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15-826: Multimedia Databases
and Data Mining

Lecture #29: Approximate Counting
C. Faloutsos

% CMU SCS

Must-read material

» Christopher Palmer, Phillip B. Gibbons and Christos
Faloutsos,
ANF': A Fast and Scalable Tool for Data Mining in
Massive Graphs, KDD 2002

» Efficient and Tunable Similar Set Retrieval, by Aristides
Gionis, Dimitrios Gunopulos and Nikos Koudas,
SIGMOD, 2001.

s New sampling-based summary statistics for improving
approximate query answers, by Phillip B. Gibbons and
Yossi Matias, ACM SIGMOD, 1998.
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Outline

Goal: ‘Find similar / interesting things’
* Intro to DB

¢ Indexing - similarity search

» Data Mining

— Association Rules
# — Approximate Counting
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QOutline

* Flajolet-Martin (and Cohen) —
vocabulary size (Problem #1)

 Application: Approximate Neighborhood
function (ANF)

* other, powerful approximate counting tools
(Problem #2, #3)
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Problem #1

» Given a multiset (eg., words in a document)

+ find the vocabulary size (#, after dup.
elimination)

AAABABACAB

Voc. Size=3 =|{A, B, C}|
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Thanks to

* Chris Palmer (Vivisimo->IBM)

15-826 (c) 2013 C. Faloutsos 6




C. Faloutsos

g CMU SCS
Problem #2

* Given a multiset

» compute approximate high-end histogram =
hot-list query = (kK most common words, and
their counts)

AAABABACABDDDDD

(for k=2:
A#: 6
D#:5)
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Problem #3

» Given two documents

 compute quickly their similarity (#common
words/ #total-words) == Jaccard coefficient
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Problem #1

+ Given a multiset (eg., words in a document)

+ find the vocabulary size V (#, after dup.
elimination)

* using space O(V), or O(log(V))

(Q1: Applications?)
(Q2: How would you solve it?)
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Basic idea (Cohen)

large bit string, initially all zeros
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Basic idea (Cohen)

large bit string, initially all zeros

A

C

15-826
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hash!
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Basic idea (Cohen)

large bit string
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Basic idea (Cohen)

large bit string

-

A ————
A | ]
C
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Basic idea (Cohen)

large bit string

> >

15-826

the rightmost position depends on the

vocabulary size
(and so does the left-most)

Repeat, with several hashing
functions, and merge the estimates
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Basic idea (Cohen)

large bit string

> >

15-826

the rightmost position depends on the
vocabulary size
(and so does the left-most)

Can we do it in less space??
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Basic idea (Cohen)
large bit string
[ 1 | |
A E,hoec;ibi?ltar:-l;zti Zpeosition depends on the
A _[ (and so does the left-most)
C

Can we do it in less space??
YES
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How?
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Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

(I T 1
A J first bit: with prob. 2
second: with prob. %
N
i-th: with prob. %2**i
C
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Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

(r T
J again, the rightmost bit
A . , .
reveals’ the vocabulary size
Al

C
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Basic idea (Flajolet-Martin)

O(log(V)) bit string (V: voc. size)

(r T
J again, the rightmost bit
A . s .
reveals’ the vocabulary size
Al
Eg.: V=4, will probably set
C the 2nd bit, etc

15-826
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Flajolet-Martin

« Hash multiple values of X to same signature
— Hash each x to a bit, using exponential distr.
— Y map to bit 0, 4 map to bit 1, ...

* Do several different mappings and average
— Gives better accuracy

— Estimate is:  2°/.77351 / BIAS
* b~rightmost ‘1, and actually:

R ENE
T
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Flajolet-Martin

« Hash multiple values of X to same signature
— Hash each x to a bit, using exponential distr.
— Y map to bit 0, 4 map to bit 1, ...

* Do several different mappings and average
— Gives better accuracy
— Estimate is: 2°/.77351/BIAS

« b : average least zero bit in the bitmask
* bias : 1+.31/k for k different mappings -:.:l

» Flajolet & Martin prove this works ™
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FM Approx. Counting Alg.
Assume X ={0, 1, ..., V-1}
FOR i = 1 to k DO bitmask[i] = 0000...00
Create k random hash functions, hash;
FOR each element x of M DO
FOR i =1to kDO

h = hash,(x)

bitmask[i] = bitmask/[i] LOR h
Estimate: b = average least zero bit in bitmask/[i]

2b/.77351/(1+.31/k)

* How many bits? log V' + small constant
* What hash functions?

