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Must-read material 
•  Christopher Palmer, Phillip B. Gibbons and Christos 

Faloutsos,
ANF: A Fast and Scalable Tool for Data Mining in 
Massive Graphs,  KDD 2002 

•   Efficient and Tunable Similar Set Retrieval, by  Aristides 
Gionis, Dimitrios Gunopulos and Nikos Koudas, 
SIGMOD, 2001. 

•  New sampling-based summary statistics for improving 
approximate query answers, by Phillip B. Gibbons and 
Yossi Matias, ACM SIGMOD, 1998. 
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Outline 

Goal: ‘Find similar / interesting things’ 
•  Intro to DB 
•  Indexing - similarity search 
•  Data Mining 

– … 
– Association Rules 
– Approximate Counting 
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Outline 

•  Flajolet-Martin (and Cohen) – 
vocabulary size (Problem #1) 

•  Application: Approximate Neighborhood 
function (ANF) 

•  other, powerful approximate counting tools 
(Problem #2, #3) 
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Problem #1 

•  Given a multiset (eg., words in a document) 
•  find the vocabulary size (#, after dup. 

elimination) 

A A A B A B A C A B 

Voc. Size = 3      = |{A, B, C}| 

CMU SCS 
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Thanks to 

•  Chris Palmer (Vivisimo->IBM) 
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Problem #2 

•  Given a multiset 
•  compute approximate high-end histogram = 

hot-list query = (k most common words, and 
their counts) 

A A A B A B A C A B D D D D D 

(for k=2: 
A#: 6 
D#: 5) 
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Problem #3 

•  Given two documents 
•  compute quickly their similarity (#common 

words/ #total-words) == Jaccard coefficient 
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Problem #1 

•  Given a multiset (eg., words in a document) 
•  find the vocabulary size V (#, after dup. 

elimination) 
•  using space O(V), or O(log(V)) 

(Q1: Applications?) 
(Q2: How would you solve it?) 



C. Faloutsos 15-826 

4 

CMU SCS 

15-826 (c) 2013 C. Faloutsos 10 

Basic idea (Cohen) 
large bit string, initially all zeros 

A 

A 

C 
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Basic idea (Cohen) 
large bit string, initially all zeros 

A 

A 

C 

hash! 
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Basic idea (Cohen) 
large bit string 

A 

A 

C 
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Basic idea (Cohen) 
large bit string 

A 

A 

C 
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Basic idea (Cohen) 
large bit string 

A 

A 

C 

the rightmost position depends on the  
vocabulary size 
(and so does the left-most) 

Repeat, with several hashing  
functions, and merge the estimates 
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Basic idea (Cohen) 
large bit string 

A 

A 

C 

the rightmost position depends on the  
vocabulary size 
(and so does the left-most) 

Can we do it in less space??  
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Basic idea (Cohen) 
large bit string 

A 

A 

C 

the rightmost position depends on the  
vocabulary size 
(and so does the left-most) 

Can we do it in less space?? 
 YES 
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How? 
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Basic idea (Flajolet-Martin) 
O(log(V)) bit string (V: voc. size) 

A 

A 

C 

first bit: with prob. ½ 
second: with prob. ¼ 
... 
i-th: with prob. ½**i 
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Basic idea (Flajolet-Martin) 
O(log(V)) bit string (V: voc. size) 

A 

A 

C 

again, the rightmost bit 
‘reveals’ the vocabulary size 
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Basic idea (Flajolet-Martin) 
O(log(V)) bit string (V: voc. size) 

A 

A 

C 

again, the rightmost bit 
‘reveals’ the vocabulary size 

Eg.: V=4, will probably set  
the 2nd bit, etc 
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Flajolet-Martin 

•  Hash multiple values of X to same signature 
–  Hash each x to a bit, using exponential distr. 
–  ½ map to bit 0, ¼ map to bit 1, … 

•  Do several different mappings and average 
–  Gives better accuracy 
–  Estimate is:    2b / .77351 / BIAS 

