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15-826: Multimedia Databases
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Lecture #27: Graph mining -
Generators & tools

Christos Faloutsos
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Must-read material (1 of 2)

Fully Automatic Cross-Associations,
by D. Chakrabarti, S. Papadimitriou, D.
Modha and C. Faloutsos, in KDD 2004
(pages 79-88), Washington, USA
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Must-read material (2 of 2)

J. Leskovec, D. Chakrabarti, J. Kleinberg, and
C. Faloutsos,
Realistic, Mathematically Tractable Graph
Generation and Evolution, Using
Kronecker Multiplication, in PKDD 2005,
Porto, Portugal

15-826 Copyright: C. Faloutsos (2013) #3

15-826



C. Faloutsos

g CMUSCS
Main outline P~

¢ Introduction
¢ Indexing
* Mining
— Graphs — patterns
m) - Graphs — generators and tools
— Association rules
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Detailed outline 274

* Graphs — generators
=  _ Erdos-Renyi
— Other generators
— Kronecker

* Graphs - tools

15-826 Copyright: C. Faloutsos (2013) 5
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Generators

» How to generate random, realistic graphs?
— Erdos-Renyi model: beautiful, but unrealistic
— degree-based generators
— process-based generators
— recursive/self-similar generators

15-826 Copyright: C. Faloutsos (2013) 6
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Erdos-Renyi

* random graph — 100
nodes, avg degree =2

» Fascinating properties
(phase transition)

* But: unrealistic
(Poisson degree
distribution != power
law)

15-826 Copyright: C. Faloutsos (2013) 7

E-R model & Phase transition
» vary avg degree D Pe
* watch Pc =

Prob( there is a giant
connected component) 00

* How do you expect it o

to be?

0
D
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E-R model & Phase transition

* vary avg degree D
e watch Pc =

Pc

Prob( there is a giant
connected component)

* How do you expect it
to be?
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Degree-based

* Figure out the degree distribution (eg.,
‘Zipf”)
» Assign degrees to nodes

» Put edges, so that they match the original
degree distribution

¥N-N¥ ¥ 4 44
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Process-based

« Barabasi; Barabasi-Albert: Preferential
attachment -> power-law tails!
— ‘rich get richer’

e [Kumar+]: preferential attachment + mimick

— Create ‘communities’

15-826 Copyright: C. Faloutsos (2013) 11
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Process-based (cont’d)

* [Fabrikant+, ‘02]: H.O.T.: connect to
closest, high connectivity neighbor

e [Pennock+, ‘02]: Winner does NOT take all

15-826 Copyright: C. Faloutsos (2013) 12
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Detailed outline %7

» Graphs — generators
— Erdos-Renyi
— Other generators
— Kronecker

* Graphs - tools

15-826 Copyright: C. Faloutsos (2013) 13
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Recursive generators

* (RMAT [Chakrabarti+,’04])
» Kronecker product

15-826 Copyright: C. Faloutsos (2013) 14
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Wish list for a generator:

* Power-law-tail in- and out-degrees

* Power-law-tail scree plots

+ shrinking/constant diameter

* Densification Power Law

e communities-within-communities

Q: how to achieve all of them?

A: Kronecker matrix product [Leskovec+05b]

15-826 Copyright: C. Faloutsos (2013) 15
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Graph gen.: Problem dfn

» Given a growing graph with count of nodes N,,
N, ..
» Generate a realistic sequence of graphs that will
obey all the patterns
— Static Patterns T
S1 Power Law Degree Distribution ~ |
S2 Power Law eigenvalue and eigenvector distribution * -
Small Diameter
— Dynamic Patterns

T2 Growth Power Law (2x nodes; 3x edges) f \&.\'\
T1 Shrinking/Stabilizing Diameters ' . -
15-826 Copyright: C. Faloutsos (2013) 16
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Graph Patterns

) Power Laws . )
i i, b T~

Count vs Indegree  Count vs Outdegree  Ejgenvalue vs Rank

How to match all these properties (+ small diameters, etc)?

