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Must-read material (1 of 2) 

Fully Automatic Cross-Associations, 
by D. Chakrabarti, S. Papadimitriou, D. 
Modha and C. Faloutsos, in KDD 2004 
(pages 79-88), Washington, USA 
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Must-read material (2 of 2) 

J. Leskovec, D. Chakrabarti, J. Kleinberg, and 
C. Faloutsos, 
Realistic, Mathematically Tractable Graph 
Generation and Evolution, Using 
Kronecker Multiplication, in PKDD 2005, 
Porto, Portugal  



C. Faloutsos 15-826 

2 

CMU SCS 

Main outline 

•  Introduction 
•  Indexing 
•  Mining 

– Graphs – patterns 
– Graphs – generators and tools 
– Association rules 
– … 
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Detailed outline 

•  Graphs – generators 
– Erdos-Renyi 
– Other generators 
– Kronecker 

•  Graphs - tools 
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Generators 

•  How to generate random, realistic graphs? 
– Erdos-Renyi model: beautiful, but unrealistic 
–  degree-based generators 
–  process-based generators 
–  recursive/self-similar generators 

15-826 Copyright: C. Faloutsos (2013) 
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Erdos-Renyi 

•  random graph – 100 
nodes, avg degree = 2 

•  Fascinating properties 
(phase transition) 

•  But: unrealistic 
(Poisson degree 
distribution != power 
law) 
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E-R model & Phase transition 
•  vary avg degree D 
•  watch Pc = 

Prob( there is a giant 
connected component) 

•  How do you expect it 
to be? 

D 

Pc 

0 

1 
?? 
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E-R model & Phase transition 
•  vary avg degree D 
•  watch Pc = 

Prob( there is a giant 
connected component) 

•  How do you expect it 
to be? 

D 

Pc 

0 

1 

N=10^3 
N->infty 

D0 
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Degree-based 

•  Figure out the degree distribution (eg., 
‘Zipf’) 

•  Assign degrees to nodes 
•  Put edges, so that they match the original 

degree distribution 
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Process-based 

•  Barabasi; Barabasi-Albert: Preferential 
attachment -> power-law tails! 
–  ‘rich get richer’ 

•  [Kumar+]: preferential attachment + mimick 
– Create ‘communities’ 
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Process-based (cont’d) 

•  [Fabrikant+, ‘02]: H.O.T.: connect to 
closest, high connectivity neighbor 

•  [Pennock+, ‘02]: Winner does NOT take all 

15-826 Copyright: C. Faloutsos (2013) 
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Detailed outline 

•  Graphs – generators 
– Erdos-Renyi 
– Other generators 
– Kronecker 

•  Graphs - tools 
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Recursive generators 

•  (RMAT [Chakrabarti+,’04]) 
•  Kronecker product 
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Wish list for a generator: 
•  Power-law-tail in- and out-degrees 
•  Power-law-tail scree plots 
•  shrinking/constant diameter 
•  Densification Power Law 
•  communities-within-communities 
Q: how to achieve all of them? 
A: Kronecker matrix product [Leskovec+05b] 

15-826 Copyright: C. Faloutsos (2013) 
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Graph gen.: Problem dfn 
•  Given a growing graph with count of nodes N1, 

N2, … 
•  Generate a realistic sequence of graphs that will 

obey all the patterns  
–  Static Patterns 

 S1 Power Law Degree Distribution 
 S2 Power Law eigenvalue and eigenvector distribution 
      Small Diameter 

–  Dynamic Patterns 
 T2 Growth Power Law (2x nodes; 3x edges) 
 T1 Shrinking/Stabilizing Diameters 

CMU SCS 
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Graph Patterns 

Count vs Indegree Count vs Outdegree 

Power Laws 

Eigenvalue vs Rank 

15-826 Copyright: C. Faloutsos (2013) 

How to match all these properties (+ small diameters, etc)? 
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Hint: self-similarity 
•  A: RMAT/Kronecker generators 

– With self-similarity, we get all power-laws, 
automatically, 

– And small/shrinking diameter 
– And `no good cuts’ 
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R-MAT: A Recursive Model for Graph Mining,  
by D. Chakrabarti, Y. Zhan and C. Faloutsos,  
SDM 2004, Orlando, Florida, USA 
Realistic, Mathematically Tractable Graph Generation  
and Evolution, Using Kronecker Multiplication, 
by J. Leskovec, D. Chakrabarti, J. Kleinberg,  
and C. Faloutsos, in PKDD 2005, Porto, Portugal  
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Kronecker Graphs 

Intermediate stage 

Adjacency matrix 
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Kronecker Graphs 