•  b ~ rightmost ‘1’, and actually: 



C. Faloutsos 15-826 

8 

CMU SCS 

15-826 (c) 2013 C. Faloutsos 22 

Flajolet-Martin 

•  Hash multiple values of X to same signature 
–  Hash each x to a bit, using exponential distr. 
–  ½ map to bit 0, ¼ map to bit 1, … 

•  Do several different mappings and average 
–  Gives better accuracy 
–  Estimate is:    2b / .77351 / BIAS 

•  b : average least zero bit in the bitmask 
•  bias : 1+.31/k for k different mappings 

•  Flajolet & Martin prove this works 

CMU SCS 
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FM Approx. Counting Alg. 

•  How many bits?  log V + small constant 
•  What hash functions? 

Assume X = { 0, 1, …, V-1 } 
FOR i = 1 to k  DO bitmask[i] = 0000…00 
Create k random hash functions, hashi 
FOR each element x of M DO 
      FOR i = 1 to k DO 
           h = hashi(x) 
           bitmask[i] = bitmask[i] LOR h 
Estimate: b = average least zero bit in bitmask[i] 
                2b/.77351/(1+.31/k) 
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Random Hash Functions 

•  Can use linear hash functions.  Pick random 
(ai,, bi) and then the hash function is: 
–  lhashi(x) = ai * x + bi 

•  Gives uniform distribution over the bits 
•  To make this exponential, define 

–  hashi(x) = least zero bit in lhashi(x) 

•  Hash functions easy to create and fast to use 
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Conclusions 

•  Want to measure # of distinct elements 
•  Approach #1: (Flajolet-Martin) 

–  Map elements to random bits 
–  Keep bitmask of bits 
–  Estimate is O(2b) for least zero-bit b 

•  Approach #2: (Cohen) 
–  Create random permutation of elements 
–  Keep least element seen 
–  Estimate is: O(1/le) for least rank le 
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Approximate counting 

•  Flajolet-Martin (and Cohen) – vocabulary 
size 

•  Application: Approximate Neighborhood 
function (ANF) 

•  other, powerful approximate counting tools 

CMU SCS 

Christopher R. Palmer 
Phillip B. Gibbons 
Christos Faloutsos 

KDD 2001 

Fast Approximation of the 
“neighborhood” Function for Massive 

Graphs 

details 
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Motivation 

•  What is the diameter of the Web? 
•  What is the effective diameter of the Web? 
•  Are the telephone caller-callee graphs for 

the U.S. similar to the ones in Europe? 
•  Is the citation graph for physics different 

from the one for computer science? 
•  Are users in India further away from the 

core of the Internet than those in the U.S.? 

details 
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Proposed Tool: neighborhood 

Given graph G=(V,E) 
 N(h)   = # pairs within h hops or less 

             = neighborhood function 

details 
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Proposed Tool: neighborhood 

Given graph G=(V,E) 
 N(h)   = # pairs within h hops or less 

             = neighborhood function 
   N(u,h) = # neighbors of node u, within h  
                  hops or less 

details 
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Example of neighborhood 
details 
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Example of neighborhood 

~diameter of graph 

details 
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Requirements (for massive graphs) 

•  Error guarantees 
•  Fast: (and must scale linearly with graph) 
•  Low storage requirements: massive graphs! 
•  Adapts to available memory 
•  Sequential scans of the edges 
•  Also estimates individual neighborhood 

functions |S(u,h)| 
– These are actually quite useful for mining 

details 
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How would you compute it? 

•  Repeated matrix multiply 
–  Too slow O(n2.38) at the very least 
–  Too much memory O(n2) 

•  Breadth-first search 
       FOR each node u DO 
              bf-search to compute S(u,h) for each h 
–  Best known exact solution! 
–  We will use this as a reference 

•  Approximations?  Only 1 that we know of which 
we will discuss when we evaluate it. 

details 
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•  Guess what we’ll use? 
– Approximate Counting! 