15-826 Copyright: C. Faloutsos (2013) 17
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Hint: self-similarity
* A: RMAT/Kronecker generators
— With self-similarity, we get all power-laws,
automatically,

— And small/shrinking diameter

— And 'no good cuts’
R-MAT: A Recursive Model for Graph Mining,

by D. Chakrabarti, Y. Zhan and C. Faloutsos,
SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation
and Evolution, Using Kronecker Multiplication,

by J. Leskovec, D. Chakrabarti, J. Kleinberg,
and C' Falantene in PKNDND 2005 Partn Partnoal
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Kronecker Graphs
; 1

Q&Xe
X,
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Adjacency matrix

Lg CMU SCS

—_—
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Adjacency matrix
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Q
Q

Adjacency matrix
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Kronecker product

(a) Graph Gy (b) Intermediate stage (c) Graph Gz = Gy @ Gy

110 GG, 0
111 G,|G,[6,
0f1]1 066

(d) Adjacency matrix (e) Adjacency matrix (f) Plot of Gy

of Gy of G2 = G @ Gy
—_— —
N N*N  N**4
15-826 Copyright: C. Faloutsos (2013) 22

% CMU SCS

Kronecker Graphs

+ Continuing multiplying with G, we obtain G,and
soon...

G, adjacency matrix
15-826 Copyright: C. Faloutsos (2013) 23
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Kronecker Graphs

 Continuing multiplying with G, we obtain G, and
soon... "

G, adjacency matrix
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Kronecker Graphs

 Continuing multiplying with G, we obtain G,and

o : .

G, adjacency matrix
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Kronecker Graphs

+ Continuing multiplying with G, we obtain G,and

soon... .
VN
Holes within holes; 2 £2 2
. Vo Ve

Communities s

within communities
G, adjacency matrix
15-826 Copyright: C. Faloutsos (2013) 26

ES Self-similarity > power
laws

Properties:

* We can PROVE that
— Degree distribution is multinomial ~ power law

new — Diameter: constant

— Eigenvalue distribution: multinomial
— First eigenvector: multinomial

15-826 Copyright: C. Faloutsos (2013) 27
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Problem Definition

» Given a growing graph with nodes N, N,, ...

« Generate a realistic sequence of graphs that will obey all
the patterns

— Static Patterns
v Power Law Degree Distribution
" Power Law eigenvalue and eigenvector distribution
\/Small Diameter
— Dynamic Patterns
+ Growth Power Law
+ Shrinking/Stabilizing Diameters

« First generator for which we can prove all these
properties

15-826 Copyright: C. Faloutsos (2013) 28
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Impact: Graph500

* Based on RMAT (= 2x2 Kronecker)
Standard for graph benchmarks

* http://www.graph500.org/

» Competitions 2x year, with all major
entities: LLNL, Argonne, ITC-U. Tokyo,
Riken, ORNL, Sandia, PSC, ...

To iterate is human, to recurse is devine

R-MAT: A Recursive Model for Graph Mining,

by D. Chakrabarti, Y. Zhan and C. Faloutsos,
SDM 2004 Orlanda Flarida TISA

% MU SCS

Conclusions - Generators

» Erdos-Renyi: phase transition

* Preferential attachment (Barabasi)
— Power-law-tail in degree distribution

Variations
» Recursion — Kronecker graphs

— Numerous power-laws, + small diameters

15-826 Copyright: C. Faloutsos (2013) 30
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Resources

Generators:

» Kronecker (christos@cs.cmu.edu)

e BRITE http://www.cs.bu.edu/brite/

» INET: http://topology.eecs.umich.edu/inet

15-826 Copyright: C. Faloutsos (2013) 31
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Other resources

Visualization - graph algo’s:

» Graphviz: http://www.graphviz.org/

* pajek: http://vlado.fmf.uni-1j.si/pub/
networks/pajek/

Kevin Bacon web site: http:/
www.cs.virginia.edu/oracle/

15-826 Copyright: C. Faloutsos (2013) 32
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Graph mining:
tools
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Main outline P77

« Introduction

¢ Indexing
* Mining

— Graphs — patterns

m) - Graphs — generators and tools
— Association rules
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Detailed outline 274

* Graphs — generators
* Graphs — tools

m) — Community detection / graph partitioning
* Algo’s

* Observation: ‘no good cuts’
— Node proximity — personalized RWR
— Influence/virus propagation & immunization
— ‘Belief Propagation’ & fraud detection

— Anomaly detection
15-826
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Problem

» Given a graph, and k£

* Break it into k (disjoint) communities

15-826 Copyright: C. Faloutsos (2013) -45
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Problem

» Given a graph, and k&
 Break it into k (disjoint) communities

A A

15-826 Copyright: C. Faloutsos (2013) -46
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Solution #1: METIS

* Arguably, the best algorithm
* Open source, at

— http://www.cs.umn.edu/~metis

 and *many* related papers, at same url

« Main idea: Q @
\
O

— coarsen the graph; !
— partition; N @
— un-coarsen 0 /
15-826 Copyright: C. Faloutsos (2013) 47
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Solution #1: METIS

* G. Karypis and V. Kumar. METIS 4.0:
Unstructured graph partitioning and sparse
matrix ordering system. TR, Dept. of CS,
Univ. of Minnesota, 1998.

