

Lecture #29: Approximate Counting *C. Faloutsos*

- Christopher Palmer, Phillip B. Gibbons and Christos Faloutsos,
[ANF: A Fast and Scalable Tool for Data Mining in Massive Graphs](#), KDD 2002
- [Efficient and Tunable Similar Set Retrieval](#), by Aristides Gionis, Dimitrios Gunopulos and Nikos Koudas, SIGMOD, 2001.
- [New sampling-based summary statistics for improving approximate query answers](#), by Phillip B. Gibbons and Yossi Matias, ACM SIGMOD, 1998.

Outline

Goal: ‘Find similar / interesting things’

- Intro to DB
- Indexing - similarity search
- Data Mining
 - ...
 - Association Rules
 - Approximate Counting

Outline

- **Flajolet-Martin (and Cohen) – vocabulary size (Problem #1)**
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools (Problem #2, #3)

15-826

(c) 2013 C. Faloutsos

4

Problem #1

- Given a multiset (eg., words in a document)
- find the vocabulary size (#, after dup. elimination)

AAABABACAB

$$\text{Voc. Size} = 3 = |\{A, B, C\}|$$

15-826

(c) 2013 C. Faloutsos

5

Thanks to

- Chris Palmer (Vivisimo->IBM)

15-826

(c) 2013 C. Faloutsos

6

Problem #2

- Given a multiset
- compute approximate high-end histogram = hot-list query = (k most common words, and their counts)

AAABABACABDDDD

(for k=2:

A#: 6

D#: 5)

15-826

(c) 2013 C. Faloutsos

7

Problem #3

- Given two documents
- compute quickly their similarity (#common words/ #total-words) == Jaccard coefficient

15-826

(c) 2013 C. Faloutsos

8

Problem #1

- Given a multiset (eg., words in a document)
- find the vocabulary size V (#, after dup. elimination)
- using space $O(V)$, or $O(\log(V))$

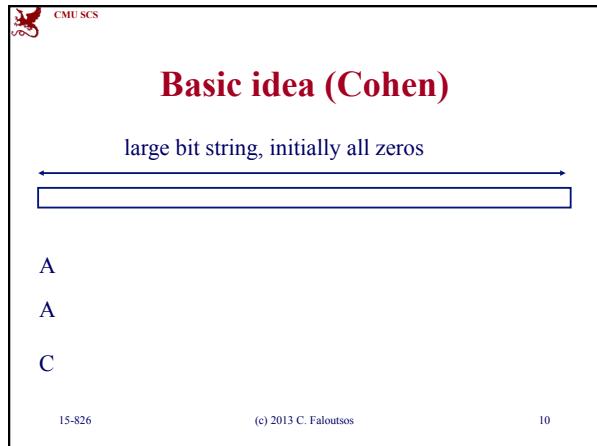
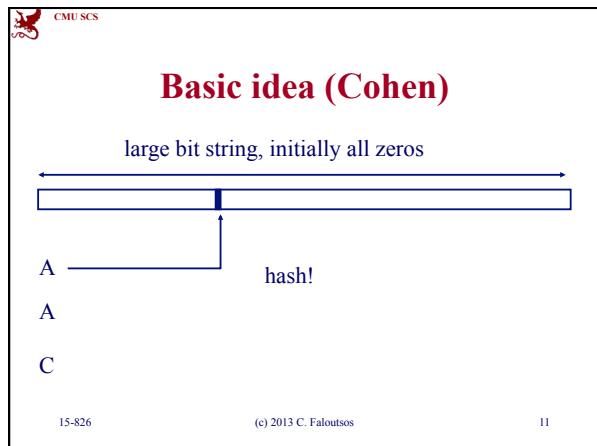
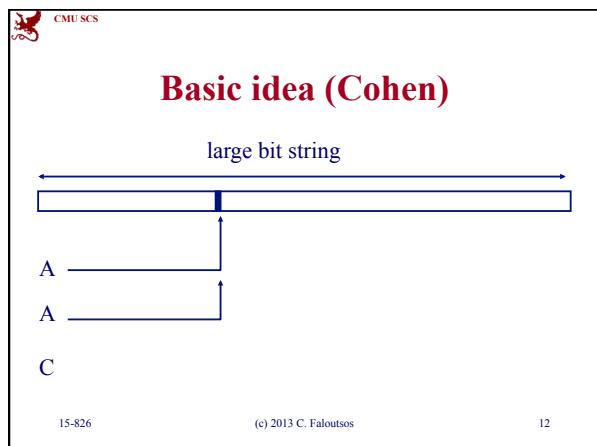
(Q1: Applications?)

