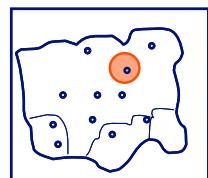


Lecture #30: Conclusions

C. Faloutsos


Goal: ‘Find similar / interesting things’

- Intro to DB
- Indexing - similarity search
 - Points
 - Text
 - Time sequences; images etc
 - Graphs
- Data Mining

• D
15-826

(c) 2013, C. Faloutsos

2

15-826

(c) 2013, C. Faloutsos

3

CMU SCS

Indexing - similarity search

- R-trees
- z-ordering / hilbert curves
- M-trees
- (DON'T FORGET ...)

15-826 (c) 2013, C. Faloutsos 4

CMU SCS

Indexing - similarity search

- R-trees
- z-ordering / hilbert curves
- M-trees
- **beware of high intrinsic dimensionality**

15-826 (c) 2013, C. Faloutsos 5

CMU SCS

Outline

Goal: 'Find **similar / interesting** things'

- Intro to DB
- Indexing - similarity search
 - Points
 - Text
 - Time sequences; images etc
 - Graphs
- Data Mining

15-826 (c) 2013, C. Faloutsos 6

Text searching

- ‘find all documents with word *bla*’

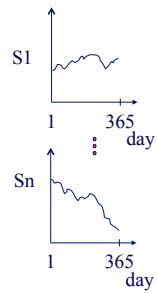
15-826

(c) 2013, C. Faloutsos

7

Text searching

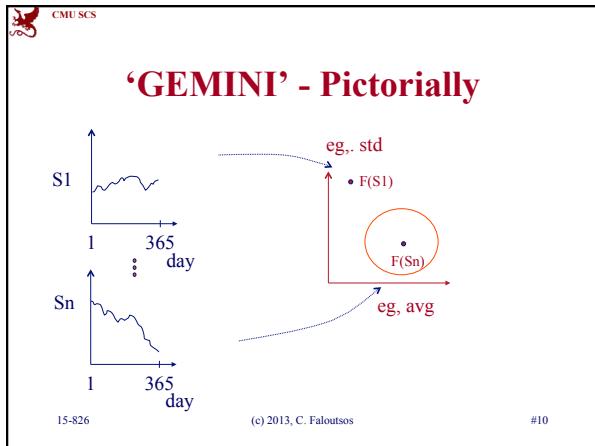
- Full text scanning ('grep')
- Inversion (B-tree or hash index)
- (signature files)
- Vector space model
 - Ranked output
 - Relevance feedback
- String editing distance (-> dynamic prog.)


15-826

(c) 2013, C. Faloutsos

8

Multimedia indexing



15-826

(c) 2013, C. Faloutsos

9

CMU SCS

Multimedia indexing

- Feature extraction for indexing (GEMINI)
 - Lower-bounding lemma, to guarantee no false alarms
- MDS/FastMap

15-826

(c) 2013, C. Faloutsos

11

CMU SCS

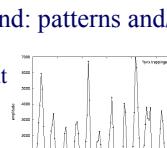
Outline

Goal: 'Find **similar / interesting** things'

- Intro to DB
- Indexing - similarity search
 - Points
 - Text
- ➡ – Time sequences; images etc
 - Graphs
- Data Mining

15-826

(c) 2013, C. Faloutsos


12

 CMU SCS

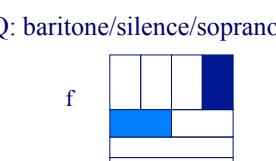
Time series & forecasting

Goal: given a signal (eg., sales over time and/or space)

Find: patterns and/or compress

lynx caught per year

15-826


(c) 2013, C. Faloutsos

13

 CMU SCS

Wavelets

- Q: baritone/silence/soprano - DWT?

The figure illustrates the Discrete Wavelet Transform (DWT) of a signal f over time t . The signal f is represented by a blue waveform with three distinct regions: a baritone section (low frequency), a silence section (no signal), and a soprano section (high frequency). The corresponding wavelet coefficients are shown as a 4x4 grid of blocks. The first three columns of the grid have 4 white blocks each, while the fourth column has 3 blue blocks. Below the grid, the signal f is plotted against time t , with the soprano section having a dotted line.

15-826

(c) 2013, C. Faloutsos

14

 CMU SCS

Time series + forecasting

- Fourier; Wavelets
- Box/Jenkins and AutoRegression
- non-linear/chaotic forecasting (fractals again)
 - ‘Delayed Coordinate Embedding’ \sim nearest neighbors

15-826

(c) 2013, C. Faloutsos

15

 CMU SCS

Outline

 CMU SCS

Graphs

- Real graphs: surprising patterns
 - ??

15-826

(c) 2013, C. Faloutsos

17

 CMU SCS

Graphs

- Real graphs: surprising patterns
 - ‘six degrees’
 - **Skewed** degree distribution (‘rich get richer’)
 - Super-linearities (2x nodes \rightarrow 3x edges)
 - Diameter: **shrinks** (!)
 - Might have **no** good cuts

15-826

(c) 2013, C. Faloutsos

18

Graphs - SVD

- Hubs/Authorities (SVD on adjacency matrix)
- PageRank (fixed point \rightarrow eigenvector)

15-826

(c) 2013, C. Faloutsos

19

Outline

Goal: ‘Find similar / interesting things’

- Intro to DB
- Indexing - similarity search
- • Data Mining

15.826

(c) 2013 C. Faloutsos

20

Data Mining - DB

15.926

© 2012 S. E. J.

21

Data Mining - DB

- Association Rules ('diapers' -> 'beer')
- [~~OLAP (DataCubes, roll-up, drill-down)~~]
- [~~Classifiers~~]

15-826

(c) 2013, C. Faloutsos

22

Taking a step back:

We saw some fundamental, recurring concepts and tools:

15.826

(c) 2013 C. Faloutsos

23

Powerful, recurring tools

- Fractals/ self similarity
 - Zipf, Korcak, Pareto's laws
 - intrinsic dimension (Sierpinski triangle)
 - correlation integral
 - Barnsley's IFS compression
 - (Kronecker graphs)

15-826

(c) 2013, C. Faloutsos

24

 CMU SCS

Powerful, recurring tools

- Fractals/ self similarity
 - Zipf, Korcak, B
 - (Kronecker graphs)

15-826

(c) 2013, C. Faloutsos

25

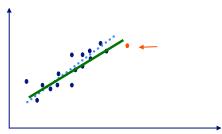
 CMU SCS

 CMU SCS

Powerful, recurring tools

- Discrete Fourier Transform
- Wavelets

15-826


(c) 2013, C. Faloutsos

27

CMU SCS

Powerful, recurring tools

- Matrix inversion lemma
 - Recursive Least Squares
 - Sherman-Morrison(-Woodbury)

15-826 (c) 2013, C. Faloutsos 28

CMU SCS

Summary

- **fractals / power laws** probably lead to the most startling discoveries ('the mean may be meaningless')
- **SVD**: behind PageRank/HITS/tensors/...
- **Wavelets**: Nature seems to prefer them
- **RLS**: matrix inversion, without inverting
- approximate counting (do the impossible!)

15-826 (c) 2013, C. Faloutsos 29

CMU SCS

Thank you!

- Feel free to contact me:
 - christos@cs GHC 8019
- Reminder: faculty course eval's:
 - www.cmu.edu/hub/fce/
- Final: Tue, Dec. 10, 1:00-4:00p.m. WEH7500
(double-check with
 - www.cmu.edu/hub/docs/final-exams.pdf
- Have a great break!

15-826 (c) 2013, C. Faloutsos 30
