
C. Faloutsos 15-826

1

CMU SCS

15-826: Multimedia Databases
and Data Mining

Lecture #29: Approximate Counting
C. Faloutsos

CMU SCS

Must-read material
•  Christopher Palmer, Phillip B. Gibbons and Christos

Faloutsos,
ANF: A Fast and Scalable Tool for Data Mining in
Massive Graphs, KDD 2002

•  Efficient and Tunable Similar Set Retrieval, by Aristides
Gionis, Dimitrios Gunopulos and Nikos Koudas,
SIGMOD, 2001.

•  New sampling-based summary statistics for improving
approximate query answers, by Phillip B. Gibbons and
Yossi Matias, ACM SIGMOD, 1998.

15-826 (c) 2013 C. Faloutsos 2

CMU SCS

15-826 (c) 2013 C. Faloutsos 3

Outline

Goal: ‘Find similar / interesting things’
•  Intro to DB
•  Indexing - similarity search
•  Data Mining

– …
– Association Rules
– Approximate Counting

C. Faloutsos 15-826

2

CMU SCS

15-826 (c) 2013 C. Faloutsos 4

Outline

•  Flajolet-Martin (and Cohen) –
vocabulary size (Problem #1)

•  Application: Approximate Neighborhood
function (ANF)

•  other, powerful approximate counting tools
(Problem #2, #3)

CMU SCS

15-826 (c) 2013 C. Faloutsos 5

Problem #1

•  Given a multiset (eg., words in a document)
•  find the vocabulary size (#, after dup.

elimination)

A A A B A B A C A B

Voc. Size = 3 = |{A, B, C}|

CMU SCS

15-826 (c) 2013 C. Faloutsos 6

Thanks to

•  Chris Palmer (Vivisimo->IBM)

C. Faloutsos 15-826

3

CMU SCS

15-826 (c) 2013 C. Faloutsos 7

Problem #2

•  Given a multiset
•  compute approximate high-end histogram =

hot-list query = (k most common words, and
their counts)

A A A B A B A C A B D D D D D

(for k=2:
A#: 6
D#: 5)

CMU SCS

15-826 (c) 2013 C. Faloutsos 8

Problem #3

•  Given two documents
•  compute quickly their similarity (#common

words/ #total-words) == Jaccard coefficient

CMU SCS

15-826 (c) 2013 C. Faloutsos 9

Problem #1

•  Given a multiset (eg., words in a document)
•  find the vocabulary size V (#, after dup.

elimination)
•  using space O(V), or O(log(V))

(Q1: Applications?)
(Q2: How would you solve it?)

C. Faloutsos 15-826

4

CMU SCS

15-826 (c) 2013 C. Faloutsos 10

Basic idea (Cohen)
large bit string, initially all zeros

A

A

C

CMU SCS

15-826 (c) 2013 C. Faloutsos 11

Basic idea (Cohen)
large bit string, initially all zeros

A

A

C

hash!

CMU SCS

15-826 (c) 2013 C. Faloutsos 12

Basic idea (Cohen)
large bit string

A

A

C

C. Faloutsos 15-826

5

CMU SCS

15-826 (c) 2013 C. Faloutsos 13

Basic idea (Cohen)
large bit string

A

A

C

CMU SCS

15-826 (c) 2013 C. Faloutsos 14

Basic idea (Cohen)
large bit string

A

A

C

the rightmost position depends on the
vocabulary size
(and so does the left-most)

Repeat, with several hashing
functions, and merge the estimates

CMU SCS

15-826 (c) 2013 C. Faloutsos 15

Basic idea (Cohen)
large bit string

A

A

C

the rightmost position depends on the
vocabulary size
(and so does the left-most)

Can we do it in less space??

C. Faloutsos 15-826

6

CMU SCS

15-826 (c) 2013 C. Faloutsos 16

Basic idea (Cohen)
large bit string

A

A

C

the rightmost position depends on the
vocabulary size
(and so does the left-most)

Can we do it in less space??
 YES

CMU SCS

15-826 (c) 2013 C. Faloutsos 17

How?