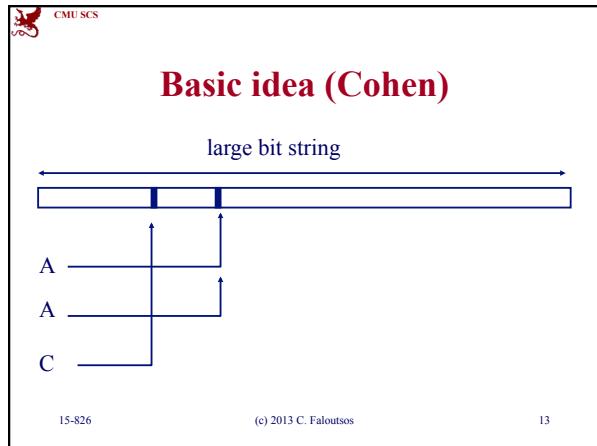
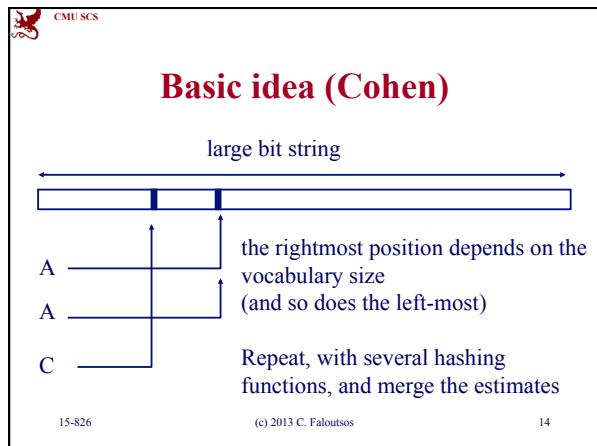
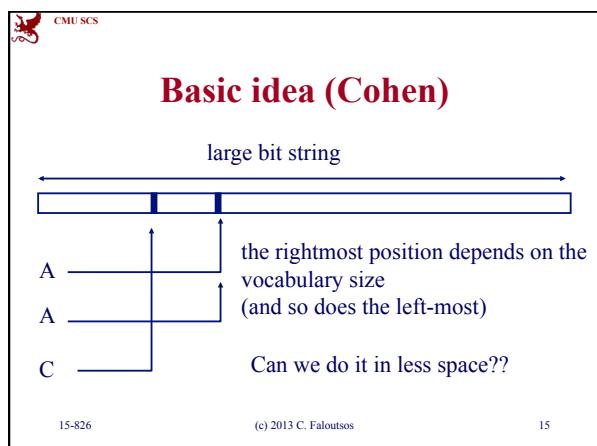
(Q2: How would you solve it?)

15-826

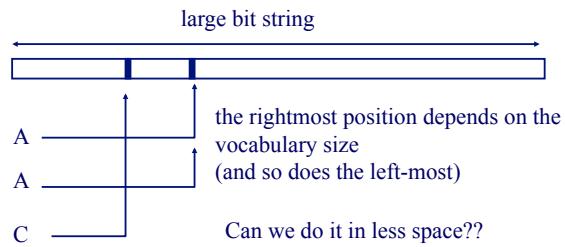
(c) 2013 C. Faloutsos

9





Basic idea (Cohen)



15-826

(c) 2013 C. Faloutsos

16

How?