+ <and many extensions>

15-826 Copyright: C. Faloutsos (2013) -48
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Solution #2

(problem: hard clustering, k pieces)

Spectral partitioning:

* Consider the 2" smallest eigenvector of the
(normalized) Laplacian

15-826 Copyright: C. Faloutsos (2013) -49
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Solutions #3, ...

Many more ideas:

* Clustering on the A? (square of adjacency
matrix) [Zhou, Woodruff, PODS’04]

* Minimum cut / maximum flow [Flake+,
KDD’00]

15-826 Copyright: C. Faloutsos (2013) -50
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Detailed outline | /7

» Motivation
» Hard clustering — & pieces

# » Hard co-clustering — (k,]) pieces

» Hard clustering — optimal # pieces
* Soft clustering — matrix decompositions
* Observations

15-826 Copyright: C. Faloutsos (2013) 51
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Problem definition
* Given a bi-partite graph, and &, /

* Divide it into £ row groups and / row groups
* (Also applicable to uni-partite graph)

15-826 Copyright: C. Faloutsos (2013) 52
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Co-clustering
» Given data matrix and the number of row
and column groups & and /
* Simultaneously

— Cluster rows into k& disjoint groups

— Cluster columns into / disjoint groups

GAVE - Clstorod mati

= o
15-826 Copyright: C. Faloutsos (2013)

= gl

Co-clustering

¢ Let Xand Y be discrete random variables
— X and Y take valuesin {1, 2, ..., m}and {1, 2, ..., n}

— p(X, Y) denotes the joint probability distribution—if not
known, it is often estimated based on co-occurrence data

— Application areas: text mining, market-basket analysis,
analysis of browsing behavior, etc.
» Key Obstacles in Clustering Contingency Tables
— High Dimensionality, Sparsity, Noise
— Need for robust and scalable algorithms

Reference:
1. Dhillon et al. Information-Theoretic Co-clustering, KDD’03

15-826

18



C. Faloutsos

g CMUSCS

n
050505 0 0 0 |
G505 0 0 eg, terms x documents
mlo o0 oo
0 0 0 05 .05 05
0404 0 04 04 04 |
04 04 04 0 04 04
k ! n
50 0 30 e OJ_ 054 054 02 [0 0 0
500 03 0 0 28 36 s6d |ost 0s¢ 020 0 0
050 22 0 0 0 [0 054 054
mi, s o 00 0 [0 o o0
00 5 06 03 028 |08 036 036
00 5 036 03 028 1028 036 036
15-826 Copyright: C. Faloutsos (2013) -55
% CMUSCS
med. doc
cs doc
05 05 05 0 0 0 | med. terms
0505050 0 0
0 0 0 05 .05 05 ‘ t
I Cs terms
00 0 0505 05
term group x i
~ 04 04 0 04 04 04 | common te S
doc. group 00 0 rm
5000 30 I.S: % 8 0 0 0J= 04 08 020 0 0
500 03 00 28 36 36 054 054 02 |0 0 0
050 22 00 0 o 04 05
0050 00 0 o 04 054
00 5 doc x 036 03 028 |08 036 036
005 dOC group 036 .036 028 1.028 036 .036
term x
Copyright: C. Faloutsos (2013) -56
term-group
g CMU SCS
.
Co-clustering

Observations
 uses KL divergence, instead of L2
* the middle matrix is not diagonal
— Like in the Tucker tensor decomposition

e s/w at:
www.cs.utexas.edu/users/dml/Software/cocluster.html

15-826 Copyright: C. Faloutsos (2013) 57
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Detailed outline 77

¢ Motivation

» Hard clustering — k pieces
» Hard co-clustering — (k,I) pieces

#- Hard clustering — optimal # pieces
* Soft clustering — matrix decompositions

¢ Observations

15-826 Copyright: C. Faloutsos (2013) -58
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Problem with Information
Theoretic Co-clustering

* Number of row and column groups must be
specified

Desiderata:

v' Simultaneously discover row and column groups

X Fully Automatic: No “magic numbers”

v Scalable to large graphs

15-826 Copyright: C. Faloutsos (2013) 59
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Graph partitioning

¢ Documents x terms

e Customers x products
» Users x web-sites

15-826 Copyright: C. Faloutsos (2013) #60
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Graph partitioning

¢ Documents X terms
» Customers x products
e Users x web-sites

+ Q: HOW MANY
PIECES?