CMU SCS

15-826 (c) 2013 C. Faloutsos 18

Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

first bit: with prob. ½
second: with prob. ¼
...
i-th: with prob. ½**i

C. Faloutsos 15-826

7

CMU SCS

15-826 (c) 2013 C. Faloutsos 19

Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit
‘reveals’ the vocabulary size

CMU SCS

15-826 (c) 2013 C. Faloutsos 20

Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit
‘reveals’ the vocabulary size

Eg.: V=4, will probably set
the 2nd bit, etc

CMU SCS

15-826 (c) 2013 C. Faloutsos 21

Flajolet-Martin

•  Hash multiple values of X to same signature
–  Hash each x to a bit, using exponential distr.
–  ½ map to bit 0, ¼ map to bit 1, …

•  Do several different mappings and average
–  Gives better accuracy
–  Estimate is: 2b / .77351 / BIAS

•  b ~ rightmost ‘1’, and actually:

C. Faloutsos 15-826

8

CMU SCS

15-826 (c) 2013 C. Faloutsos 22

Flajolet-Martin

•  Hash multiple values of X to same signature
–  Hash each x to a bit, using exponential distr.
–  ½ map to bit 0, ¼ map to bit 1, …

•  Do several different mappings and average
–  Gives better accuracy
–  Estimate is: 2b / .77351 / BIAS

•  b : average least zero bit in the bitmask
•  bias : 1+.31/k for k different mappings

•  Flajolet & Martin prove this works

CMU SCS

15-826 (c) 2013 C. Faloutsos 23

FM Approx. Counting Alg.

•  How many bits? log V + small constant
•  What hash functions?

Assume X = { 0, 1, …, V-1 }
FOR i = 1 to k DO bitmask[i] = 0000…00
Create k random hash functions, hashi
FOR each element x of M DO
 FOR i = 1 to k DO
 h = hashi(x)
 bitmask[i] = bitmask[i] LOR h
Estimate: b = average least zero bit in bitmask[i]
 2b/.77351/(1+.31/k)

CMU SCS

15-826 (c) 2013 C. Faloutsos 24

Random Hash Functions

•  Can use linear hash functions. Pick random
(ai,, bi) and then the hash function is:
–  lhashi(x) = ai * x + bi

•  Gives uniform distribution over the bits
•  To make this exponential, define

–  hashi(x) = least zero bit in lhashi(x)

•  Hash functions easy to create and fast to use

C. Faloutsos 15-826

9

CMU SCS

15-826 (c) 2013 C. Faloutsos 25

Conclusions

•  Want to measure # of distinct elements
•  Approach #1: (Flajolet-Martin)

–  Map elements to random bits
–  Keep bitmask of bits
–  Estimate is O(2b) for least zero-bit b

•  Approach #2: (Cohen)
–  Create random permutation of elements
–  Keep least element seen
–  Estimate is: O(1/le) for least rank le

CMU SCS

15-826 (c) 2013 C. Faloutsos 26

Approximate counting

•  Flajolet-Martin (and Cohen) – vocabulary
size

•  Application: Approximate Neighborhood
function (ANF)

•  other, powerful approximate counting tools

CMU SCS

Christopher R. Palmer
Phillip B. Gibbons
Christos Faloutsos

KDD 2001

Fast Approximation of the
“neighborhood” Function for Massive

Graphs

details

C. Faloutsos 15-826

10

CMU SCS

15-826 (c) 2013 C. Faloutsos 28

Motivation

•  What is the diameter of the Web?
•  What is the effective diameter of the Web?
•  Are the telephone caller-callee graphs for

the U.S. similar to the ones in Europe?
•  Is the citation graph for physics different

from the one for computer science?
•  Are users in India further away from the

core of the Internet than those in the U.S.?