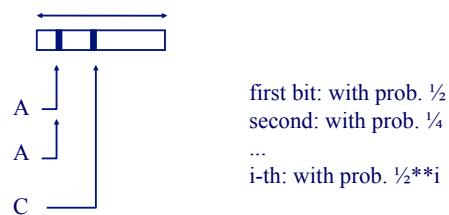
15-826

(c) 2013 C. Faloutsos

17

Basic idea (Flajolet-Martin)

$O(\log(V))$ bit string (V: voc. size)



15-826

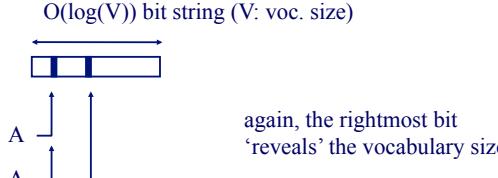
(c) 2013 C. Faloutsos

18

 CMU SCS

Basic idea (Flajolet-Martin)

$O(\log(V))$ bit string (V: voc. size)



again, the rightmost bit
'reveals' the vocabulary size

15-826

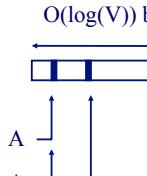
(c) 2013 C. Faloutsos

19

 CMU SCS

Basic idea (Flajolet-Martin)

$O(\log(V))$ bit string (V: voc. size)



The diagram shows a horizontal sequence of $\log(V)$ bits. The first bit is shaded blue and labeled 'A'. The last bit is also shaded blue and labeled 'C'. There are two blue arrows pointing upwards from the bottom to the bit 'A', and one blue arrow pointing upwards from the bottom to the bit 'C'.

again, the rightmost bit
'reveals' the vocabulary size

Eg.: $V=4$, will probably set
the 2nd bit, etc

15-826

(c) 2013 C. Faloutsos

20

 CMU SCS

Flajolet-Martin

- Hash multiple values of X to same signature
 - Hash each x to a bit, using exponential distr.
 - $\frac{1}{2}$ map to bit 0, $\frac{1}{4}$ map to bit 1, ...
- Do several different mappings and average
 - Gives better accuracy
 - Estimate is: $2^b / .77351 / BIAS$
 - $b \sim$ rightmost '1', and actually:

15-826

(c) 2013 C. Faloutsos

21

CMU SCS

Flajolet-Martin

- Hash multiple values of X to same signature
 - Hash each x to a bit, using exponential distr.
 - $\frac{1}{2}$ map to bit 0, $\frac{1}{4}$ map to bit 1, ...
- Do several different mappings and average
 - Gives better accuracy
 - Estimate is: $2^b / .77351 / \text{BIAS}$
 - b : average least zero bit in the bitmask
 - bias : $1 + .31/k$ for k different mappings
- Flajolet & Martin prove this works

15-826 (c) 2013 C. Faloutsos 22

CMU SCS

FM Approx. Counting Alg.

```

Assume  $X = \{ 0, 1, \dots, V-1 \}$ 
FOR  $i = 1$  to  $k$  DO  $\text{bitmask}[i] = 0000\dots00$ 
Create  $k$  random hash functions,  $\text{hash}_i$ 
FOR each element  $x$  of  $M$  DO
  FOR  $i = 1$  to  $k$  DO
     $h = \text{hash}_i(x)$ 
     $\text{bitmask}[i] = \text{bitmask}[i] \text{ LOR } h$ 
Estimate:  $b = \text{average least zero bit in } \text{bitmask}[i]$ 
 $2^b / .77351 / (1 + .31/k)$ 

```

- How many bits? $\log V + \text{small constant}$
- What hash functions?