15-826 Copyright: C. Faloutsos (2013) #61
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Graph partitioning

* Documents x terms
* Customers x products
» Users x web-sites

* Q: HOW MANY
PIECES?

* A: MDL/ compression

15-826 Copyright: C. Faloutsos (2013) #62

- v Fully Automatic: No “magic numbers”

CMU SCS

LLLLLLLLLLLLLLLLLL

Fow Custrs
28 8 8 B BE

Desiderata:

v' Simultaneously discover row and column groups

v Scalable to large matrices

Reference:
1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD’04

15-826
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What makes a cross-association

“good”?
L Why is this
5 better?
versus gﬂs /
g
o>

Column groups

Column groups

15-826 Copyright: C. Faloutsos (2013) -64
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What makes a cross-association
“good”?

Why is this

better?
/

versus

Row groups

Column groups

Column groups

simpler; easier to describe
easier to compress!

15-826 Copyright: C. Faloutsos (2013) -65
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What makes a cross-association
“good”?

Problem definition: given an encoding scheme
+ decide on the # of col. and row groups k and /
+ and reorder rows and columns,

* to achieve best compression

15-826 Copyright: C. Faloutsos (2013) 66
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Main Idea

Good Better
Compression Clustering

Total Encoding Cost =

-826 Copyright: C. Faloutsos (2013)

Cost of describing

1 ES
. size, * H(x;) + -
z"I 1 ( ‘) cross-associations

“/

Code Cost Description

Cost
Minimize the total cost (# bits)

for lossless compression

-67
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Algorithm

1=5 col groups

=y

L t ’sdno.!ﬂ MOI G

Documents

|
k=4, k=4,
1=4 1=5
15-826 Copyright: C. Faloutsos (2013) -68
Experiments
7
“CLASSIC”

* 3,893 documents
e 4,303 words
* 176,347 “dots”

Words

Combination of 3 sources:

* MEDLINE (medical)

« CISI (info. retrieval)

* CRANFIELD (aerodynamics)

15-826
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“CLASSIC” graph of documents & words:
k=15,1=19

70

% CMUSCS .
Experiments

blood, disease, clinical, cell,
tissue, patient

insipidus, alveolar, aortic, death,
prognosis, intravenous

sipidus, ylveolar, aortic/ plood, disease, clinical, shape, nasa, leading,
ath, progi V-Hm\'ﬂ 0US cell, tissue, patient _assumed. thin

MEDLINE'

MEDLINE
(medical)

CRANFIILD I
E

“CLASSIC” graph of documents & words:
k=15, 1=19

71

Experiments

providing, studying, records, abstract, notation, works,
development, students, rules construct, bibliographies

sipidus. alveolar, ao inical, shape, nasa, leading,
ath, prognosis. intra tassumed, thin

MEI)ITINE \1I:L)LTIN3E“

(medical) o

CISI a =
(Information Retrieval)

CRANFIELD
B I

“CLASSIC” graph of documents & words:
k=15, 1=19

72
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Experiments

shape, nasa, leading,
assumed, thin

sipidus. alveolar, aortic, bload, diseast, clinical
ath, proguosis, intravenous cell, tissue, patient

pe, nasa, leading,
umed, thin

MEDLINE s \
(medical) | s \
CISI CIT =
(Information Retrieval) B
0 o
¢ 500 | T
=
CRANFIELD  CRANFIELD Il ]
(aerodynamics) . —

“CLASSIC” graph of documents & words:
k=15, 1=19
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Experiments

paint, examination, fall,
raise, leave, based

sipidus, alveolar, aortic,

blood. disease, clinical, shape,[nasa, leading,
ath, prognosis, intravenous cell, tissue, patient  assumgd, thin
MEDITINE MEDLINE |
(medical)
y 0
CISI o

(Information Retrieval)

CRANFIELD  CRANTIELD I
(aerodynamics) .