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 29

Proposed Tool: neighborhood

Given graph G=(V,E)
 N(h) = # pairs within h hops or less

 = neighborhood function

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 30

Proposed Tool: neighborhood

Given graph G=(V,E)
 N(h) = # pairs within h hops or less

 = neighborhood function
 N(u,h) = # neighbors of node u, within h
 hops or less

details

C. Faloutsos 15-826

11

CMU SCS

15-826 (c) 2013 C. Faloutsos 31

Example of neighborhood
details

CMU SCS

15-826 (c) 2013 C. Faloutsos 32

Example of neighborhood

~diameter of graph

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 33

Requirements (for massive graphs)

•  Error guarantees
•  Fast: (and must scale linearly with graph)
•  Low storage requirements: massive graphs!
•  Adapts to available memory
•  Sequential scans of the edges
•  Also estimates individual neighborhood

functions |S(u,h)|
– These are actually quite useful for mining

details

C. Faloutsos 15-826

12

CMU SCS

15-826 (c) 2013 C. Faloutsos 34

How would you compute it?

•  Repeated matrix multiply
–  Too slow O(n2.38) at the very least
–  Too much memory O(n2)

•  Breadth-first search
 FOR each node u DO
 bf-search to compute S(u,h) for each h
–  Best known exact solution!
–  We will use this as a reference

•  Approximations? Only 1 that we know of which
we will discuss when we evaluate it.

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 35

•  Guess what we’ll use?
– Approximate Counting!

•  Use very simple algorithm:
 FOR each node u DO S(u,0) = { (u,u) }
 FOR h = 1 to diameter of G DO
 FOR each node u DO S(u,h) = S(u,h-1)
 FOR each edge (u,v) in G DO
 S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 36

•  Guess what we’ll use?
– Approximate Counting!

•  Use very simple algorithm:
 FOR each node u DO S(u,0) = { (u,u) }
 FOR h = 1 to diameter of G DO
 FOR each node u DO S(u,h) = S(u,h-1)
 FOR each edge (u,v) in G DO
 S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

(distinct) neighbors of u,
within h hops

(distinct) neighbors of v,
within h-1 hops

details

C. Faloutsos 15-826

13

CMU SCS

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 (c) 2013 C. Faloutsos 37

1

2

3

4

details

CMU SCS

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 (c) 2013 C. Faloutsos 38

1

2

3

4

h=1

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

details

CMU SCS

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 (c) 2013 C. Faloutsos 39

1

2

3

4

h=1

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

details

C. Faloutsos 15-826

14

CMU SCS

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 (c) 2013 C. Faloutsos 40

1

2

3

4

h=1

{(1,1), (1,2)}
{(2,2)}
{(3,3)}
{(4,4)}

details

CMU SCS

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 (c) 2013 C. Faloutsos 41

1

2

3

4

h=1

{(1,1), (1,2), (1,3)}
{(2,2)}
{(3,3)}
{(4,4)}

details

CMU SCS

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 (c) 2013 C. Faloutsos 42

1

2

3

4

h=1

{(1,1), (1,2), (1,3)}
{(2,2), (2,1), (2,3)}
{(3,3), (3,1), (3,2), (3,4)}
{(4,4), (4,3)}

details

C. Faloutsos 15-826

15

CMU SCS

15-826 (c) 2013 C. Faloutsos 43

•  Guess what we’ll use?
– Approximate Counting!

•  Use very simple algorithm:
 FOR each node u DO S(u,0) = { (u,u) }
 FOR h = 1 to diameter of G DO
 FOR each node u DO S(u,h) = S(u,h-1)
 FOR each edge (u,v) in G DO
 S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

(distinct) neighbors of u,
within h hops

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 44

•  Guess what we’ll use?
– Approximate Counting!