15-826 (c) 2013 C. Faloutsos 23

CMU SCS

Random Hash Functions

- Can use linear hash functions. Pick random (a_i, b_i) and then the hash function is:
 - $lhash_i(x) = a_i * x + b_i$
- Gives uniform distribution over the bits
- To make this exponential, define
 - $hash_i(x) = \text{least zero bit in } lhash_i(x)$
- Hash functions easy to create and fast to use

15-826 (c) 2013 C. Faloutsos 24

Conclusions

- Want to measure # of distinct elements
- Approach #1: (Flajolet-Martin)
 - Map elements to random bits
 - Keep bitmask of bits
 - Estimate is $O(2^b)$ for least zero-bit b
- Approach #2: (Cohen)
 - Create random permutation of elements
 - Keep least element seen
 - Estimate is: $O(l/\ln l)$ for least rank l

15-826

(c) 2013 C. Faloutsos

25

Approximate counting

- Flajolet-Martin (and Cohen) – vocabulary size
- Application: Approximate Neighborhood function (ANF)**
- other, powerful approximate counting tools

15-826

(c) 2013 C. Faloutsos

26

Fast Approximation of the “neighborhood” Function for Massive Graphs

Christopher R. Palmer
Phillip B. Gibbons
Christos Faloutsos

KDD 2001

 CMU SCS

Motivation

 details

- What is the diameter of the Web?
- What is the effective diameter of the Web?
- Are the telephone caller-callee graphs for the U.S. similar to the ones in Europe?
- Is the citation graph for physics different from the one for computer science?
- Are users in India further away from the core of the Internet than those in the U.S.?

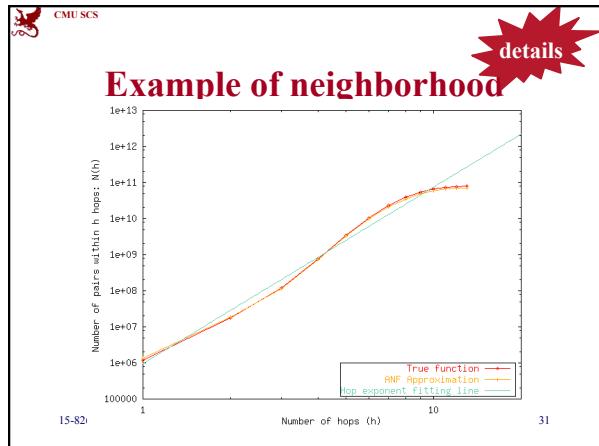
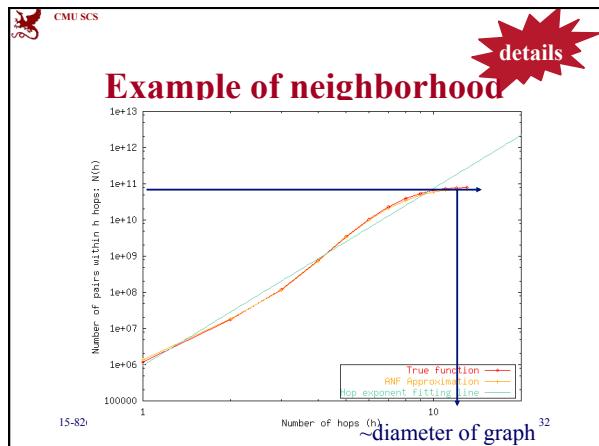
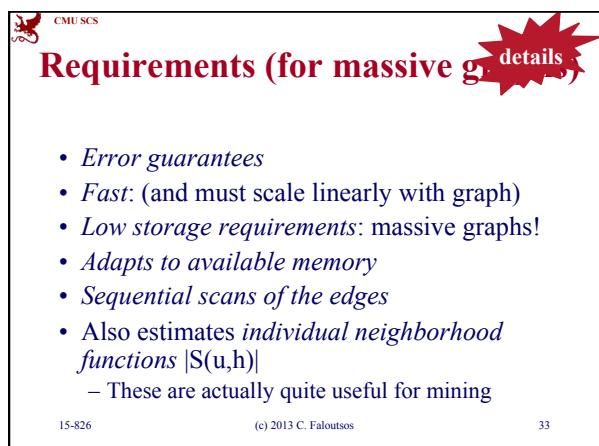
15-826

(c) 2013 C. Faloutsos

28

CMU SCS

CMU SCS



CMU SCS

details

How would you compute it?

