the short-lived injection.
(a) DFT/FFT analysis:
i. [10 points] Plot the spectrum, i.e., the frequency and amplitude plot using ./Q3/wave_analysis.py.
ii. [5 points] Report the main frequencies and their amplitudes you see in the plot. Can you spot the frequency of the injection? (It's OK if not).

(b) Wavelet analysis: The DFT/FFT spectrum can not indicate the start-end of the high-frequency injection. It can only provide information about the overall fre-
quencies the signal wavelet transforms also localize the frequencies in the signal in time.
i. [10 points] Plot the Wavelet scaleogram using wavelet_scaleogram.m.
ii. [10 points] Report the approximate start-time, end-time, and approximate frequency of the injection.

What to turn in:

- Answers: Submit hard copy for the answers and the plots.