•  Use very simple algorithm:
 FOR each node u DO S(u,0) = { (u,u) }
 FOR h = 1 to diameter of G DO
 FOR each node u DO S(u,h) = S(u,h-1)
 FOR each edge (u,v) in G DO
 S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈ S(v,h-1) }

•  Too slow and requires too much memory
•  Replace expensive set ops with bit ops

Intuition

initialize to self-only

can reach same things
and add one more step

(distinct) neighbors of u,
within h hops

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 45

ANF Algorithm #1
FOR each node, u, DO
 M(u,0) = concatenation of k bitmasks of length log n + r
 each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
 FOR each node, u, DO M(u,h) = M(u,h-1)
 FOR each edge (u,v) in G DO
 M(u,h) = (M(u,h) OR M(v,h-1))

 Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 / (1+.
31/k)

 where b(u) = average least zero bit in M(u,it)
DONE

details

C. Faloutsos 15-826

16

CMU SCS

15-826 (c) 2013 C. Faloutsos 46

ANF Algorithm #1
FOR each node, u, DO
 M(u,0) = concatenation of k bitmasks of length log n + r
 each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
 FOR each node, u, DO M(u,h) = M(u,h-1)
 FOR each edge (u,v) in G DO
 M(u,h) = (M(u,h) OR M(v,h-1))

 Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 / (1+.
31/k)

 where b(u) = average least zero bit in M(u,it)
DONE

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 47

ANF Algorithm #1
FOR each node, u, DO
 M(u,0) = concatenation of k bitmasks of length log n + r
 each bitmask has 1 bit set (exp. distribution)
DONE

FOR h = 1 to diameter of G DO
 FOR each node, u, DO M(u,h) = M(u,h-1)
 FOR each edge (u,v) in G DO
 M(u,h) = (M(u,h) OR M(v,h-1))

 Estimate N(h) = ∑u 2b(u) / .77351 / (1+.31/k)
 where b(u) = average least zero bit in M(u,it)
DONE

whatever u can reach
with h hops
plus whatever v can reach
with h-1 hops
Duplicates: automatically
eliminated!

u v

details

CMU SCS

15-826 (c) 2013 C. Faloutsos 48

Properties

•  Has error guarantees: (from F&M)
•  Is fast: O((n+m)d) for n nodes, m edges, diameter

d (which is typically small)
•  Has low storage requirements: O(n)
•  Easily parallelizable: Partition nodes among

processors, communicate after full iteration
•  Does sequential scans of edges.
•  Estimates individual neighborhood functions
•  DOES NOT work with limited memory

details

C. Faloutsos 15-826

17

CMU SCS

15-826 (c) 2013 C. Faloutsos 49

Conclusions

•  Approximate counting (ANF / Martin-
Flajolet) take minutes, instead of hours

•  and discover interesting facts quickly

CMU SCS

15-826 (c) 2013 C. Faloutsos 50

Outline

•  Flajolet-Martin (and Cohen) – vocabulary
size (Problem #1)

•  Application: Approximate Neighborhood
function (ANF)

•  other, powerful approximate counting tools
(Problem #2, #3)

CMU SCS

15-826 (c) 2013 C. Faloutsos 51

Problem #2

•  Given a multiset
•  compute approximate high-end histogram =

hot-list query = (k most common words, and
their counts)

A A A B A B A C A B D D D D D

(for k=2:
A#: 6
D#: 5)

C. Faloutsos 15-826

18

CMU SCS

15-826 (c) 2013 C. Faloutsos 52

Hot-list queries

A A B A C A B C A A D E A C A

• Given a stream of product ids (with duplicates)
• Compute

• the k most frequent products,
• and their counts

• with a SINGLE PASS and O(k) memory

k=2 A C

8 3

CMU SCS

15-826 (c) 2013 C. Faloutsos 53

Applications?

CMU SCS

15-826 (c) 2013 C. Faloutsos 54

Applications?