- Repeated matrix multiply
 - Too slow $O(n^{2.38})$ at the very least
 - Too much memory $O(n^2)$
- Breadth-first search
 - FOR each node u DO
 - bf-search to compute $S(u,h)$ for each h
 - Best known exact solution!
 - We will use this as a reference
- Approximations? Only 1 that we know of which we will discuss when we evaluate it.

15-826 (c) 2013 C. Faloutsos 34

CMU SCS

Intuition

details

- Guess what we'll use?
 - Approximate Counting!
- Use very simple algorithm:

```
FOR each node  $u$  DO  $S(u,0) = \{ (u,u) \}$  initialize to self-only
FOR  $h = 1$  to diameter of  $G$  DO
    FOR each node  $u$  DO  $S(u,h) = S(u,h-1)$  can reach same things
    FOR each edge  $(u,v)$  in  $G$  DO and add one more step
         $S(u,h) = S(u,h) \cup \{ (u,v) : (v,v') \in S(v,h-1) \}$ 
```

15-826

(c) 2013 C. Faloutsos

35

CMU SCS

Intuition

- Guess what we'll use?
– Approximate Counting!
- Use very simple algorithm:
 - FOR each node u DO $S(u,0) = \{ (u,u) \}$ initialize to self-only
 - FOR $h = 1$ to diameter of G DO
 - FOR each node u DO $S(u,h) = S(u,h-1)$ can reach same things
 - FOR each edge (u,v) in G DO and add one more step
 - $S(u,h) = S(u,h) \cup \{ (u,v) : (v,v) \in S(v,h-1) \}$

(distinct) neighbors of u ,
within h hops

(distinct) neighbors of v ,
within $h-1$ hops

CMU SCS

Trace

details

$h=0$

$\{(1,1)\}$
 $\{(2,2)\}$
 $\{(3,3)\}$
 $\{(4,4)\}$

15-826 (c) 2013 C. Faloutsos 37

CMU SCS

Trace

details

$h=0 \quad h=1$

$\{(1,1)\} \quad \{(1,1)\}$
 $\{(2,2)\} \quad \{(2,2)\}$
 $\{(3,3)\} \quad \{(3,3)\}$
 $\{(4,4)\} \quad \{(4,4)\}$

15-826 (c) 2013 C. Faloutsos 38

CMU SCS

Trace

details

$h=0 \quad h=1$

$\{(1,1)\} \quad \{(1,1)\}$
 $\{(2,2)\} \quad \{(2,2)\}$
 $\{(3,3)\} \quad \{(3,3)\}$
 $\{(4,4)\} \quad \{(4,4)\}$

15-826 (c) 2013 C. Faloutsos 39

CMU SCS

Trace

details

$h=0 \quad h=1$

$\{(1,1)\} \quad \{(1,1), (1,2)\}$
 $\{(2,2)\}$ $\{(2,2)\}$
 $\{(3,3)\} \quad \{(3,3)\}$
 $\{(4,4)\} \quad \{(4,4)\}$

15-826 (c) 2013 C. Faloutsos 40

CMU SCS

Trace

details

$h=0 \quad h=1$

$\{(1,1)\} \quad \{(1,1), (1,2), (1,3)\}$
 $\{(2,2)\} \quad \{(2,2)\}$
 $\{(3,3)\}$ $\{(3,3)\}$
 $\{(4,4)\} \quad \{(4,4)\}$

15-826 (c) 2013 C. Faloutsos 41

CMU SCS

Trace

details

$h=0 \quad h=1$

$\{(1,1)\} \quad \{(1,1), (1,2), (1,3)\}$
 $\{(2,2)\} \quad \{(2,2), (2,1), (2,3)\}$
 $\{(3,3)\} \quad \{(3,3), (3,1), (3,2), (3,4)\}$
 $\{(4,4)\} \quad \{(4,4), (4,3)\}$