15-826 () 2013 C. Faloutsos 23
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Random Hash Functions

* Can use linear hash functions. Pick random
(a;, by and then the hash function is:
— lhash(x) = a; *x + b,

* Gives uniform distribution over the bits

» To make this exponential, define
— hash,(x) = least zero bit in lhash,(x)

» Hash functions easy to create and fast to use
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Conclusions

* Want to measure # of distinct elements
« Approach #1: (Flajolet-Martin)

— Map elements to random bits

— Keep bitmask of bits

— Estimate is O(2°) for least zero-bit b
* Approach #2: (Cohen)

— Create random permutation of elements

— Keep least element seen

— Estimate is: O(1/le) for least rank /e
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Approximate counting

* Flajolet-Martin (and Cohen) — vocabulary
size

» Application: Approximate Neighborhood
function (ANF)

+ other, powerful approximate counting tools
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Fast Approximation of the
“neighborhood” Function for Massive
Graphs

Christopher R. Palmer
Phillip B. Gibbons
Christos Faloutsos

KDD 2001
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Motivation a‘ ‘

What is the diameter of the Web?

» What is the effective diameter of the Web?
Are the telephone caller-callee graphs for
the U.S. similar to the ones in Europe?

Is the citation graph for physics different
from the one for computer science?

 Are users in India further away from the
core of the Internet than those in the U.S.?
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Proposed Tool: neighborhoﬂﬂ|

Given graph G=(V,E)
N(h) =# pairs within 4 hops or less
= neighborhood function
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Proposed Tool: neighborhoa|

Given graph G=(V,E)
N(h) =# pairs within % hops or less
= neighborhood function
N(u,h) = # neighbors of node u, within A
hops or less
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Example of neigchborhoo
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Example of neigchborhoo
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Requirements (for massive g

* Error guarantees
* Fast: (and must scale linearly with graph)

* Adapts to available memory
» Sequential scans of the edges

* Also estimates individual neighborhood
functions |S(u,h)|
— These are actually quite useful for mining

15-826 (c) 2013 C. Faloutsos

: details .

» Low storage requirements: massive graphs!

15-826

11



C. Faloutsos 15-826

g CMU SCS

How would you compute it

» Repeated matrix multiply
— Too slow O(n?3%) at the very least
— Too much memory O(n?)
* Breadth-first search
FOR each node u DO
bf-search to compute S(u, ) for each
— Best known exact solution!

— We will use this as a reference

* Approximations? Only 1 that we know of which
we will discuss when we evaluate it.
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Intuition

* Guess what we’ll use?
— Approximate Counting!

» Use very simple algorithm:
FOR each node u DO S(u,0) = { (uu) } initialize to self-only
FOR h = 1 to diameter of G DO
FOR each node u DO S(u,h) = S(u,h-1) can reach same things
FOR each edge (1,v) in G DO and add one more step
Stuh) =Suh) U{ (uy’): (vv) € Swh-1) }

15-826 () 2013 C. Faloutsos 35
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Intuition

# (distinct) neighbors of u,
e Guess what we’ll use? ~ within hhops

— Approximate Counting!

« Use very simple algorithi:
FOR each node u DO S(u,0) = { (yu) } initialize to self-only
FOR h = I to diameter of G DO
FOR each node u DO S(u,h) = S(u,h-1) can reach same things
FOR each edge (1,v) in G DO and add one more step
Stuh) =Suh) U{ (wyv’): (vv) E;(v,h-l)}

# (distinct) neighbors of v,
within h-1 hops

15-826 (c) 2013 C. Faloutsos 36
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(LD} (D}
{2.2)}
(33} {33}
{44} {44}

15-826
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Trace a‘
h=0
O—Q
S
Hen
1(2,2)}
1(3,3)}
{(4,4)}
% CMU SCS
Trace a”
h=0 h=1
O—Q
NS
(LD} (1,0}
12,2} 1(2,2)}
133)) 1(3,3)}
144} 144}
g CMU SCS
Trace m
h=0 h=1

39
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Trace a ‘

h=0 h=1

(LD} (LD, (1.2)}
(2.2)}
(3.3)) {(33))
(44} {@44)
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Trace a‘ |

h=0 h=1

(LD} {1LD), (1,2), (1,3)}
22} {2}
{(3.3)}
{@44)) {44}
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Trace ﬁ ‘

h=0 h=1

{4L,D} (L1, (1,2), (1,3)}
{22} 12.2).@2.D,(23)}
{3.3)) {(3.3),(3.1), (3,2), B}
{(44))  {(44), (4.3)}
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Intuition

# (distinct) neighbors of u,
* Guess what we’ll use? ~ within h hops

— Approximate Counting!