•  Best selling products
•  most common words
•  most busy IP destinations/sources (DoS

attacks)
•  summarization / synopses of datasets
•  high-end histograms for DBMS query

optimization

C. Faloutsos 15-826

19

CMU SCS

15-826 (c) 2013 C. Faloutsos 55

Hot-list queries

A A B A C A B C A A D E A C A

• Given a stream of product ids (with duplicates)
• Compute

• the k most frequent products,
• and their counts

• with a SINGLE PASS and O(k) memory

k=2 A C

8 3

Exact: impossible
Thus: approximate

CMU SCS

15-826 (c) 2013 C. Faloutsos 56

Hot-list queries - idea

•  Keep the (approx.) k best so far, plus counts
•  for a new item, if it is in the hot list

–  increment its count

A A B A C A B C A A D E A C A

k=2 A B

2 1

CMU SCS

15-826 (c) 2013 C. Faloutsos 57

Hot-list queries - idea

•  Keep the (approx.) k best so far, plus counts
•  for a new item, if it is in the hot list

–  increment its count

A A B A C A B C A A D E A C A

k=2 A B

2 1
3

C. Faloutsos 15-826

20

CMU SCS

15-826 (c) 2013 C. Faloutsos 58

Hot-list queries - idea

•  Keep the (approx.) k best so far, plus counts
•  for a new item, if it is in the hot list

–  increment its count
–  else ??

A A B A C A B C A A D E A C A

k=2 A B

1
3

CMU SCS

15-826 (c) 2013 C. Faloutsos 59

Hot-list queries - idea

•  Keep the (approx.) k best so far, plus counts
•  for a new item, if it is in the hot list

–  increment its count
–  else TOSS a coin, and possibly displace weakest

A A B A C A B C A A D E A C A

k=2 A B

1
3

CMU SCS

15-826 (c) 2013 C. Faloutsos 60

Hot-list queries - idea

•  Biased coin - what are the Head/Tail prob.?

A A B A C A B C A A D E A C A

k=2 A B

2

6

C. Faloutsos 15-826

21

CMU SCS

15-826 (c) 2013 C. Faloutsos 61

Hot-list queries - idea

•  Biased coin - what are the Head/Tail prob.?
•  A: depends on count(weakest)

A A B A C A B C A A D E A C A

k=2 A B

2

6

CMU SCS

15-826 (c) 2013 C. Faloutsos 62

Hot-list queries - idea

•  Biased coin - what are the Head/Tail prob.?
•  A: depends on count(weakest)
•  and the new item (‘D’), if it wins, it gets the

count of the item it displaced.

CMU SCS

15-826 (c) 2013 C. Faloutsos 63

Hot-list queries - idea

•  See [Gibbons+Matias 98] for proofs

C. Faloutsos 15-826

22

CMU SCS

15-826 (c) 2013 C. Faloutsos 64

Outline

•  Flajolet-Martin (and Cohen) – vocabulary
size (Problem #1)

•  Application: Approximate Neighborhood
function (ANF)

•  other, powerful approximate counting tools
– Problem #2,
– Problem #3

CMU SCS

15-826 (c) 2013 C. Faloutsos 65

Problem #3

•  Given two documents
•  compute quickly their similarity (#common

words/ #total-words) == Jaccard coefficient

CMU SCS

15-826 (c) 2013 C. Faloutsos 66

Problem #3’

•  Given a query document q
•  and many other documents
•  compute quickly the k nearest neighbors of

q, using the Jaccard coefficient

D1: {A, B, C}
D2: {A, D, F, G}
…

q: {A, C, D, W}

C. Faloutsos 15-826

23

CMU SCS

15-826 (c) 2013 C. Faloutsos 67

Applications?

CMU SCS

15-826 (c) 2013 C. Faloutsos 68

Applications?

•  Set comparisons eg.,
–  snail-mail address (set of trigrams)

•  search engines - ‘similar pages’
•  social networks: people with many joint

friends (facebook recommendations)

CMU SCS

15-826 (c) 2013 C. Faloutsos 69

Problem #3’

•  Given a query document q
•  and many other documents
•  compute quickly the k nearest neighbors of

q, using the Jaccard coefficient

•  Q: how to extract a fixed set of numerical
features, to index on?