15-826 (c) 2013 C. Faloutsos 42

CMU SCS

Intuition

- Guess what we'll use?
 - Approximate Counting!
- Use very simple algorithm:


```

FOR each node  $u$  DO  $S(u, 0) = \{ (u, u) \}$ 
FOR  $h = 1$  to diameter of  $G$  DO
  FOR each node  $u$  DO  $S(u, h) = S(u, h-1)$ 
  FOR each edge  $(u, v)$  in  $G$  DO
     $S(u, h) = S(u, h) \cup \{ (u, v) : (v, v') \in S(v, h-1) \}$ 
      
```

(distinct) neighbors of u ,
within h hops

initialize to self-only

can reach same things
and add one more step

15-826

(c) 2013 C. Faloutsos

43

CMU SCS

Intuition

details

- Guess what we'll use?
 - Approximate Counting!
- Use very simple algorithm:


```

FOR each node  $u$  DO  $S(u, 0) = \{ (u, u) \}$ 
FOR  $h = 1$  to diameter of  $G$  DO
  FOR each node  $u$  DO  $S(u, h) = S(u, h-1)$ 
  FOR each edge  $(u, v)$  in  $G$  DO
     $S(u, h) = S(u, h) \cup \{ (u, v) : (v, v') \in S(v, h-1) \}$ 

```
- Too slow and requires too much memory
- Replace expensive set ops with bit ops

15-826

(c) 2013 C. Faloutsos

44

CMU SCS

ANF Algorithm #1

details

FOR each node, u , DO
 $M(u, 0)$ = concatenation of k bitmasks of length $\log n + r$
 each bitmask has 1 bit set (exp. distribution)
DONE

FOR $h = 1$ to *diameter of G* DO
 FOR each node, u , DO $M(u, h) = M(u, h-1)$
 FOR each edge (u, v) in G DO
 $M(u, h) = (M(u, h) \text{ OR } M(v, h-1))$

Estimate $N(h) = \text{Sum}(N(u, h)) = \text{Sum } 2^{b(u)} / .77351 / (1 + 31/k)$
where $b(u) = \text{average least zero bit in } M(u, it)$

DONE

CMU SCS

ANF Algorithm #1

details

```

FOR each node,  $u$ , DO
   $M(u, 0)$  = concatenation of  $k$  bitmasks of length  $\log n + r$ 
  each bitmask has 1 bit set (exp. distribution)
  DONE

  FOR  $h = 1$  to diameter of  $G$  DO
    FOR each node,  $u$ , DO  $M(u, h) = M(u, h-1)$ 
    FOR each edge  $(u, v)$  in  $G$  DO
       $M(u, h) = (M(u, h) \text{ OR } M(v, h-1))$ 

    Estimate  $N(h) = \text{Sum}(N(u, h)) = \text{Sum } 2^{b(u)} / .77351 / (1 + .31/k)$ 
    where  $b(u)$  = average least zero bit in  $M(u, it)$ 
  DONE

```

15-826 (c) 2013 C. Faloutsos 46

CMU SCS

ANF Algorithm #1

details

whatever u can reach with h hops
plus whatever v can reach with $h-1$ hops
Duplicates: automatically eliminated!

$M(u, h) = (M(u, h) \text{ OR } M(v, h-1))$

15-826 (c) 2013 C. Faloutsos 47

CMU SCS

Properties

details

- **Has error guarantees:** (from F&M)
- **Is fast:** $O((n+m)d)$ for n nodes, m edges, diameter d (which is typically small)
- **Has low storage requirements:** $O(n)$
- **Easily parallelizable:** Partition nodes among processors, communicate after full iteration
- **Does sequential scans of edges.**
- **Estimates individual neighborhood functions**
- **DOES NOT work with limited memory**

15-826 (c) 2013 C. Faloutsos 48

Conclusions

- Approximate counting (ANF / Martin-Flajolet) take minutes, instead of hours
- and discover interesting facts quickly

15-826

(c) 2013 C. Faloutsos

49

Outline

- Flajolet-Martin (and Cohen) – vocabulary size (Problem #1)
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools

➡ (Problem #2, #3)

15-826

(c) 2013 C. Faloutsos

50

Problem #2

- Given a multiset
- compute approximate high-end histogram = hot-list query = (k most common words, and their counts)

A A A B A B A C A B D D D D D D

(for $k=2$:

A#: 6

D#: 5)

15-826

(c) 2013 C. Faloutsos

51

CMU SCS

Hot-list queries

- Given a stream of product ids (with duplicates)
- Compute
 - the k most frequent products,
 - and their counts
- with a SINGLE PASS and $O(k)$ memory

15-826 (c) 2013 C. Faloutsos 52

CMU SCS

Applications?

15-826 (c) 2013 C. Faloutsos 53

CMU SCS

Applications?

- Best selling products
- most common words
- most busy IP destinations/sources (DoS attacks)
- summarization / synopses of datasets
- high-end histograms for DBMS query optimization

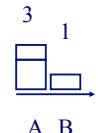
15-826 (c) 2013 C. Faloutsos 54

Hot-list queries - idea

- Keep the (approx.) k best so far, plus counts
- for a new item, if it is in the hot list
 - increment its count
 - else ??

A A B A C A B C A A D E A C A

$k=2$



58

15-826

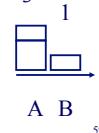
(c) 2013 C. Faloutsos

Hot-list queries - idea

- Keep the (approx.) k best so far, plus counts
- for a new item, if it is in the hot list
 - increment its count
 - else TOSS a coin, and possibly displace weakest

A A B A C A B C A A D E A C A

$k=2$



59

15-826

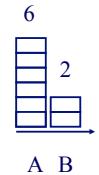
(c) 2013 C. Faloutsos

Hot-list queries - idea

- Biased coin - what are the Head/Tail prob.?

A A B A C A B C A A D E A C A

$k=2$



60

15-826

(c) 2013 C. Faloutsos

Hot-list queries - idea

- Biased coin - what are the Head/Tail prob.?
- A: depends on count(weakest)

15-826

(c) 2013 C. Faloutsos

Hot-list queries - idea

- Biased coin - what are the Head/Tail prob.?
- A: depends on count(weakest)
- and the new item ('D'), if it wins, it gets the **count of the item it displaced**.

15-826

(c) 2013 C. Faloutsos

62

Hot-list queries - idea

- See [Gibbons+Matias 98] for proofs

15-826

(c) 2013 C. Faloutsos

63

Outline

- Flajolet-Martin (and Cohen) – vocabulary size (Problem #1)
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools
 - Problem #2,
 - **Problem #3**

15-826

(c) 2013 C. Faloutsos

64

Problem #3

- Given two documents
- compute quickly their similarity (#common words/ #total-words) == Jaccard coefficient

15-826

(c) 2013 C. Faloutsos

65

Problem #3'

- Given a query document q
- and many other documents
- compute quickly the k nearest neighbors of q , using the Jaccard coefficient

D1: {A, B, C} q: {A, C, D, W}
 D2: {A, D, F, G}

...

15-826

(c) 2013 C. Faloutsos

66

Applications?

15-826

(c) 2013 C. Faloutsos

67

Applications?

- Set comparisons eg.,
 - snail-mail address (set of trigrams)
- search engines - ‘similar pages’
- social networks: people with many joint friends (facebook recommendations)

15-826

(c) 2013 C. Faloutsos

68

Problem #3'

- Given a query document q
- and many other documents
- compute quickly the k nearest neighbors of q , using the Jaccard coefficient

- Q: how to extract a fixed set of numerical features, to index on?