» Use very simple algorith:
FOR each node u DO S(u,0) = { (yu) }
FOR h = I to diameter of G DO
FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (1,v) in G DO
Stu,h) =S(uh) U{ (uy’) : (vv’') € Svh-1)}

initialize to self-only

can reach same things
and add one more step

15-826 (c) 2013 C. Faloutsos 43
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Intuition

# (distinct) neighbors of u,
» Guess what we’ll use? ~ Wwithin h hops

— Approximate Counting!

 Use very simple algorith
FOR each node u DO S(u,0) = { (Wu) }
FOR h = 1 to diameter of G DO
FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (1,v) in G DO
Stuh) =Suh) U{ (uy’): (vv) € Swh-1) }

* Too slow and requires too much memory
* Replace expensive set ops with bit ops

15-826 (c) 2013 C. Faloutsos 44

initialize to self-only

can reach same things
and add one more step

g CMU SCS

ANF Algorithm #1

FOR each node, u, DO
M(u,0) = concatenation of k bitmasks of length log n + r
each bitmask has 1 bit set (exp. distribution)

DONE

FOR & = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (1,v) in G DO
M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2°®@ /.77351 / (1+.
31/k)

where b(u) = average least zero bit in M(u,it)

QQ:N E () 2013 C. Faloutsos
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ANF Algorithm #1

FOR each node, u, DO
M(u,0) = concatenation of k bitmasks of length log n + r
each bitmask has 1 bit set (exp. distribution)

DONE

FOR h = I to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO
M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2°@ /.77351 / (1+.
31/k)

where b(u) = average least zero bit in M(u,it)
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ANF Algorithm #1

u v whatever u can reach
oO—O with h hops
1 ] plus whatever v can reach

with h-1 hops
Duplicates: automatically
eliminated!

M(uh) = (M(u,h) OR M(v,h-1))
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Properties

* Has error guarantees: (from F&M)

« Is fast: O((n+m)d) for n nodes, m edges, diameter
d (which is typically small)

* Has low storage requirements: O(n)

« Easily parallelizable: Partition nodes among
processors, communicate after full iteration

* Does sequential scans of edges.
» Estimates individual neighborhood functions
* DOES NOT work with limited memory

15-826 (c) 2013 C. Faloutsos 48
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Conclusions
» Approximate counting (ANF / Martin-

Flajolet) take minutes, instead of hours

+ and discover interesting facts quickly
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Outline
* Flajolet-Martin (and Cohen) — vocabulary
size (Problem #1)
* Application: Approximate Neighborhood
function (ANF)

+ other, powerful approximate counting tools
m) (Problem #2, #3)
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Problem #2

e Given a multiset

 compute approximate high-end histogram =
hot-list query = (k most common words, and
their counts)

AAABABACABDDDDD

(for k=2:
A#: 6
D#: 5)

15-826 (c) 2013 C. Faloutsos 51

15-826

17



C. Faloutsos

CMU SCS

Hot-list queries

*Given a stream of product ids (with duplicates)
*Compute

the & most frequent products,

eand their counts
swith a SINGLE PASS and O(k) memory

8 3
A ABACABCAADEA CA I:I
L]
k=2 A C
15-826 (c) 2013 C. Faloutsos 52
Applications?
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Applications?

Best selling products
* most common words

most busy IP destinations/sources (DoS
attacks)

+ summarization / synopses of datasets
* high-end histograms for DBMS query
optimization

15-826 (c) 2013 C. Faloutsos 54
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Hot-list queries

*Given a stream of product ids (with duplicates)
*Compute

the & most frequent products,

eand their counts
swith a SINGLE PASS and O(k) memory

8 3
A ABACABCAADEA CA I:I
Exact: impossible I:l
Thus: approximate k=2 A C

15-826 (c) 2013 C. Faloutsos 55
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Hot-list queries - idea

» Keep the (approx.) & best so far, plus counts
« for a new item, if it is in the hot list

— increment its count

AABACABCAADEA CA
1 I:'I:I

k=2 A B

15-826 () 2013 C. Faloutsos 56
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Hot-list queries - idea

» Keep the (approx.) k best so far, plus counts
 for a new item, if it is in the hot list