C. Faloutsos 15-826

24

CMU SCS

15-826 (c) 2013 C. Faloutsos 70

Answer

•  Approximation / hashing - Cohen:

CMU SCS

15-826 (c) 2013 C. Faloutsos 71

Basic idea (Cohen)
large bit string

the

the

cat

For each document
and for a given h.f.
return the position of first ‘1’

Repeat for k h.f. ->
each document becomes k numbers

CMU SCS

15-826 (c) 2013 C. Faloutsos 72

Idea

•  Doc1: n1, n2, nk
•  Doc2: n1’, n2’, nk’

C. Faloutsos 15-826

25

CMU SCS

15-826 (c) 2013 C. Faloutsos 73

Idea

•  Doc1: n1, n2, nk
•  Doc2: n1’, n2’, nk’

•  say they agree on m values
1 m

CMU SCS

15-826 (c) 2013 C. Faloutsos 74

Idea

•  Doc1: n1, n2, nk
•  Doc2: n1’, n2’, nk’

•  say they agree on m values,
•  then

Jaccard(Doc1, Doc2) ~ m/k

CMU SCS

15-826 (c) 2013 C. Faloutsos 75

Intuition behind proof

•  Venn diagram

voc. terms of
Doc.#1 voc. terms of

Doc.#2

Andrew Tomkins

C. Faloutsos 15-826

26

CMU SCS

15-826 (c) 2013 C. Faloutsos 76

Intuition behind proof

•  Venn diagram

voc. terms of
Doc.#1 voc. terms of

Doc.#2

CMU SCS

15-826 (c) 2013 C. Faloutsos 77

Intuition behind proof

•  Venn diagram - let w be the voc. word
with the overal smallest hash value, for
h.f.#1

voc. terms of
Doc.#1 voc. terms of

Doc.#2

w

CMU SCS

15-826 (c) 2013 C. Faloutsos 78

Intuition behind proof

•  Prob. that w is smallest on both is
exactly Jaccard: #common / #union

voc. terms of
Doc.#1 voc. terms of

Doc.#2

w

C. Faloutsos 15-826

27

CMU SCS

15-826 (c) 2013 C. Faloutsos 79

Conclusions

•  Approximations can achieve the impossible!
•  MF and ANF for neighborhood function
•  hot-lists
•  Jaccard coeff. / ‘similar pages’

CMU SCS

15-826 (c) 2013 C. Faloutsos 80

References
E. Cohen. Size-estimation framework with applications to transitive

closure and reachability. Journal of Computer and System Sciences,
55(3):441-453, December 1997. http://www.research.att.com/
~edith/Papers/tcest.ps.Z

Phillip B. Gibbons, Yossi Matias, New sampling-based summary
statistics for improving approximate query answers, ACM
SIGMOD, 1998 Seattle, Washington, pp 331 - 342

CMU SCS

15-826 (c) 2013 C. Faloutsos 81

References (cont’d)
Aristides Gionis, Dimitrios Gunopulos, Nikos Koudas,

Efficient and Tunable Similar Set Retrieval, ACM
SIGMOD 2001, Santa Barbara, California

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships for the internet topology. SIGCOMM, 1999.

C. Faloutsos 15-826

28

CMU SCS

15-826 (c) 2013 C. Faloutsos 82

References (cont’d)
P. Flajolet and G. N. Martin. Probabilistic counting

algorithms for data base applications. Journal of
Computer and System Sciences, 31:182-209, 1985.

C. R. Palmer, P. B. Gibbons and C. Faloutsos. Fast
approximation of the “neighborhood” function for massive
graphs. KDD 2002

CMU SCS

15-826 (c) 2013 C. Faloutsos 83

References (cont’d)
C. R. Palmer, G. Siganos, M. Faloutsos, P. B. Gibbons and C.

Faloutsos. The connectivity and fault-tolerance of the
internet topology. NRDM 2001.