15-826

(c) 2013 C. Faloutsos

69

Answer

- Approximation / hashing - Cohen:

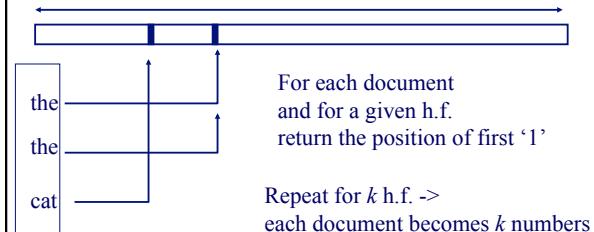
15-826

(c) 2013 C. Faloutsos

70

Basic idea (Cohen)

large bit string



15-826

(c) 2013 C. Faloutsos

71

Idea

- Doc1: n_1, n_2, \dots, n_k
- Doc2: n'_1, n'_2, \dots, n'_k

15-826

(c) 2013 C. Faloutsos

72

 CMU SCS

 CMU SCS

Idea

- Doc1: n1, n2, nk
- Doc2: n1', n2', nk'

- say they agree on m values,
- then

$$\text{Jaccard}(\text{Doc1}, \text{Doc2}) \sim m/k$$

15-826

(c) 2013 C. Faloutsos

74

The slide features the CMU SCS logo in the top left corner. The title 'Intuition behind proof' is centered in a large, bold, red serif font. In the top right corner, there is a portrait of a smiling man with short brown hair, wearing a dark baseball cap and a dark t-shirt, identified as Andrew Tomkins. The main content consists of a Venn diagram with two overlapping circles. The left circle is blue and labeled 'voc. terms of Doc.#1'. The right circle is red and labeled 'voc. terms of Doc.#2'. The intersection of the two circles contains one pink circle. The left circle contains three blue circles, and the right circle contains three red circles. Below the Venn diagram, the text '(c) 2013 C. Faloutsos' is centered. In the bottom left corner, the text '15-826' is visible. The bottom right corner contains the number '75'.

CMU SCS

Intuition behind proof

- Venn diagram

voc. terms of Doc.#1

voc. terms of Doc.#2

15-826 (c) 2013 C. Faloutsos 76

CMU SCS

Intuition behind proof

- Venn diagram - let w be the voc. word with the overall smallest hash value, for h.f.#1

voc. terms of Doc.#1

voc. terms of Doc.#2

15-826 (c) 2013 C. Faloutsos 77

CMU SCS

Intuition behind proof

- Prob. that w is smallest on both is exactly Jaccard: $\#common / \#union$

voc. terms of Doc.#1

voc. terms of Doc.#2

15-826 (c) 2013 C. Faloutsos 78

Conclusions

- Approximations can achieve the impossible!
- MF and ANF for neighborhood function
- hot-lists
- Jaccard coeff. / ‘similar pages’

15-826

(c) 2013 C. Faloutsos

79

References

E. Cohen. Size-estimation framework with applications to transitive closure and reachability. *Journal of Computer and System Sciences*, 55(3):441-453, December 1997. <http://www.research.att.com/~edith/Papers/tcest.ps.Z>

Philip B. Gibbons, Yossi Matias, *New sampling-based summary statistics for improving approximate query answers*, ACM SIGMOD, 1998 Seattle, Washington, pp 331 - 342

15-826

(c) 2013 C. Faloutsos

80

References (cont'd)

Aristides Gionis, Dimitrios Gunopulos, Nikos Koudas,
Efficient and Tunable Similar Set Retrieval, ACM
SIGMOD 2001, Santa Barbara, California

M. Faloutsos, P. Faloutsos, and C. Faloutsos. *On power-law
relationships for the internet topology*. SIGCOMM, 1999.

15-826

(c) 2013 C. Faloutsos

81

References (cont'd)

P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. *Journal of Computer and System Sciences*, 31:182-209, 1985.

C. R. Palmer, P. B. Gibbons and C. Faloutsos. *Fast approximation of the "neighborhood" function for massive graphs*. KDD 2002

15-826

(c) 2013 C. Faloutsos

82

References (cont'd)

C. R. Palmer, G. Siganos, M. Faloutsos, P. B. Gibbons and C. Faloutsos. *The connectivity and fault-tolerance of the internet topology*. NRDM 2001.

15.876

(c) 2013 C. Faloutsos

83