•  Use very simple algorithm: 
            FOR each node u DO S(u,0) = { (u,u) } 
            FOR h = 1 to diameter of G DO 
                   FOR each node u DO S(u,h) = S(u,h-1) 
                   FOR each edge (u,v) in G DO 
                            S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈  S(v,h-1) } 

Intuition 

initialize to self-only 

can reach same things 
and add one more step 

details 
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•  Guess what we’ll use? 
– Approximate Counting! 

•  Use very simple algorithm: 
            FOR each node u DO S(u,0) = { (u,u) } 
            FOR h = 1 to diameter of G DO 
                   FOR each node u DO S(u,h) = S(u,h-1) 
                   FOR each edge (u,v) in G DO 
                            S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈  S(v,h-1) } 

Intuition 

initialize to self-only 

can reach same things 
and add one more step 

# (distinct) neighbors of u,  
within h hops 

# (distinct) neighbors of v,  
within h-1 hops 

details 
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Trace 

h=0 

{(1,1)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 
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1

2

3

4

details 
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Trace 

h=0 

{(1,1)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 
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1

2

3

4

h=1 

{(1,1)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 

details 
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Trace 

h=0 

{(1,1)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 
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1

2

3

4

h=1 

{(1,1)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 

details 
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Trace 

h=0 

{(1,1)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 
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1

2

3

4

h=1 

{(1,1), (1,2)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 

details 
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Trace 

h=0 

{(1,1)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 
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1

2

3

4

h=1 

{(1,1), (1,2), (1,3)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 

details 
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Trace 

h=0 

{(1,1)} 
{(2,2)} 
{(3,3)} 
{(4,4)} 
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1

2

3

4

h=1 

{(1,1), (1,2), (1,3)} 
{(2,2), (2,1), (2,3)} 
{(3,3), (3,1), (3,2), (3,4)} 
{(4,4), (4,3)} 

details 
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•  Guess what we’ll use? 
– Approximate Counting! 

•  Use very simple algorithm: 
            FOR each node u DO S(u,0) = { (u,u) } 
            FOR h = 1 to diameter of G DO 
                   FOR each node u DO S(u,h) = S(u,h-1) 
                   FOR each edge (u,v) in G DO 
                            S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈  S(v,h-1) } 

Intuition 

initialize to self-only 

can reach same things 
and add one more step 

# (distinct) neighbors of u,  
within h hops 

details 
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•  Guess what we’ll use? 
– Approximate Counting! 

•  Use very simple algorithm: 
            FOR each node u DO S(u,0) = { (u,u) } 
            FOR h = 1 to diameter of G DO 
                   FOR each node u DO S(u,h) = S(u,h-1) 
                   FOR each edge (u,v) in G DO 
                            S(u,h) = S(u,h) U { (u,v’) : (v,v’) ∈  S(v,h-1) } 

•  Too slow and requires too much memory 
•  Replace expensive set ops with bit ops 

Intuition 

initialize to self-only 

can reach same things 
and add one more step 

# (distinct) neighbors of u,  
within h hops 

details 
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ANF Algorithm #1 
FOR each node, u, DO 
    M(u,0) = concatenation of k bitmasks of length log n + r 
                    each bitmask has 1 bit set (exp. distribution) 
DONE 

FOR h = 1 to diameter of G DO 
     FOR each node, u, DO M(u,h) = M(u,h-1) 
     FOR each edge (u,v) in G DO 
              M(u,h) = (M(u,h) OR M(v,h-1)) 

     Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 / (1+.
31/k) 

                    where b(u) = average least zero bit in M(u,it) 
DONE 

details 
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ANF Algorithm #1 
FOR each node, u, DO 
    M(u,0) = concatenation of k bitmasks of length log n + r 
                    each bitmask has 1 bit set (exp. distribution) 
DONE 