“CLASSIC” graph of documents & words:
k=15, 1=19 "

g MU SCS
Algorithm

Code for cross-associations (matlab):

www.cs.cmu.edu/~deepay/mywww/software
CrossAssociations-01-27-2005.tgz

Variations and extensions:

|
|
» ‘Autopart’ [Chakrabarti, PKDD’04]
¢ www.cs.cmu.edu/~deepay :
15-826 Copyright: C. Faloutsos (2013) 75
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Algorithm

» Hadoop implementation [ICDM’08]

Spiros Papadimitriou, Jimeng Sun: DisCo: Distributed Co-clustering with Map-Reduce:
A Case Study towards Petabyte-Scale End-to-End Mining. ICDM 2008: 512-521

% CMU SCS

Detailed outline

¢ Motivation

 Hard clustering — & pieces
» Hard co-clustering — (k,/) pieces

» Hard clustering — optimal # pieces

# * (Soft clustering — matrix decompositions
— PCA, ICA, non-negative matrix factorization,

)

¢ Observations
15-826

Copyright: C. Faloutsos (2013) 77
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Detailed outline

* Motivation

» Hard clustering — & pieces
» Hard co-clustering — (k,]) pieces

» Hard clustering — optimal # pieces

(Soft clustering)
m) - Observations

15-826 Copyright: C. Faloutsos (2013) 78

26



C. Faloutsos 15-826

g CMUSCS

Observation #1

» Skewed degree distributions — there are
nodes with huge degree (>O(10"4), in
facebook/linkedIn popularity contests!)

e TRAP: ‘find all pairs of nodes, within 2
steps from each other’

IM

15-826 Copyright: C. Faloutsos (2013) 79
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Observation #2 é (i

* TRAP: shortest-path between two nodes
* (cheat: look for 2, at most 3-step paths)
* Why:

— If they are close (within 2-3 steps): solved

— If not, after ~6 steps, you’ll have ~ the whole
graph, and the path won’t be very meaningful,
anyway.

15-826 Copyright: C. Faloutsos (2013) 80
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Observation #3

* Maybe there are no good cuts: *jellyfish’’
shape [Tauro+’01], [Siganos+,’06], strange
behavior of cuts [Chakrabarti+’04],
[Leskovec+,’08]

&P

15-826 Copyright: C. Faloutsos (2013) 81
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Observation #3

* Maybe there are no good cuts: *“jellyfish’’
shape [Tauro+’01], [Siganos+,’06], strange
behavior of cuts [Chakrabarti+,’04],
[Leskovec+,’08]

15-826 Copyright: C. Faloutsos (2013) 82
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Jellyfish model [Tauro+]

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos,
M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L Tauro,
M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept.
2006.

g MU SCS

Strange behavior of min cuts

* ‘negative dimensionality’ (1)

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004
Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information
Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.
WWW 2008.
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“Min-cut” plot

* Do min-cuts recursively.

log (mincut-size / #edges)

Mincut size

= sart(N) ¢
log (# edges)
N nodes
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Min-cut” plot
* Do min-cuts recursively.
New min-cut

! log (mincut-size / #edges)
: S
: ®e
! L 4

,,,,,,, e ‘
1 °
1
I
T
| log (# edges)

N nodes
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Min-cut” plot
* Do min-cuts recursively.
New min-cut

! log (mincut-size / #edges)
i Slope =-0.5
: ¢

log (# edges)

For a d-dimensional grid,
the slope is -1/d
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log (mincut-size / #edges)
o Slope=-

log (# edges)

For a d-dimensional grid,
the slope is -1/d

“Min-cut” plot

log (mincut-size / #edges)

S oo o

log (# edges)

For a random graph, the
slope is 0
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“Min-cut” plot

¢ What does it look like for a real-world
graph?

log (mincut-size / #edges)

N

log (# edges)

°~
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Experiments
* Datasets:
— Google Web Graph: 916,428 nodes and
5,105,039 edges

— Lucent Router Graph: Undirected graph of
network routers from

nodes and 181,639 edges

nodes and 952,580 edges

www.isi.edu/scan/mercator/maps.html; 112,969

— User = Website Clickstream Graph: 222,704

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,

Workshop on Link Analysis, Counter-terrorism and Privacy

Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004

15-826
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Experiments
» Used the METIS algorithm [Karypis, Kumar,
1995]
::30 \_ _si);cN 0.4 « Google Web graph
,Té * Values along the y-axis
1‘;, are averaged
2
E} / » We observe a “lip” for
g large edges
log (# edges) * Slope of -0.4,

corresponds to a 2.5-
dimensional grid!

15-826
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Experiments
» Used the METIS algorithm [Karypis, Kumar,
1995]
;:30 « Similarly, for
E’ * Lucent routers
é * clickstream
i
2
log (# edges)
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Conclusions — Practitioner’s guide

 Hard clustering — & pieces METIS

» Hard co-clustering — (,/) pieces  Co-clustering
» Hard clustering — optimal # pieces Cross-associations
* Observations ‘jellyfish’:

Maybe, there are
%ﬁ?) no good cuts
?
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