— increment its count

3
A

AABACABCAADEA CA
1 DI:I
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Hot-list queries - idea

» Keep the (approx.) k best so far, plus counts

* for a new item, if it is in the hot list
— increment its count

—else ??
3 1
A ABACABCAADEA CA E
1 —
k=2 A B
15-826 (¢) 2013 C. Faloutsos 58

Hot-list queries - idea

» Keep the (approx.) & best so far, plus counts

« for a new item, if it is in the hot list
— increment its count

— else TOSS a coin, and possibly displace weakest

Ll

k=2

15-826 () 2013 C. Faloutsos 59

3
1
AABACABCAADEA CA E
-
A B

g CMU SCS

Hot-list queries - idea

* Biased coin - what are the Head/Tail prob.?

2
A ABACABCAADEA CA
1 =

15-826 (c) 2013 C. Faloutsos 60
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Hot-list queries - idea

* Biased coin - what are the Head/Tail prob.?

* A: depends on count(weakest)

A ABACABCAA?EA CA

2
=
k=2 A B
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Hot-list queries - idea

* Biased coin - what are the Head/Tail prob.?
* A: depends on count(weakest)

+ and the new item (‘D”), if it wins, it gets the
count of the item it displaced.
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Hot-list queries - idea

* See [Gibbons+Matias 98] for proofs

15-826 (c) 2013 C. Faloutsos 63
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QOutline

* Flajolet-Martin (and Cohen) — vocabulary
size (Problem #1)

 Application: Approximate Neighborhood
function (ANF)

* other, powerful approximate counting tools
— Problem #2,
— Problem #3
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Problem #3

» Given two documents

 compute quickly their similarity (#common
words/ #total-words) == Jaccard coefficient

15-826 () 2013 C. Faloutsos 65
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Problem #3’

* Given a query document ¢
* and many other documents

» compute quickly the k nearest neighbors of
g, using the Jaccard coefficient

DI1: {A, B, C} q: {A,C,D, W}
D2: {A, D, F, G}

15-826 (c) 2013 C. Faloutsos 66
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Applications?

15-826 (c) 2013 C. Faloutsos 67
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Applications?

* Set comparisons eg.,
— snail-mail address (set of trigrams)

* search engines - ‘similar pages’

* social networks: people with many joint
friends (facebook recommendations)

15-826 () 2013 C. Faloutsos 68
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Problem #3°

* Given a query document ¢

* and many other documents

» compute quickly the k nearest neighbors of
g, using the Jaccard coefficient

* Q: how to extract a fixed set of numerical
features, to index on?

15-826 (c) 2013 C. Faloutsos 69
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Answer

* Approximation / hashing - Cohen:

15-826

(¢) 2013 C. Faloutsos 70
Basic idea (Cohen)
large bit string
[ | |
For each document
the and for a given h.f.
the return the position of first ‘1’
cat Repeat for k h.f. >
each document becomes £ numbers
15-826 (c) 2013 C. Faloutsos 71
Idea
* Docl: nl, n2, ... nk
* Doc2: nl’,n2’, ... nk’
15-826 (c) 2013 C. Faloutsos 72
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¢ Docl: nl, [n2,|..... nk
e Doc2: nl’, ) e nk’

* say they agree on m values

15-826 (c) 2013 C. Faloutsos 73
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* Docl: nl, n2, ... nk
¢ Doc2: nl’,n2’, ... nk’

« say they agree on m values,

« then
Jaccard(Docl, Doc2) ~ m/k

15-826 (c) 2013 C. Faloutsos 74
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Intuition behind proof

* Venn diagram

voc. terms of
Doc.#1 voc. terms of

Doc.#2

15-826 (c) 2013 C. Faloutsos 75
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Intuition behind proof

* Venn diagram

voc. terms of
Doc.#1 voc. terms of

Doc.#2

15-826 (c) 2013 C. Faloutsos 76
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Intuition behind proof

* Venn diagram - let w be the voc. word
with the overal smallest hash value, for

h.f#1
voc. terms of
Doc.#1 voc. terms of
Doc.#2

15-826 (c) 2013 C. Faloutsos 77
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Intuition behind proof

* Prob. that w is smallest on both is
exactly Jaccard: #common / #union

voc. terms of

Doc.#1 voc. terms of
Doc.#2

15-826 (c) 2013 C. Faloutsos 78
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Conclusions

» Approximations can achieve the impossible!
* MF and ANF for neighborhood function
* hot-lists

* Jaccard coeff. / ‘similar pages’
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