FOR h = 1 to diameter of G DO 
     FOR each node, u, DO M(u,h) = M(u,h-1) 
     FOR each edge (u,v) in G DO 
              M(u,h) = (M(u,h) OR M(v,h-1)) 

     Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 / (1+.
31/k) 

                    where b(u) = average least zero bit in M(u,it) 
DONE 

details 
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ANF Algorithm #1 
FOR each node, u, DO 
    M(u,0) = concatenation of k bitmasks of length log n + r 
                    each bitmask has 1 bit set (exp. distribution) 
DONE 

FOR h = 1 to diameter of G DO 
     FOR each node, u, DO M(u,h) = M(u,h-1) 
     FOR each edge (u,v) in G DO 
              M(u,h) = (M(u,h) OR M(v,h-1)) 

     Estimate N(h) = ∑u 2b(u) / .77351 / (1+.31/k) 
                    where b(u) = average least zero bit in M(u,it) 
DONE 

whatever u can reach 
with h hops 
plus whatever v can reach 
with h-1 hops 
Duplicates: automatically 
eliminated! 

u v 

details 
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Properties 

•  Has error guarantees: (from F&M) 
•  Is fast: O((n+m)d) for n nodes, m edges, diameter 

d (which is typically small) 
•  Has low storage requirements: O(n) 
•  Easily parallelizable: Partition nodes among 

processors, communicate after full iteration 
•  Does sequential scans of edges. 
•  Estimates individual neighborhood functions 
•  DOES NOT work with limited memory 

details 
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Conclusions 

•  Approximate counting (ANF / Martin-
Flajolet) take minutes, instead of hours 

•  and discover interesting facts quickly 
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Outline 

•  Flajolet-Martin (and Cohen) – vocabulary 
size (Problem #1) 

•  Application: Approximate Neighborhood 
function (ANF) 

•  other, powerful approximate counting tools 
(Problem #2, #3) 
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Problem #2 

•  Given a multiset 
•  compute approximate high-end histogram = 

hot-list query = (k most common words, and 
their counts) 

A A A B A B A C A B D D D D D 

(for k=2: 
A#: 6 
D#: 5) 



C. Faloutsos 15-826 

18 

CMU SCS 

15-826 (c) 2013 C. Faloutsos 52 

Hot-list queries 

A  A B A C A B C A A D E A  C A 

• Given a stream of  product ids (with duplicates) 
• Compute  

• the k most frequent products,  
• and their counts 

• with a SINGLE PASS and O(k) memory 

k=2 A C 

8 3 
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Applications? 
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Applications? 

•  Best selling products 
•  most common words 
•  most busy IP destinations/sources (DoS 

attacks) 
•  summarization / synopses of datasets 
•  high-end histograms for DBMS query 

optimization 
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Hot-list queries 

A  A B A C A B C A A D E A  C A 

• Given a stream of  product ids (with duplicates) 
• Compute  

• the k most frequent products,  
• and their counts 

• with a SINGLE PASS and O(k) memory 

k=2 A C 

8 3 

Exact: impossible  
Thus: approximate 
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Hot-list queries - idea 

•  Keep the (approx.) k best so far, plus counts 
•  for a new item, if it is in the hot list 

–  increment its count 

A  A B A C A B C A A D E A  C A 

k=2 A B 

2 1 
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Hot-list queries - idea 

•  Keep the (approx.) k best so far, plus counts 
•  for a new item, if it is in the hot list 

–  increment its count 

A  A B A C A B C A A D E A  C A 

k=2 A B 

2 1 
3 



C. Faloutsos 15-826 

20 

CMU SCS 

15-826 (c) 2013 C. Faloutsos 58 

Hot-list queries - idea 

•  Keep the (approx.) k best so far, plus counts 
•  for a new item, if it is in the hot list 

–  increment its count 
–  else ?? 