Intermediate stage 

Adjacency matrix 
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Kronecker Graphs 

Intermediate stage 

Adjacency matrix 
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Kronecker product 

N N*N N**4 
15-826 Copyright: C. Faloutsos (2013) 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

Holes within holes; 
Communities  

within communities 
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Properties: 

•  We can PROVE that 
– Degree distribution is multinomial ~ power law 
– Diameter: constant 
– Eigenvalue distribution: multinomial 
– First eigenvector: multinomial 

new 

Self-similarity -> power 
laws 
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Problem Definition 
•  Given a growing graph with nodes N1, N2, … 
•  Generate a realistic sequence of graphs that will obey all 

the patterns  
–  Static Patterns 

 Power Law Degree Distribution 
 Power Law eigenvalue and eigenvector distribution 
 Small Diameter 

–  Dynamic Patterns 
 Growth Power Law 
 Shrinking/Stabilizing Diameters 

•  First generator for which we can prove all these 
properties 

 
 
 

 
 
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Impact: Graph500 
•  Based on RMAT (= 2x2 Kronecker) 
•  Standard for graph benchmarks 
•  http://www.graph500.org/ 
•  Competitions 2x year, with all major 

entities: LLNL, Argonne, ITC-U. Tokyo, 
Riken, ORNL, Sandia, PSC, … 

15-826 Copyright: C. Faloutsos (2013) 29 

R-MAT: A Recursive Model for Graph Mining,  
by D. Chakrabarti, Y. Zhan and C. Faloutsos,  
SDM 2004, Orlando, Florida, USA 

To iterate is human, to recurse is devine 

CMU SCS 
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Conclusions - Generators 

•  Erdos-Renyi: phase transition 
•  Preferential attachment (Barabasi) 

– Power-law-tail in degree distribution 
•  Variations 
•  Recursion – Kronecker graphs 

– Numerous power-laws, + small diameters 

15-826 Copyright: C. Faloutsos (2013) 
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Resources 

Generators: 
•  Kronecker (christos@cs.cmu.edu) 
•  BRITE  http://www.cs.bu.edu/brite/ 
•  INET: http://topology.eecs.umich.edu/inet 

15-826 Copyright: C. Faloutsos (2013) 
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Other resources 

Visualization - graph algo’s: 
•  Graphviz: http://www.graphviz.org/ 
•  pajek: http://vlado.fmf.uni-lj.si/pub/

networks/pajek/ 

Kevin Bacon web site:        http://
www.cs.virginia.edu/oracle/ 

15-826 Copyright: C. Faloutsos (2013) 
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Graph mining:  
tools 
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Main outline 

•  Introduction 
•  Indexing 
•  Mining 

– Graphs – patterns 
– Graphs – generators and tools 
– Association rules 
– … 
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Detailed outline 
•  Graphs – generators 
•  Graphs – tools 

– Community detection / graph partitioning 
•  Algo’s 
•  Observation: ‘no good cuts’ 

– Node proximity – personalized RWR 
–  Influence/virus propagation & immunization 
–  ‘Belief Propagation’ & fraud detection 
– Anomaly detection 
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Problem 

•  Given a graph, and k 
•  Break it into k (disjoint) communities 
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Problem 

•  Given a graph, and k 
•  Break it into k (disjoint) communities 

k = 2 
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Solution #1: METIS 

•  Arguably, the best algorithm 
•  Open source, at 

–  http://www.cs.umn.edu/~metis 
•  and *many* related papers, at same url 
•  Main idea:  

–  coarsen the graph;  
–  partition;  
–  un-coarsen 

CMU SCS 
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Solution #1: METIS 
•  G. Karypis and V. Kumar. METIS 4.0: 

Unstructured graph partitioning and sparse 
matrix ordering system. TR, Dept. of CS,  
Univ. of Minnesota, 1998. 

•  <and many extensions> 
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Solution #2 

(problem: hard clustering, k pieces) 
Spectral partitioning: 
•  Consider the 2nd smallest eigenvector of the 

(normalized) Laplacian 
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15-826 Copyright: C. Faloutsos (2013) -50 

Solutions #3, … 

Many more ideas: 
•  Clustering on the A2 (square of adjacency 

matrix) [Zhou, Woodruff, PODS’04] 
•  Minimum cut / maximum flow [Flake+, 

KDD’00] 
•  … 

CMU SCS 
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Detailed outline 

•  Motivation 
•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  Soft clustering – matrix decompositions 
•  Observations 
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Problem definition 

•  Given a bi-partite graph, and k, l 
•  Divide it into k row groups and l row groups 
•  (Also applicable to uni-partite graph) 

CMU SCS 
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Co-clustering 
•  Given data matrix and the number of row 

and column groups k and l 
•  Simultaneously 

– Cluster rows into k disjoint groups  
– Cluster columns into l disjoint groups 

CMU SCS 
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Co-clustering 

•  Let X and Y  be discrete random variables  
–   X  and Y  take values in {1, 2, …, m} and {1, 2, …, n} 
–   p(X, Y)  denotes the joint probability distribution—if not 

known, it is often estimated based on co-occurrence data 
–  Application areas: text mining, market-basket analysis, 

analysis of browsing behavior, etc.  

