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Outline

Goal: ‘Find similar / interesting things’
* Intro to DB
* Indexing - similarity search
— Points
— Text
— Time sequences; images etc
— Graphs
+ Data Mining
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Indexing - similarity search
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Indexing - similarity search

* R-trees

* z-ordering / hilbert curves

e M-trees
* (DON’T FORGET ...)
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Indexing - similarity search

e R-trees

* z-ordering / hilbert curves
* M-trees

* beware of high intrinsic dimensionality
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Outline

Goal: ‘Find similar / interesting things’
* Intro to DB

¢ Indexing - similarity search

— Points

mp — Text

— Time sequences; images etc

— Graphs

» Data Mining
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Text searching

 ‘find all documents with word bla’
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Text searching

* Full text scanning (‘grep’)

Inversion (B-tree or hash index)

(signature files)

* Vector space model
— Ranked output
— Relevance feedback

+ String editing distance (-> dynamic prog.)
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Multimedia indexing
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Multimedia indexing

* Feature extraction for indexing (GEMINI)

— Lower-bounding lemma, to guarantee no false
alarms

* MDS/FastMap
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Outline

Goal: ‘Find similar / interesting things’
* Intro to DB
¢ Indexing - similarity search
— Points
— Text
=) — Time sequences; images etc
— Graphs
» Data Mining
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Time series & forecasting

Goal: given a signal (eg., sales over time and/
or space)

Find: patterns and/or compress

count ~|j

lynx caught per year

year
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Wavelets

* Q: baritone/silence/soprano - DWT?
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Time series + forecasting

* Fourier; Wavelets

» Box/Jenkins and AutoRegression
* non-linear/chaotic forecasting (fractals

again)
— ‘Delayed Coordinate Embedding’ ~ nearest
neighbors
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Goal: ‘Find similar / interesting things’
¢ Intro to DB

* Indexing - similarity search

— Points
— Text
— Time sequences; images etc
mp — Graphs
» Data Mining
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Graphs
 Real graphs: surprising patterns
-7
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Graphs

* Real graphs: surprising patterns
— ‘six degrees’
— Skewed degree distribution (‘rich get richer’)
— Super-linearities (2x nodes -> 3x edges )
— Diameter: shrinks (!)

— Might have no good cuts
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Graphs - SVD

* Hubs/Authorities (SVD on adjacency
matrix)

» PageRank (fixed point -> eigenvector)
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Outline

Goal: ‘Find similar / interesting things’
* Intro to DB
* Indexing - similarity search

= . Data Mining
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Data Mining - DB
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Data Mining - DB
* Association Rules (‘diapers’ -> ‘beer’ )
o [ OEAR—(DataCubes—rolup—deitbdown)-|
o [ Classifiers |
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Taking a step back:

We saw some fundamental, recurring
concepts and tools:
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Powerful, recurring tools

* Fractals/ self similarity
— Zipf, Korcak, Pareto’s laws

— intrinsic dimension (Sierpinski triangle)

— correlation integral

— Barnsley’s IFS compression

— (Kronecker graphs)

-
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Powerful, recurring tools
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Powerful, recurring tools
* SVD (optimal L2 approx)

— LSI, KL, PCA, ‘eigenSpokes’, (& in ICA )
— HITS (PageRank)
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Powerful, recurring tools

¢ Discrete Fourier Transform
* Wavelets
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Powerful, recurring tools

» Matrix inversion lemma

— Recursive Least Squares
— Sherman-Morrison(-Woodbury)
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Summary

fractals / power laws probably lead to the
most startling discoveries (‘the mean may
be meaningless’)

* SVD: behind PageRank/HITS/tensors/ ...

* Wavelets: Nature seems to prefer them

» RLS: matrix inversion, without inverting

* approximate counting (do the impossible!)
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Thank you!
* Feel free to contact me:
— christos@cs GHC 8019
* Reminder: faculty course eval’s:
— www.cmu.edu/hub/fce

* Final: Tue, Dec. 10, 1:00-4:00p.m. WEH7500
(double-check with

* Have a great break!
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