A  A B A C A B C A A D E A  C A 

k=2 A B 

1 
3 
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Hot-list queries - idea 

•  Keep the (approx.) k best so far, plus counts 
•  for a new item, if it is in the hot list 

–  increment its count 
–  else TOSS a coin, and possibly displace weakest 

A  A B A C A B C A A D E A  C A 

k=2 A B 

1 
3 

CMU SCS 

15-826 (c) 2013 C. Faloutsos 60 

Hot-list queries - idea 

•  Biased coin - what are the Head/Tail prob.? 

A  A B A C A B C A A D E A  C A 

k=2 A B 

2 

6 
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Hot-list queries - idea 

•  Biased coin - what are the Head/Tail prob.? 
•  A: depends on count(weakest) 

A  A B A C A B C A A D E A  C A 

k=2 A B 

2 

6 
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Hot-list queries - idea 

•  Biased coin - what are the Head/Tail prob.? 
•  A: depends on count(weakest) 
•  and the new item (‘D’), if it wins, it gets the 

count of the item it displaced. 
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Hot-list queries - idea 

•  See [Gibbons+Matias 98] for proofs 
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Outline 

•  Flajolet-Martin (and Cohen) – vocabulary 
size (Problem #1) 

•  Application: Approximate Neighborhood 
function (ANF) 

•  other, powerful approximate counting tools  
– Problem #2,  
– Problem #3 
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Problem #3 

•  Given two documents 
•  compute quickly their similarity (#common 

words/ #total-words) == Jaccard coefficient 
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Problem #3’ 

•  Given a query document q 
•  and many other documents 
•  compute quickly the k nearest neighbors of 

q, using the Jaccard coefficient 

D1: {A, B, C} 
D2: {A, D, F, G} 
… 

q: {A, C, D, W} 
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Applications? 
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Applications? 

•  Set comparisons eg., 
–  snail-mail address (set of trigrams) 

•  search engines - ‘similar pages’ 
•  social networks: people with many joint 

friends  (facebook recommendations) 
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Problem #3’ 

•  Given a query document q 
•  and many other documents 
•  compute quickly the k nearest neighbors of 

q, using the Jaccard coefficient 

•  Q: how to extract a fixed set of numerical 
features, to index on? 
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Answer 

•  Approximation / hashing - Cohen: 
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Basic idea (Cohen) 
large bit string 

the 

the 

cat 

For each document 
and for a given h.f. 
return the position of first ‘1’ 

Repeat for k h.f. ->  
each document becomes k numbers 
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Idea 

•  Doc1:    n1,  n2, .....              nk 
•  Doc2:    n1’, n2’, ....             nk’ 



C. Faloutsos 15-826 

25 

CMU SCS 

15-826 (c) 2013 C. Faloutsos 73 

Idea 

•  Doc1:    n1,  n2, .....              nk 
•  Doc2:    n1’, n2’, ....             nk’ 

•  say they agree on m values 
1 m 
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Idea 

•  Doc1:    n1,  n2, .....              nk 
•  Doc2:    n1’, n2’, ....             nk’ 

•  say they agree on m values,  
•  then 

Jaccard(Doc1, Doc2) ~ m/k 
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Intuition behind proof 

•  Venn diagram 

voc. terms of 
Doc.#1 voc. terms of 

Doc.#2 

Andrew Tomkins 
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Intuition behind proof 

•  Venn diagram 

voc. terms of 
Doc.#1 voc. terms of 

Doc.#2 
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Intuition behind proof 

•  Venn diagram - let w be the voc. word 
with the overal smallest hash value, for 
h.f.#1 

voc. terms of 
Doc.#1 voc. terms of 

Doc.#2 

w 
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Intuition behind proof 

•  Prob. that w is smallest on both is 
exactly Jaccard: #common / #union  

voc. terms of 
Doc.#1 voc. terms of 

Doc.#2 

w 
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Conclusions 

•  Approximations can achieve the impossible! 
•  MF and ANF for neighborhood function 
•  hot-lists 
•  Jaccard coeff. / ‘similar pages’ 
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