•  Key Obstacles in Clustering Contingency Tables  
–  High Dimensionality, Sparsity, Noise 
–  Need for robust and scalable algorithms 

Reference: 
1.  Dhillon et al. Information-Theoretic Co-clustering, KDD’03 
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m 

m 

n 

n l 
k 

k 
l 

eg, terms x documents 
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doc x 
doc group 

term group x 
doc. group 

med. terms 

cs terms 
common terms 

med. doc cs doc 

term x 
term-group 

CMU SCS 

15-826 Copyright: C. Faloutsos (2013) -57 

Co-clustering 

Observations 
•  uses KL divergence, instead of L2 
•  the middle matrix is not diagonal 

– Like in the Tucker tensor decomposition 
•  s/w at: 
www.cs.utexas.edu/users/dml/Software/cocluster.html 
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Detailed outline 

•  Motivation 
•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  Soft clustering – matrix decompositions 
•  Observations 
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Problem with Information 
Theoretic Co-clustering 

•  Number of row and column groups must be 
specified 

Desiderata: 

  Simultaneously discover row and column groups 

"  Fully Automatic: No “magic numbers” 

  Scalable to large graphs 

CMU SCS 
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Graph partitioning 

•  Documents x terms 
•  Customers x products 
•  Users x web-sites 
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Graph partitioning 

•  Documents x terms 
•  Customers x products 
•  Users x web-sites 

•  Q: HOW MANY 
PIECES? 

CMU SCS 
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Graph partitioning 

•  Documents x terms 
•  Customers x products 
•  Users x web-sites 

•  Q: HOW MANY 
PIECES? 

•  A: MDL/ compression 

CMU SCS 

15-826 Copyright: C. Faloutsos (2013) -63 

Cross-association 

Desiderata: 

  Simultaneously discover row and column groups 

  Fully Automatic: No “magic numbers” 

  Scalable to large matrices 

Reference: 
1.  Chakrabarti et al. Fully Automatic Cross-Associations, KDD’04 
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What makes a cross-association 
“good”? 

versus 

Column groups Column groups 

R
ow

 g
ro

up
s 

R
ow

 g
ro

up
s 

Why is this 
better? 
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What makes a cross-association 
“good”? 

versus 

Column groups Column groups 

R
ow

 g
ro

up
s 

R
ow

 g
ro

up
s 

Why is this 
better? 

simpler; easier to describe 
easier to compress! 

CMU SCS 

15-826 Copyright: C. Faloutsos (2013) -66 

What makes a cross-association 
“good”? 

Problem definition: given an encoding scheme 
•  decide on the # of col. and row groups k and l 
•  and reorder rows and columns, 
•  to achieve best compression 
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Main Idea 

sizei * H(xi)  + 
Cost of describing 
cross-associations 

Code Cost Description 
Cost 

Σi  Total Encoding Cost = 

Good 
Compression 

Better 
Clustering 

Minimize the total cost (# bits) 

for lossless compression 

details 

CMU SCS 
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Algorithm 
k = 5 row

 groups 

k=1, 
l=2 

k=2, 
l=2 

k=2, 
l=3 

k=3, 
l=3 

k=3, 
l=4 

k=4, 
l=4 

k=4, 
l=5 

l = 5 col groups 

CMU SCS 
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Experiments 

“CLASSIC” 

•  3,893 documents 

•  4,303 words 

•  176,347 “dots” 

Combination of 3 sources: 

•  MEDLINE (medical) 

•  CISI (info. retrieval) 

•  CRANFIELD (aerodynamics) 

D
oc

um
en

ts 

Words 
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Experiments 

“CLASSIC” graph of documents & words: 
k=15, l=19 

D
oc

um
en

ts 

Words 
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Experiments 

“CLASSIC” graph of documents & words: 
k=15, l=19 

MEDLINE 
(medical) 

insipidus, alveolar, aortic, death, 
prognosis, intravenous 

blood, disease, clinical, cell, 
tissue, patient 

CMU SCS 
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Experiments 

“CLASSIC” graph of documents & words: 
k=15, l=19 

CISI 
(Information Retrieval) 

providing, studying, records, 
development, students, rules 

abstract, notation, works, 
construct, bibliographies 

MEDLINE 
(medical) 
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Experiments 

“CLASSIC” graph of documents & words: 
k=15, l=19 

CRANFIELD 
(aerodynamics) 

shape, nasa, leading, 
assumed, thin 

CISI 
(Information Retrieval) 

MEDLINE 
(medical) 
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Experiments 

“CLASSIC” graph of documents & words: 
k=15, l=19 

paint, examination, fall, 
raise, leave, based 

CRANFIELD 
(aerodynamics) 

CISI 
(Information Retrieval) 

MEDLINE 
(medical) 

CMU SCS 
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Algorithm 
Code for cross-associations (matlab): 

www.cs.cmu.edu/~deepay/mywww/software/
CrossAssociations-01-27-2005.tgz 

Variations and extensions: 
•  ‘Autopart’ [Chakrabarti, PKDD’04] 
•   www.cs.cmu.edu/~deepay 
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Algorithm 
•  Hadoop implementation [ICDM’08] 

Spiros Papadimitriou, Jimeng Sun: DisCo: Distributed Co-clustering with Map-Reduce: 
A Case Study towards Petabyte-Scale End-to-End Mining. ICDM 2008: 512-521  

CMU SCS 
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Detailed outline 

•  Motivation 
•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  (Soft clustering – matrix decompositions 

– PCA, ICA, non-negative matrix factorization, 
…) 

•  Observations 
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Detailed outline 

•  Motivation 
•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  (Soft clustering) 
•  Observations 
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Observation #1 

•  Skewed degree distributions – there are 
nodes with huge degree (>O(10^4), in 
facebook/linkedIn popularity contests!) 

•  TRAP: ‘find all pairs of nodes, within 2 
steps from each other’ 

1M 

… 

CMU SCS 
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Observation #2 

•  TRAP: shortest-path between two nodes 
•  (cheat: look for 2, at most 3-step paths) 
•  Why: 

–  If they are close (within 2-3 steps): solved 
–  If not, after ~6 steps, you’ll have ~ the whole 

graph, and the path won’t be very meaningful, 
anyway. 

… 

CMU SCS 
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Observation #3 

•  Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+’04], 
[Leskovec+,’08] 
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Observation #3 

•  Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+,’04], 
[Leskovec+,’08] 

? ? 
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Jellyfish model [Tauro+] 

… 

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos, 
M. Faloutsos, Global Internet, November 25-29, 2001 

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L Tauro, 
M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept. 
2006.  
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Strange behavior of min cuts 

•  ‘negative dimensionality’ (!) 

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,  
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy 

Statistical Properties of Community Structure in Large Social and Information 
Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.  
WWW 2008.  
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“Min-cut” plot 

•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

Mincut size 
= sqrt(N) 
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

New min-cut 
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

New min-cut 

Slope = -0.5 

For a d-dimensional grid, 
the slope is -1/d 
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“Min-cut” plot 

log (# edges) 

log (mincut-size / #edges) 

Slope = -1/d 

For a d-dimensional grid, 
the slope is -1/d 

log (# edges) 

log (mincut-size / #edges) 

For a random graph, the 
slope is 0 
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“Min-cut” plot 

•  What does it look like for a real-world 
graph? 

log (# edges) 

log (mincut-size / #edges) 

? 
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Experiments 
•  Datasets: 

–  Google Web Graph: 916,428 nodes and 
5,105,039 edges 

–  Lucent Router Graph: Undirected graph of 
network routers from 
www.isi.edu/scan/mercator/maps.html; 112,969 
nodes and 181,639 edges 

–  User  Website Clickstream Graph: 222,704 
nodes and 952,580 edges 

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,  
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy 
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Experiments 
•  Used the METIS algorithm [Karypis, Kumar, 

1995] 

log (# edges) 

lo
g 
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/ #
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•  Google Web graph 

•  Values along the y-axis 
are averaged 

•  We observe a “lip” for 
large edges 

•  Slope of -0.4, 
corresponds to a 2.5-
dimensional grid! 

Slope~ -0.4 
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Experiments 
•  Used the METIS algorithm [Karypis, Kumar, 

1995] 

log (# edges) 

lo
g 

(m
in

cu
t-s

iz
e 

/ #
ed

ge
s)

 

•  Similarly, for  

•  Lucent routers 

•  clickstream 
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Conclusions – Practitioner’s guide 

•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  Observations 

METIS 
Co-clustering 
Cross-associations 

‘jellyfish’:  
Maybe, there are 
no good cuts 

? 


